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We present results for a complementary analysis of the frustrated planar J1-J2-J3 spin-1/2 quantum antifer-
romagnet (AFM). Using dynamical functional renormalization group, high-order-coupled cluster calculations,
and series expansion based on the flow equation method, we have calculated generalized momentum-resolved
susceptibilities, the ground-state energy, the magnetic-order parameter, and the elementary excitation gap. From
these, we determine a quantum phase diagram that shows a large window of a quantum paramagnetic (QP) phase
situated among the Néel, spiral, and collinear states, which are present already in the classical J1-J2-J3 AFM.
Our findings are consistent with substantial plaquette correlations in the QP phase. The extent of the QP region
is found to be in satisfying agreement between the three different approaches we have employed.
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I. INTRODUCTION

The search for exotic quantum phases is one of the
main interests in the study of spin systems with competing
interaction. Ultimately, this search may uncover spin liquids
(SLs) without any magnetic-order or long-range correlations.
En route, however, many interesting quantum paramagnets
(QPs) lie, which are not magnetically ordered, however,
exhibit broken spatial symmetries with respect to short-range
magnetic correlations, either spontaneously or by virtue of the
lattice structure, i.e., valence-bond crystals (VBCs) or solids.
In two dimensions, a paradigmatic system in this context is
the antiferromagnetic (AFM) J1-J2 model on the square lattice
with frustrating diagonal exchange. As a function of the single
parameter j = J2/J1, this model is widely accepted to undergo
a transition from a Néel state at j . 0.4 to a QP phase for
0.4 . j . 0.6 and to a collinear AFM phase beyond that.
However, even two decades after the first analysis of this,1,2 no
consensus has been reached on the nature of the QP phase and
the type of transition into it, see, e.g., Ref. 3 and references
therein. Possible QP phases in the J1-J2 model include not only
a columnar dimer VBC4 a plaquette VBC,5 but also a SL.6 For
the Néel to VBC transition, deconfined quantum criticality
has been proposed as a novel scenario.7,8 Experimentally, the
J1-J2 model may be realized in several layered materials, such
as Li2VO(Si,Ge)O4,9 VOMoO4,10 and BaCdVO(PO4)2.11

One approach to shed additional light on the QP region of
the J1-J2 model is to embed its analysis into a larger parameter
space. In this context, the J1-J2-J3 model,

H = J1

X

hi,ji
Si · Sj + J2

X

hhi,jii
Si · Sj + J3

X

hhhi,jiii
Si · Sj (1)

has recently gained renewed interest. Si refers to spin-1/2
operators on the sites of the planar square lattice shown in
Fig. 1(a), and J1,2,3 are exchange couplings ranging from first-,
i.e., hi,j i, up to third-nearest neighbors, i.e., hhhi,j iii. For the
remainder of this paper, we will focus on the AFM case, i.e.,
J1,2,3 > 0 and will set J1 = 1.

Classically, the J1-J2-J3 model allows for four ordered
phases,12–16 comprising a Néel, a collinear, and two types
of spiral states that are depicted in Fig. 1(b). Except for
the transition from the diagonal (q,q)-spiral to the (π,q)-
spiral state, which is first order, all remaining transitions are
continuous. Early analysis of quantum fluctuations15 found the
Néel phase to be stabilized by J3 > 0, with the end point of
the classical critical line J3 = 1/4 − J2/2 at J2 = 0 shifted
to substantially larger values of J3. First indications of non-
classical behavior for finite J3 > 0 were obtained at J2 = 0.
A spin-Peierls state was found in exact diagonalization (ED)
studies in the vicinity of J3 ∼ 0.7, between the Néel phase
and the diagonal spiral.17 Monte Carlo and 1/N expansions
resulted in a succession of a VBC and a Z2-spin liquid in this
region.18 QP behavior was also conjectured at finite J2,J3,
along the line J2 = 2J3 using Schwinger bosons.16 More
recent analysis, based on ED and short-range valence-bond
methods found an s-wave plaquette VBC, breaking only
translational symmetry, along the line J2 + J3 = 1/2, up to
J2 . 0.25.19 This VBC’s region of stability was then studied
by series expansion (SE) in the (J2,J3) plane.20 Results from
projected entangled pair states (PEPSs) at J2 = 0 supported the
notion of an s-wave plaquette along the J3 axis.21 However,
the symmetry of the QP state remains under scrutiny, since a
truncated quantum-dimer model22 indicates that the potential
plaquette VBC has a subleading columnar dimer admixture
in the vicinity of J2 ≈ J3 ≈ 0.25, similar to ED studies.23

