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In a recent paper, the generalization of the Jensen-Shannon divergence in the context of quantum theory has
been studied fMajtey et al., Phys. Rev. A 72, 052310 s2005dg. This distance between quantum states has shown
to verify several of the properties required for a good distinguishability measure. Here we investigate the
metric character of this distance. More precisely we show, formally for pure states and by means of a numerical
procedure for mixed states, that its square root verifies the triangle inequality.
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I. INTRODUCTION

Fundamental physical theories are formulated in terms of
an abstract space. This is the case of relativity theory, quan-
tum mechanics sQMd, Yang-Mills-like theories, and every
proposal for unified field theory. On each abstract space dif-
ferent structures can be defined. For example, topological,
differentiable, affine, and metric structures are ubiquitous in
space-time models. A prescription for measuring just how
close two points of the concomitant space are is what we
mean here by a metric structure. A more precise distinction
between a distance and a metric will be given below.

In principle each one of the above-mentioned structures
can be defined in an independent way. In special relativity
theory the space time is the standard R4 manifold provided
with the sfixed, nondynamicald Minkowskian metric. In gen-
eral relativity, instead, the space time is a differentiable four-
dimensional manifold where the metric is given by the
matter-energy distribution sthroughout the Einstein field
equationsd. In both cases the metric is compatible with
Lorentz’s covariance. It is worth mentioning here sas known
since the pioneering works of Gauss and Riemannd that the
metric defines every geometrical property of a differentiable
manifold.

In QM the corresponding abstract space is a sfinite or
infinite dimensionald Hilbert space H. In its mathematical
formalism the states of a physical system S are represented
by operators sdensity operatorsd acting on H. More precisely
the states of the system S are represented by the elements of
BsHd1

+, that is, the set of positive trace one operators on H.
The notion of a state as a unit vector of H refers to the
extremal elements of BsHd1

+ fr«BsHd1
+ is extremal if and

only if it is idempotent, r2=rg. In this case r is of the form
uwlkwu for some unit vector uwl«H, and is called a pure state.

In the case of a Hilbert space, the basic underlying struc-
ture is that of a vectorial space provided with an internal
product k u l between elements of H. From this inner product
several ways of measuring “proximity” between two ele-
ments of H can be defined. For example, the Wootters’s dis-
tance

dWsuwl, ucld ; dWsuwlkwu, uclkcud = arccossukwuclud s1d

is a very important one. On one side Eq. s1d represents the
angle between the spured states uwl and ucl; on the other, it

has to do with the statistical fluctuations in the outcomes of
measurements into the QM formalism f1g. Finally, Eq. s1d is
invariant under unitary evolution. Therefore we can think of
Eq. s1d as a very natural distance between pure states in QM,
in some sense imposed by the quantum theory itself. A gen-
eralization of this distance to mixed states have been studied
by Braunstein and Caves f2g.

Before going on let us remind the reader of a formal dis-
tance definition. Let X be an abstract set. A function

d:X 3 X → R

is a distance defined over the set X, if for every x ,yeX it
satisfies the following properties:

dsx,yd . 0 for x Þ y and dsx,xd = 0,

dsx,yd = dsy,xd . s2d

If, for every x ,y ,zeX, the function d also verifies the triangle
inequality:

dsx,yd + dsy,zd − dsx,zd $ 0, s3d

it is said that d is a metric for the space X. Incidentally, we
mention that the function given by Eq. s1d is a metric. How-
ever, only a few among all distances between quantum states
historically introduced in the literature verify condition s3d.

The definition of distance between mixed quantum states
is a topic of permanent interest. This interest has been lately
rekindled on account of problems emerging in quantum-
information theory sQITd f3–7g. In introducing distances be-
tween quantum states, different roads have been traversed.
We have already mentioned the case of the Wootters’s dis-
tance and its generalization, presented in f2g. Recently, a
rather interesting approach has been advanced by Lee et al.
in Ref. f5g. There these authors characterize the degree of
closeness of two states with regards to the information that
can be attained for each of them from a complete set of
mutually complementary measurements plus an invariance
criterion. The resulting distance measure is equivalent to the
Hilbert-Schmidt metric. Let us recall that this metric emerges
from the primitive structure of the Hilbert space. Indeed, an
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inner product between bounded operators acting over the
Hilbert space H can be defined in the fashion

kAuBl = TrsA†Bd .