This implies broken translation and rotation symmetry. For
J2 & 0.5, ED shows strong columnar dimer correlations.23

Finally, the order of the transitions from the QP into the
semiclassical phases, and in particular, to the diagonal spiral,
remain an open issue.

In this paper, we intend to further clarify the extent
of the QP regime, using three complementary techniques,
namely, functional renormalization group (FRG), coupled
cluster methods (CCMs), and SE. These methods display
rather distinct strengths and limitations that we will combine.
CCM and SE are methods that operate inherently in the
thermodynamic limit, however, require extrapolation with
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FIG. 1. (a) J1-J2-J3 model. Solid dots refer to lattice sites. Only
representative third-nearest-neighbor exchange paths are depicted.
(b) The classical phase diagram of the J1-J2-J3 model.

respect to cluster size or expansion order. The FRG method
is, in principle, also formulated in the thermodynamic limit,
but its numerical implementation requires one to restrict the
spin-correlation length to a maximal value, which is much
larger than system sizes in ED studies. At present, neither
of these methods alone allows investigating the full range
of semiclassically ordered and QP states, however, their
combinations provide completive information on the quantum
critical lines bounding QP regions: FRG can signal magnetic
instabilities of a paramagnetic state, the SE limits the QP
region, and CCM clarifies the stability of part of the ordered
states. As the main result of this paper, we will show that
the quantum critical lines agree remarkably well between all
three methods, establishing part of the QP region rather firmly.
Unfortunately, none of our approaches allow for determining
the symmetry of the QP state in a completely unbiased way,
which leaves this an open issue. This paper is organized as
follows. In Sec. II, we provide for a brief technical account of
all three approaches. Section III is devoted to a discussion of
the results. We conclude in Sec. IV.

II. METHODS

In this paper, we mainly employ three methods to deal with
quantum spin systems, namely, FRG, see Sec. II A, which uses
a diagrammatic dynamical renormalization group approach,
CCM, see Sec. II B, which is a cluster expansion method
employing an exponential ansatz for the correlated ground
state (GS), and finally, SE in the exchange-coupling constants,
see Sec. II C, based on continuous unitary transformations. In
the following, we briefly explain each of these methods.

A. FRG method

The first approach to tackle the system is based on the
FRG in conjunction with a pseudofermion representation of
the S = 1/2 spin operators. A detailed description of the FRG,
in general, is given, e.g., in Ref. 24. For an implementation
of FRG with pseudofermions and applications to the J1-J2-
Heisenberg model and the anisotropic triangular AFM, we
refer the reader to Refs. 25 and 26. This approach is guided
by the idea to treat spin models in the framework of standard
Feynman many-body techniques. In order to be able to apply
the methods of quantum-field theory (Wick’s theorem), we use
the pseudofermion representation of spin operators,

Sμ = 1

2

X

αβ

f †
ασ

μ
αβfβ, α,β =↑,↓ , μ = x, y, z, (2)

where f↑ and f↓ are the annihilation operators of the pseud-
ofermions and σμ are the Pauli matrices. This representation
requires a projection of the larger pseudofermion Hilbert space
(four states per lattice site) onto the physical subspace of singly
occupied states (two states). At zero temperature, we may
perform this projection by setting the chemical potential of
the pseudofermions at zero. Empty or doubly occupied states
are acting like a vacancy in the spin lattice and, therefore,
are associated with an excitation energy of order J . Quantum
spin models are inherently strong coupling models, requiring
infinite resummations of perturbation theory. The simplest
such approach is mean-field theory of the spin susceptibility,
which is known to provide qualitatively correct results in
the case that a single type of order is present. On the other
hand, frustrated systems are characterized by competing types
of order. This is a situation when FRG is a powerful tool,
as it allows resumming the contributions in all the different
(mixed) channels in a controlled and unbiased way. The first
step is the introduction of a sharp infrared frequency cutoff
for the Matsubara-Green functions. FRG then generates a
formally exact hierarchy of coupled differential equations
for the one-particle-irreducible vertex functions where the
frequency cutoff 3 is the flow parameter. In Fig. 2, we
show the first two equations of the hierarchy, the first one,
Fig. 2(a) for the pseudofermion self-energy, which plays a
crucial role, in particular, for highly frustrated interactions
(see Ref. 25), the second one, Fig. 2(b), for the two-particle
vertex function. The β function of the latter has a contribution
given by the three-particle vertex function. Following Katanin

FIG. 2. The FRG scheme in diagrammatic form. Lines without a
slash represent the Green’s functions, and lines with a slash represent
the single-scale propagators. The different vertices are given by
circles. Equations (a) and (b) show the FRG flow equations for
the self-energy and the two-particle vertex, respectively. Note that
Eq. (b) does not distinguish between the particle-particle channel and
the different particle-hole channels. For a full presentation, see, e.g.,
Ref. 25. The Katanin truncation scheme is given by the replacement
(c). In (d), the relation between the spin-correlation function χ and
the two-particle vertex is displayed.
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(Refs. 27 and 28), we approximate the three-particle vertex
by the diagram shown in Fig. 2(c). In this way, the random
phase approximation (RPA) is recovered as a diagram subset,
ensuring the qualitatively correct behavior on the approach
to an ordered phase. Another way of saying this is that
the conserving properties of the approximation (the Ward
identities) are satisfied in a better way. It is worth noting
that, without the three-particle vertex contribution, RPA cannot
be recovered. Keeping the contribution, Fig. 2(c) is formally
equivalent to the replacement of the single scale propagator
S3(iω) by − d

d3
G3(iω) [where G3(iω) is the scale-dependent

Green’s functions]. The approximation may be regarded as a
natural extension of the usual one-loop truncation, in which all
three-particle vertex contributions are discarded. On the other
hand, it is also important to keep all the terms consisting of
two two-particle vertices on the right-hand side of Fig. 2(b),
as they control disorder tendencies and, therefore, the size of
the paramagnetic region.

The FRG equations depicted in Figs. 2(a)–2(c) are solved
on the imaginary frequency axis and in real space, rather
than in momentum space. The numerical solution requires a
discretization on the frequency axis by a logarithmic mesh. We
found that it is essential to keep the full-frequency dependence
of the vertex function (three frequency variables). The spatial
dependence is approximated by keeping correlation functions
up to a maximal length. Since the self-energy is strictly local,
no truncation in real space is needed. The only approximation
applied to this quantity is the discretization of its frequency
dependence. As a result, for each set of discrete frequencies
and site indices on external legs of a vertex function, one renor-
malization group equation is obtained. For well-converged
results, we typically need to keep sets of about 106 coupled
ordinary differential equations. In the present formulation,
long-range order (LRO) is not taken into account. Therefore,
we should not find a stable solution for the equations down to
3 = 0 in the parameter regimes where LRO is present. The
existence of a stable solution, therefore, indicates the absence
of LRO. It is worth emphasizing again that our FRG approach
has no bias concerning magnetic LRO or a paramagnetic state.
Our starting point of free dispersionless auxiliary fermions
does not imply any tendency toward a certain state.

The physical quantities of interest here, the spin-
susceptibility and spin-correlation functions may be obtained
from the diagrams depicted in Fig. 2(d). In the following, we
discuss results for the static susceptibilities as a function of
the wave vector. In the ordered phases, the susceptibility at
the k vector corresponding to the magnetic LRO is found to
increase as the running cutoff 3 is decreased, until the solution
becomes unstable below a certain value of 3. Thus, the k vector
characterizing the magnetic order at hand may be determined
as that corresponding to maximal growth of the susceptibility.
If the susceptibilities flow smoothly toward 3 = 0 for any k

vector, we are in a disordered phase.