The Hilbert-Schmidt norm of the operator A is given by
zuAuzHS

2 = kA uAl and from this, the Hilbert-Schmidt metric be-
tween two operators A and B is defined as

dHSsA,Bd = iA − BiHS. s4d

Another way of dealing with the problem of introducing dis-
tances between quantum states is generalizing the notions of
distance defined in the space of classical probability distri-
butions. This is the case of the relative entropy, which is a
generalization of information theoretic Kullback-Leibler di-
vergence. The relative entropy of an operator r with respect
to an operator s, both belonging to BsHd1

+, is

Ssr,sd = Trfrslog r − log sdg , s5d

where log stands for logarithm in base two. The relative
entropy is not a distance sand obviously is not a metric ei-
therd because it is not symmetric and does not verify the
triangle inequality s3d. Worse, it may even be unbounded. In
particular, the relative entropy is well defined only when the
support of s is equal to or larger than that of r f3g sthe
support of an operator is the subspace spanned by the eigen-
vectors of the operator with nonzero eigenvaluesd. This is a
strong restriction which is violated in some physically rel-
evant situations, as, for example, when s is a pure reference
state.

To overcome such problems we have recently investigated
an alternative to the relative entropy f8g that emerges as a
natural extension of a symmetrized version of the Kullback-
Leibler divergence to the realm of quantum theory. In the
classical context this quantity is known as the Jensen-
Shannon divergence sJSDd and was introduced by Rao f9g
and, independently, by Lin f10g. It has been applied to a
diversity of problems arising in statistics and physics
f11–15g. Among its most significant properties one can in-
clude its boundedness and its metric character f17g. In Ref.
f12g it is shown that the JSD can be taken as a unifying
distance between probability distributions.

In our previous study of the quantum JSD we showed that
it verifies all the properties required for a good measure of
distinguishability between quantum states. In this paper we
investigate the metric property of the quantum JSD sQJSDd
that could be regarded as essential to check on the conver-
gence of iterative algorithms in quantum computation f16g.

The structure of this paper is as follows: Sec. II is devoted
to the formal definition of the classical and QJSD. In Sec. III
we investigate the metric character of the QJSD. In the first
place we consider the pure states case and then we investi-
gate the metric properties for arbitrary mixed states recourse
to numerical simulations in different Hilbert spaces. Finally,
some conclusions are drawn in Sec. IV.

II. CLASSICAL JENSEN-SHANNON DIVERGENCE
AND ITS QUANTUM EXTENSION

The classical JSD between two sdiscreted probability dis-
tributions P= sp1 , p2 , . . . , pNd and Q= sq1 ,q2 , . . . ,qNd, oipi
=oiqi=1 is defined as

DJSsP,Qd =
1

2
FSSP,

P + Q

2
D + SSQ,

P + Q

2
DG , s6d

where SsP ,Qd=oipi log
pi

qi
is the Kullback-Leibler diver-

gence. DJSsP ,Qd can be also expressed in the form

DJSsP,Qd = HSP + Q

2 D −
1

2
HsPd −

1

2
HsQd

=
1

2Fo
i

pi logS 2pi

pi + qi
D + o

i

qi logS 2qi

pi + qi
DG ,

s7d

where HsPd=−oipi log pi is the Shannon entropy. The clas-
sical JSD exhibits several interesting properties. Among
them we recall the following ones.

sad DJSsP ,Qd is symmetric and always well defined;
sbd it is bounded,

0 # DJSsP,Qd # 1,

and, as it was already stated,
scd its square root,

dJSsP,Qd ; ÎDJSsP,Qd , s8d

verifies the triangle inequality Eq. s3d sbut DJS does notd.
A proof of this last fact can be found in Refs. f17,18g.

Alternatively, this can be proved by using some results of
harmonic analysis due to Schoenberg f19g. The basic fact
that makes Schoenberg’s theorem applicable to the classical
JSD resides in that it is a definite negative kernel, that is, for
all finite collection of real numbers scidi#N, and for all cor-
responding probability distributions sPidi#N, the implication

o
i=1

N

ci = 0 ⇒ o
i,j

cicjDJSsPi,Pjd # 0 s9d

is valid. A corollary of Schoenberg’s theorem allows one to
assert that the probability distributions space, with the metric
s8d, can be isometrically mapped into a subset of a Hilbert
space f20g.