B. CCM

Next, we analyze the system from a complementary
viewpoint using the CCM, the main features of which we
briefly illustrate now. For more details, the reader is referred
to Refs. 29–33 and references therein. We mention that the

CCM has been applied successfully to determine the stability
range of magnetically ordered GS phases in frustrated quantum
magnets.8,30,33–38 Moreover, it has been demonstrated that the
CCM is appropriate to investigate frustrated quantum spin
systems with incommensurate magnetic structures.30,33,39–41

The starting point for a CCM calculation is the choice of a
normalized reference state |8i, together with a set of mutually
commuting multispin creation and destruction operators C+

I

and C−
I , which are defined over a complete set of many-body

configurations I . We choose {|8i; C+
I } in such a way that

we have h8|C+
I = 0 = C−

I |8i, ∀I 6= 0. Note that the CCM
formalism corresponds to the thermodynamic limit N → ∞.
Depending on the model parameters J1, J2, and J3, we have
considered the Néel, the collinear, and the diagonal spiral
states. Results on the (π,q) state could not be obtained with
sufficient precision. We work in a locally rotated frame of
reference such that all spins of the reference state align along
the negative z axis. Obviously, the choice of the rotated
coordinate frame depends on the choice of the reference state
|8i. For a spiral reference state, the local rotation angle is
related to the pitch q. In the rotated coordinate frame, the
reference state reads |8i = |↓i|↓i|↓i . . ., and we can treat
each site equivalently. The corresponding multispin creation
operators then can be written as C+

I = s+
i , s+

i s+
j , s+

i s+
j s+

k , . . .,
where the indices i,j,k, . . . denote arbitrary lattice sites.

The CCM is based on ket and a bra GSs, |9i and h9̃|,
respectively, which are parametrized as

|9i = eS |8i, S =
X

I 6=0

SIC
+
I ,

(3)
h9̃| = h8|S̃e−S, S̃ = 1 +

X

I 6=0

S̃IC
−
I ,

where the so-called correlation coefficients SI and S̃I are
determined from the CCM equations

h8|C−
I e−SHeS |8i = 0, (4)

h8|S̃e−S[H,C+
I ]eS |8i = 0 (5)

for each I . Using the Schrödinger equation H |9i = E0|9i,
the GS energy can be written as E0 = h8|e−SHeS |8i,
whereas, the magnetic-order parameter is given by m =
−PN

i=1h9̃|sz
i |9i/(Ns), where sz

i is expressed in the rotated
coordinate frame and s = 1/2 is the spin quantum number.
We note that, for the spiral state, the pitch q is used as a free
parameter in the CCM calculation, which has to be determined
by minimization of the CCM GS energy with respect to q.

In order to proceed, the operators S and S̃ have to be
truncated approximately. Here, we use the well-elaborated
LSUBn scheme, where only n or fewer correlated spins in
all configurations, which span a range of no more than n

adjacent (contiguous) lattice sites, are included. The number
of fundamental configurations can be reduced exploiting
lattice symmetry and conservation laws. In the CCM-LSUB10
approximation, we finally have 29 605 (45 825) fundamental
configurations for the Néel (collinear) reference state, and
for the CCM-LSUB8 approximation, we finally have 20 876
fundamental configurations for the spiral reference state.

To obtain results at n → ∞, the raw LSUBn data have
to be extrapolated. While there are no a priori rules to
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do so, a great deal of experience has been gathered for
the GS energy and the magnetic-order parameter. For the
GS energy per spin, E0(n) = a0 + a1(1/n)2 + a2(1/n)4 is a
reasonably well-tested extrapolation ansatz.8,30–36 An appro-
priate extrapolation rule for the magnetic-order parameter for
systems showing a GS order-disorder transition is m(n) =
b0 + b1(1/n)1/2 + b2(1/n)3/2 with fixed exponents, see
Refs. 35–38. Extrapolations m(n) = c0 + c1(1/n)c2 , with a
variable exponent c2 also have been employed.8,33,34,37