The classical JSD can be used to distinguish two probabil-
ity distributions and therefore can be used as well to do so
for two quantum states described by their density operators,
say, r and s. Indeed, let us suppose we choose a positive
operator value measure sPOVMd, oi=1

M Ei= I, that generates
two probability distributions via

pi = TrsEird ,

qi = TrsEisd ,

for i=1, . . . ,M. Then we can use the JSD s6d to distinguish
between these two distributions. In this procedure we have
the freedom of choosing the POVM which most clearly dis-
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tinguishes pi from qi, that is, which makes the value of
DJSspi ,qid the largest. This reasoning motivates us to intro-
duce the quantity

DJS1sr,sd = sup
hEij

DJSspi,qid , s10d

where the supremum is taken over all POVMs. Physically
DJS1 gives the best discrimination between the states r and s
that we can achieve by means of measurements.

By mimicking the extension of Kullback-Leibler diver-
gence to the realm of quantum theory, we define the QJSD as
f8g

DJSsr,sd =
1

2
FSSr,

r + s

2
D + SSs,

r + s

2
DG s11d

that can be recast in terms of the von Neumann entropy
HNsrd=−Trsr log rd in the fashion

DJSsr,sd = HNSr + s

2
D −

1

2
HNsrd −

1

2
HNssd . s12d

This quantity is always well-defined, symmetric, positive
definite, and bounded f0#DJSsr ,sd#1g. By using the cor-
responding properties of the relative entropy f21g and ex-
pression s11d it can be shown that, for arbitrary r and s, the
following inequality,

DJSsr,sd $ DJS1sr,sd , s13d

is valid. The equality is satisfied if and only if r and s com-
mute, that is, the upper bound in Eq. s13d is, in general, not
attainable for any POVM.

To conclude this section we give the explicit expression
for the QJSD in terms of the eigenvalues and eigenvectors of
the operators involved in its expression.

DJSsr,sd =
1

2Fo
k,i

uktkurilu2ri logS2ri

tk
D

+ o
k,j

uktkusjlu2sj logS2sj

tk
DG , s14d

where r=oiriurilkriu, s=oisiusilksiu, sr+sd=otiutilktiu, and tk
=oiriuktk urilu2+oisiuktk usilu2. It should be noted that when r
and s do not commute, the structure of Eq. s14d is quite
different from that of Eq. s7d.

III. METRIC CHARACTER OF THE QUANTUM ÎDJS

In this section we investigate the putative metric character
of the QJSD, that is we try to ascertain whether the square
root of the QJSD,

dJSsr,sd = ÎDJSsr,sd , s15d

verifies the triangle inequality. The other three properties for
a metric are obviously verified by Eq. s15d. A formal proof of
property s3d for ÎDJSsr ,sd has until now eluded us. Unfor-
tunately there is no analog of Schoenberg’s theorem when
operators are involved. Still more, there is no direct way of
verifying condition s9d for expression s14d. No extension to

the case of the QJSD of the proof given in f17g has been
possible. Incidentally it should be observed that, if the upper
bound in Eq. s13d could be attained for some POVM, the
proof of the triangle inequality for Eq. s15d would be obvious
sbecause ÎDJS1 verifies itd.

The results to be presented here correspond to a separate
analysis of the metric condition for Eq. s15d for two cases:
when Eq. s15d is restricted to pure states and when it acts on
the complete set BsHd1

+. In the first instance we were able to
give a formal proof of inequality s3d; in the second one, we
checked it by means of a numerical algorithm.

A. Pure states

For a pure state the von Neumann entropy vanishes. Then,
for two pure states,

r = uclkcu and s = uwlkwu , s16d

the QJSD s12d, becomes

DJSsr,sd = HNSr + s

2
D . s17d

After some algebra, we can rewrite Eq. s17d in terms of the
inner product k u l:

DJSsr,sd = Fsukcuwlud

= − S1 − ukcuwlu
2

DlogS1 − ukcuwlu
2

D
− S1 + ukcuwlu

2
DlogS1 + ukcuwlu

2
D . s18d

The von Neumann entropy of the average 1
2 suclkcu+ uwlkwud

can be interpreted to the light of quantum-information
theory. Indeed, let us suppose that Alice has a source of pure
qubit signal states ucl and uwl. Each emission is chosen to be
ucl or uwl with an equal prior probability of one-half. Then
the density matrix of the source is 1

2 suclkcu+ uwlkwud. Alice
may communicate the sequence of states to Bob by transmit-
ting one qubit per emitted state; but according to the quan-
tum source coding theorem, Eq. s17d gives the lowest num-
ber of qubits per states that Alice needs to communicate the
quantum information swith arbitrarily high fidelityd f22g.