C. SE

Finally, we highlight SE as the third approach that we
employ. Our SE for the J1-J2-J3 model will not be carried out
on Eq. (1) but on a Hamiltonian that is obtained by a continuous
unitary transformation (CUT).42,43 This transformation is
designed such as to prediagonalize the Hamiltonian with
respect to a discrete particle number Q that counts the number
of excitation quanta within an eigenstate of the unperturbed
spectrum. Therefore, the SE can be carried out in spaces of
fixed Q, which greatly reduces the computational complexity
as compared to other SE methods. For the latter notions to
be reasonable, the unperturbed energy spectrum has to be
equidistant, which limits the particular types of unperturbed
Hamiltonians and phases that can be analyzed. Here, we will
consider CUT SE results for the J1-J2-J3 model that have
been obtained from an unperturbed Hamiltonian that leads to
a plaquette VBC GS. That is, in contrast to the CCM, the
SE starts from the disordered phase. Using a plaquette VBC
for this phase is motivated by results from ED, short-range
resonating valence-bond methods,19,23 and truncated dimer
models22 that suggest that plaquette correlations in the QP
state are dominant for J2 < 0.5. The plaquette VBC will break
only translational symmetry. Additional subleading columnar
correlations, which have also been found recently22,23 are
not included. Some SE results for the phase diagram of
the J1-J2-J3 model have been given in Ref. 20. Here, we
extend this analysis by also calculating the GS energy and
by comparison with FRG and CCM. CUT SE using plaquette
VBCs recently has been carried out for various systems,20,44–48

and we refer the reader there for more details. To start, the
Hamiltonian is decomposed into

H = H0 + H1 =
X

l

H¤
l (J2) +

X

l,m

H¤
l,m(J1,J2,J3), (6)

where the first sum refers to a dense partitioning of the lattice in
Fig. 1(a) into disjoint four-spin plaquettes, diagonally crossed
by two J2 couplings and with J1 on the plaquettes set to unity.
H0(J2 = 0) has an equidistant energy spectrum. The second
sum contains all interplaquette couplings, with (J1,J2,J3)
being the expansion parameters of the SE. After the CUT,
the Hamiltonian reads

Heff = H0 +
∞X

k,m,l=1

Ck,m,lJ
k
1 Jm

2 J l
3, (7)

where each Ck,m,l are sums of weighted products of local
and interplaquette operators On

i , which create (n > 0) and
destroy (n < 0) quanta due to Ji within the ladder spectrum
of H0(J2 = 0). The weights are fixed by H0 from a set of
differential flow equations,43 and the On

i are evaluated once for

a given topology of exchange couplings J1,2,3. We note that, for
the J1-J2-J3 model, we find |n| 6 4. The main point is that the
total number of quanta generated by each addend in the sum in
Eq. (7) is zero. In turn, the eigenstates are classified by Q, and
their energy is obtained by diagonalizing Heff within an NQ-
dimensional space only, where N is the system size. For the GS
energy Q = 0 and NQ ≡ d = 1, which implies that it is given
by a single matrix element of Heff , namely, E0 = h0|Heff|0i,
where |0i is the unperturbed bare plaquette state. For one-
particle excitations, Q = 1 and d = N , which, however, due
to translational invariance also reduce to dk = 1, where k refers
to momentum. Both the weights and the operators in Eq. (7)
can be evaluated exactly for each fixed set of k,m,l by arbitrary
precision arithmetic codes. While this leads to analytic results
for all matrix elements of Heff , computational constraints will
require truncating such calculations at some order of the series
expansion in J1,2,3.

III. RESULTS

A. GS energy

We have used CCM and SE to calculate the GS energy E0

in the ordered and QP phases, respectively. In principle, the
GS energy can also be calculated within FRG.49 This requires
the solution of a further differential equation describing the
flow of the pseudofermion self-energy. We did not yet perform
such a calculation. The GS energy also has been obtained
from ED on 32 sites, both, within the complete Hilbert space
and for a nearest-neighbor valence-bond (NNVB) basis.19

PEPS calculations have also reported E0, however, for J2 = 0
only.21 Therefore, it is instructive to compare results from
these various methods. This is shown in Fig. 3, where we have
extended the ED of Ref. 19 by calculating more data points
and considering the ordered regimes at J2 = 0. The CCM
data in this figure refer to extrapolations using LSUB4–10
(LSUB4–8) in the Néel (spiral) state, as detailed in Sec. II B.