Let us take two fixed arbitrary pure states r= uclkcu and
s= uwlkwu and an arbitrary third one, j= uxlkxu. Denote the
absolute value of the inner products ukc uwlu, ukc uxlu, and
ukx uwlu with x, y, and z, respectively, and introduce then the
function

Gsx,y,zd = ÎFsyd + ÎFszd − ÎFsxd .

In terms of these variables the triangle inequality for Eq. s15d
reads

0 # Gsx,y,zd . s19d

We can decompose the vector uxl into sid a part belonging to
the plane determined by ucl and uwl and siid another part
perpendicular to that plane:
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uxl = aucl + buwl + ux'l ,

with uau#1 and ubu#1. Then

y = ua + bkcuwlu and z = uapkwucl + bpu .

As a function of a and b, for x fixed, G is a concave function
on the circles uau#1 and ubu#1 sin the sense that its second
derivative is negatived and it vanishes for y=x and z=x. This
guarantees that inequality s19d is satisfied for arbitrary y and
z.

B. Arbitrary mixed states

Here we attempt a numerical verification of the triangle
inequality for the distance s15d when arbitrary mixed states
are involved. As a first approach, we numerically evaluate
the inequality s3d by generating random states in a
N-dimensional Hilbert space. The space of all spure and
mixedd such states can be regarded as a product space of the
form f23,24g

H = P 3 D ,

where P stands for the family of all complete sets of ortho-

normal projectors hP̂iji
N, oiP̂i= I sI the identity matrixd, and D

is the set of all real N-tuples of the form sl1 , . . . ,lNd; li
PR; oili=1; 0#li#1. Any state in H is of the form r

=oiliP̂i.
In exploring exhaustively H we need to introduce an ap-

propriate measure m on this space. Such a measure is re-
quired to compute volumes within H, as well as to determine
what is to be understood by a uniform distribution of states
on H. The measure that we adopt here is taken from the
work of Zyczkowski et al. f25,26g.

An arbitrary spure or mixedd state r of a quantum system
described by an N-dimensional Hilbert space can always be
expressed as a product of the form

r = UDfhlijgU†. s20d

Here U is an N3N unitary matrix and Dfhlijg is an N3N
diagonal matrix whose diagonal elements are, precisely, our
above defined hl1 , . . . ,lNj. The group of unitary matrices
UsNd is endowed with a unique, uniform measure, known as
the Haar’s measure, n f27g. On the other hand, the N-simplex
D, consisting of all the real N-uples hl1 , . . . ,lNj appearing in
Eq. s20d, is a subset of a sN−1d-dimensional hyperplane of
RN. Consequently, the standard normalized Lebesgue mea-
sure LN−1 on RN−1 provides a measure for D. The aforemen-
tioned measures on UsNd and D lead us to a measure m on
the set S of all the states of our quantum system f25–27g,
namely,

m = n 3 LN−1. s21d

In our numerical computations we randomly generate
mixed states according to the measure s21d. In order to as-
sess, for these randomly generated states, how the triangle
inequality s3d is satisfied, we define the auxiliary quantity

DdJSsr,j,sd = dJSsr,jd + dJSsj,sd − dJSsr,sd s22d

and evaluate it for a large enough number of simulated
states. This procedure is repeated for different dimensions of
the Hilbert space.

We investigate the positivity of DdJS, upon which the met-
ric character of the square root of the QJSD is based, by
constructing the probability distributions for the values of
DdJS. The corresponding histograms, for different dimen-
sions of the Hilbert space, are depicted in Fig. 1. As we are
mainly interested in the positivity of DdJS, we just plot the
tails of the concomitant distributions, selecting the portion
for which one has, say, DdJS,0.2. Such a choice allows us
to portray in sufficient detail the region of the distribution
where a violation of the inequality s3d can be detected.