0 0.2 0.4 0.6 0.8 1
J3

-0.8

-0.7

-0.6

-0.5

E
0

CCM LSUB4-10/4-8
SE, O(5)
ED, N=32
NNVB, N=32
PEPS, N=36, D=4

✴   QMC

FIG. 3. (Color online) GS energy at J2 = 0: CCM, SE, and ED
from this paper, NNVB basis from Ref. 19, PEPS from Ref. 21, and
QMC from Ref. 52. CCM extrapolation see text. All energies are
given in units of J1.
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The SE is calculated to O(5) in J2,3 and the interplaquette J1.
The complete corresponding analytic expression is too lengthy
to be displayed explicitly,50 however, at J1 = 1 and J2 = 0, as
in the figure, it reduces to

E0 = − 720 160 379

104 509 4400
+ 505 243 912 97J3

877 879 296 00
− 259 070 23J 2

3

342 921 60

+237 7469J 3
3

559 8720
− 198 439J 4

3

112 8960
− 170 4733J 5

3

135 475 20
. (8)

The SE result depicted refers to this bare series with no
additional extrapolations performed.

First, we note that the classical energy, which is not
contained in this figure, varies similarly with J3 as compared to
the other graphs plotted, however, it is larger by ∼0.17J1 on the
average. Second, it is obvious that PEPS is significantly higher
than the other results.51 This discrepancy is most pronounced
in the ordered regimes, where E0 = −0.669 53(4) is a best
currently available value from quantum Monte Carlo (QMC)
(Ref. 52) for the nearest-neighbor Heisenberg model. On the
other hand, both CCM and SE are rather close to the ED. Each
of them has been plotted up to the critical values J

c1
3 ,J

c2
3 that

define the extent of the ordered and QP phases as determined in
Sec. III B. At the end points, CCM and SE match up acceptably,
where the agreement at J

c1
3 is best and the convergence of the

SE may be less reliable for J
c2
3 , which is the larger. Third,

keeping in mind that the finite-size shift of the ED data for
N = 32 is about +0.01, see Refs. 3 and 38, it is remarkable
that the CCM, ED, and SE data almost coincide if J3 is not too
large. The increase in the difference between the ED and CCM
data at larger J3 can be attributed to the crossover (i) of the
characteristic length scale from nearest-neighbor (J1-bonds)
to third-nearest-neighbor (J3-bonds) separation and (ii) of
the characteristic energy scale from J1 to J3. While the first
crossover effect leads to an enhanced finite-size effect in the
ED energy and to a larger impact of LSUBn clusters with
n beyond those considered here, the second crossover effect
automatically enhances any discrepancy of energies roughly
proportional to J3. Finally, we note that energies also obtained
from ED using a restricted NNVB basis 19 agree very well with
those from our CCM, SE, and complete Hilbert space ED.

B. Quantum phase diagram

Using FRG, the phase diagram has been calculated in the
J2-J3 plane with parameter steps of 0.1 for 0 6 J2,3 6 1. A
large computational effort is required to solve the system
of FRG equations. In the present calculation, we used 46
frequency points. The spatial dependence of the susceptibility
was kept up to lattice vectors R satisfying Max (|Rx |,|Ry |) 6
5, and the susceptibilities were set at zero beyond that range.
This provides a correlation area of 11 × 11 lattice points,
which proved to be sufficient for a first exploration of the
phase diagram. The results were then Fourier transformed to
momentum space. In magnetic phases, we see a pronounced
susceptibility peak in momentum space that rapidly grows
during the 3 flow. At a certain 3, the onset of spontaneous
LRO is signaled by a sudden stop of the smooth flow and the
onset of oscillations depending on the frequency discretization.
On the other hand, in nonmagnetic phases, a smooth flow and
broad susceptibility peaks are obtained. This distinction allows