The probability for the particular value DdJS=0 actually
represents the probability for finding a triplet of density ma-
trices for which DdJS#0. None such triplet of states has
been found, which entails that the probabilities for violating
the triangular inequality vanish for all the distinct Hilbert-
space dimensions we have considered here. Actually, the
probability for low values of DdJS becomes significantly
smaller as the dimension of the pertinent Hilbert space under
study augments sthe PDFs for higher Hilbert space dimen-
sions than those here reported have been also computedd.

The total number of randomly generated states was rather
large s108d in order to obtain a sufficiently large number of
points belonging to the tail regions. These points fall then
within the zone of low probabilities. The fact that no triplet
of states violating inequality s3d has been encountered could
be thought of as being numerical evidence for the metric
character of the square root of the QJSD. The distributions in
Fig. 1 clearly depend on the measure s21d used to compute
them. Higher probabilities for low values of DdJS can actu-
ally be obtained if one restricts the computation of the his-
tograms to states with a high degree of mixedness, although
it must be noted that such probabilities still diminish as the
dimension of the associated Hilbert space grows.

FIG. 1. Probability distribution for DdJS for different Hilbert
space dimensions. We just plot the tails of the distributions for
DdJS,0.2. The tails were constructed using of order of 107 for N
=2 and 106 for N=3,4 ,5 generated states.
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To avoid a statistical dependence on the measure s21d we
propose an alternative numerical approach by performing a
numerical minimization of DdJS. Any quantum mixed state is
completely determined by a finite number np of parameters
which depends on the dimension of the Hilbert space. To
determine the minimum possible value of DdJS, one needs to
find the optimal values for such parameters. To such an end
we use a simulated annealing algorithm in which the param-
eters are iteratively modified until convergence to the opti-
mal values is reached.

After running this algorithm for different Hilbert space
dimensions and for different triplets of initials states, one
detects always convergence to the same solution,

minhDdJSsr,j,sdj = 0. s23d

The optimal situation is reached when r and j are equal. In
our numerical search these states are always found to coin-
cide with the maximally mixed state for the Hilbert space
dimension considered in each case. It is actually not enough
to minimize Eq. s22d because we wish it to be a minimum for
any of the three different ways to order the three states. If we
minimize the average of those three possible orderings, the
minimum is also DdJSsr ,j ,sd=0, and it is obtained when the
three states become the maximally mixed state.

This last method, although it does not provide us with a
formal proof of the metric character of the square root of the
QJSD for mixed states, does yield clear and strong evidence
about the validity of the conjecture advanced in the initial
part of this paper that constitutes the leitmotif of this work.

IV. CONCLUSIONS

The main purpose of this work was to investigate the
metrical property of the QJSD. We were able to show that
the square root of the QJSD verifies the triangle inequality,
giving to this distance the character of a metric. Although we
have proved this claim sfor mixed statesd only by giving
numerical evidence, we believe that the cases here analyzed
are sufficiently representative so as to render credible the
claim that metric properties are verified in general for the
QJSD.

A second item deserves to be pointed out, which emerges
from the following two facts.

sad On the one hand, we have showed that, when re-
stricted to pure states, the square root of the entropy of the
average 1

2 suclkcu+ uwlkwud is a true metric.
sbd On the other hand, a classical result from Uhlmann f4g

asserts that the fidelity of states r and s,

Fsr,sd = TrÎr1/2sr1/2,

can be expressed in the form

Fsr,sd = max
ucl,uwl

ukcuwlu , s24d

where the maximization is over all purifications ucl of r and
all purifications uwl of s f28g.

These two facts motivate us to introduce an alternative
metric for arbitrary mixed states. Given two arbitrary mixed
states r and s we can define

dHsr,sd = min
ucl,uwl

ÎHNS uclkcu + uwlkwu
2

D , s25d

where the minimum is taken over all purification ucl of r and
all purifications uwl of s. In Eq. s25d we must look for the
minimum, not for the maximum as in Eq. s24d, due to the
decreasing nature of F, Eq. s18d, as a function of ukc uwlu.

Obviously the basic properties required for a good distin-
guishability measure are inherited by Eq. s25d from those
verified by the QJSD. Additionally, several interesting ques-
tions arise from this proposal. For example, what relations
exist between Eqs. s25d and s11d; or, in general, how Eq. s25d
relates to other quantum distances. A more detailed study of
the properties of this quantity will be presented elsewhere.
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