us to draw the FRG phase diagram of the model, which is
shown in Fig. 4. Regarding the error bars in Fig. 4, we note that
bars of size 0.1 into the J3 direction do not reflect errors of the
FRG but are only due to finite (J2,J3) spacing and, in principle,
also apply to the J2 direction. However, especially near the
phase boundary between the spiral ordered and the disordered
phases, at large J3, we encounter enhanced uncertainties. Here,
(J2,J3) regions occur where it is not clear if the behavior of
the flow should be interpreted as magnetic or nonmagnetic. In
Fig. 4, these regions lead to error bars larger than 0.1.

To obtain the CCM phase diagram, we extrapolate the
LSUBn data for the magnetic-order parameter m, cf. Sec. II B.
Starting in parameter regions where semiclassical magnetic
long-range order can be supposed, we use the classical state
as the reference state for the CCM. Then, we obtain the phase
boundaries of the magnetically ordered phases by determining
the lines of vanishing magnetic-order parameter m, which
implies continuous or second-order transitions. In Fig. 5, we
show typical CCM results for order parameter m. For the
Néel and the collinear phases, we find the extrapolation of
m to be nearly independent of the extrapolation scheme used.
Unfortunately, for the spiral state, computational constraints
limit us to LSUBn with n 6 8. Since the LSUB2 approxi-
mation is not appropriate for a proper description at larger
J3, only three CCM data points are left for the extrapolation.
In that case, we find that the fixed- and variable-exponent
extrapolations lead to rather different critical values for J3 at
fixed J2. Therefore, we conclude that a reliable extrapolation

0 0.2 0.4 0.6 0.8 1
J2

0

0.2
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J 3

SE
CCM
CCM
FRG

QP

N

S

C

FIG. 4. (Color online) Combined quantum phase diagram of the
J1-J2-J3 model. (Solid lines) Onset of magnetic flow from FRG on
11 × 11 sites with 46 frequency points. Error bars of size 0.1 (larger
than 0.1) are due to the finite J2,3 mesh (uncertainties in the flow of
the susceptibility). See text. (Dashed lines) Lines of vanishing-order
parameter from the LSUBn CCM with fixed- (variable)-exponent
extrapolations from n = 4,6,8,10 for diamonds (circles). See text.
(Dashed-dotted lines) Triplet-gap closure from fifth-order CUT SE.
Small- (Large)-J3 lines are 1,3([2,2])-DlogPadé approximants. Shaded
region refers to the difference between bare series and DlogPadés.
N, C, and S denote Néel, collinear, and spiral states. QP refers to a
generic QP for CCM and FRG and to a plaquette VBC for SE.
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FIG. 5. (Color online) Magnetic-order parameter m obtained
within the CCM-LSUBn approximation as well as extrapolated data
using the extrapolation scheme m(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2

and LSUBn data for n = 4, 6, 8, 10, see Sec. II B. (a) In the Néel
phase and (b) in the collinear phase.

of the LSUBn data for order parameter m to n → ∞ is not
possible, and the critical regime of the spiral state cannot be
determined accurately enough from the present CCM. This
is very different for the GS energy that allows for stable
extrapolation in all three quasiclassical regions. The location
of all J c

3 (J2), with m[J c
3 (J2)] = 0, i.e., the quantum phase

diagram as obtained from CCM is included in Fig. 4 for both
extrapolation schemes.

Finally, the phase boundaries have been calculated using
SE. To this end, the plaquette phase has been analyzed with
respect to second-order instabilities, i.e., a closure of the
elementary triplet gap as a function of J2,J3. For this, we
diagonalize Heff in the Q= 1 sector, i.e., the subspace of
single-quanta states |1il at sites l. These states are triplets.
The sole action of Heff on these states is a translation in real
space, Heff|1i0 = P

l cl|1il with cl determined from the SE.
Fourier transformation yields the triplet dispersion, similar to
a generalized tight-binding problem, with the hopping matrix
elements determined from Heff . For technical details, we refer
to Ref. 20. We have used this technique to calculate the triplet
dispersion up to fifth order in all three variables J1, J2, and
J3. In Fig. 4, we show the resulting lines for the closure of the
triplet gaps, as obtained from a Dlog-Padé analysis of this dis-
persion. The shaded error region refers to the distance between
the critical lines from the bare SE and those from Dlog-Padé
and are a measure of convergence of the SE. For J2 & 0.5,
the SE’s convergence is insufficient to obtain reliable triplet
dispersions. We note, that, for the wave vector kc at which
the triplet gap closes, we find kc = (0,0)[(π,π )] all along the
lower[upper] critical line in Fig. 4. A priori this critical wave
vector does not determine a particular type of magnetic LRO
beyond the critical couplings. This is because softening of the
plaquette triplets at kc does not uniquely fix a classical spin
structure. Restricting to helical order, kc = (0,0) at the lower

transition would be consistent with Néel order, and kc = (π,π )
at the upper one would be consistent with a (π/2,π/2) spiral.
The former fully agrees with the CCM; the latter deviates
slightly from it and from the classical values, which are both
of order ∼ (0.6π,0.6π ) in this region. Tentatively, this might
either point to a discontinuous transition into the spiral state
or to additional broken symmetries in the QP phase.

Figure 4 is the main result of our paper. Most obviously, it
shows that, within the range of J2,3 investigated, the J1-J2-J3

model displays a large QP region. This region extends well
beyond the line J2 + J3 = 1/2, with J2 . 0.25 studied in
Ref. 19, or the vicinity of the point J2 ≈ J3 ≈ 0.25 in Ref. 22,
and for J2 . 0.5, also covers a larger J3 interval than that
observed in ED.23 The quantum Néel phase is enlarged
with respect to the classical one, which agrees with early
1/S analysis15 and recent ED results.23 Our computational
approaches are not capable of an unbiased identification of the
symmetry of the QP state. However, since the phase boundaries
predicted from the plaquette SE and those from CCM and FRG
agree rather well, our results corroborate substantial plaquette
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FIG. 6. (Color online) (Lower part) The brackets present the
wave vectors (kx,ky) in units of π at the maximum of the static
susceptibility from FRG. Solid lines indicate the classical critical
lines. The blue (lower left), green (lower right), and red (upper)
regions correspond to the Néel, collinear, and spiral states, respec-
tively. Thin frames around the brackets mark regions of uncertain flow
behavior. (Upper part) Results for the pitch q within the CCM-LSUB8
calculation.
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correlations in the QP phase for J2 . 0.3 · · · 0.4, which is in
line with Refs. 19,21–23.

C. Short-range correlations

Since FRG evaluates the static susceptibility over the
complete Brillouin zone, it allows for determining the wave
vector kmax of the dominant short-range magnetic correlations
or the pitch vector of the magnetic-order parameter. These
wave vectors are depicted in Fig. 6 together with the quantum
phases already discussed in Fig. 4. Both in the ordered as well
as in the QP phases, we find the wave vectors at maximum of
the susceptibility to agree approximately with those obtained
for the purely classical model in Fig. 1(b). This is particularly
interesting with respect to the (π,q)-spiral state, which seems
to exist only in the form of short-range correlations in Fig. 6.

In the ordered (q,q)-spiral state present for large enough
J3, we can also use the CCM to calculate the pitch q. In
contrast to the order parameter m, we find that the results for
q obtained by LSUB4, LSUB6, and LSUB8 are very close to
each other. Thus, we can take the LSUB8 data for q, shown
in the upper part of Fig. 6 as the relevant CCM result for q.
From Fig. 6, it is obvious that the CCM data for q agree well
with the FRG results.

In order to illustrate how the dominant fluctuations in the
disordered phase change with varying couplings, in Fig. 7,
we show results for the static susceptibility as a function
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FIG. 7. (Color online) Static susceptibility for wave vectors
kx,ky ∈ [0,π ] for various values J2 and constant J3 = 0.4. The black
dots mark the positions of the maxima.

of the k vector in the Brillouin zone with kx, ky ∈ [0,π ]
at fixed J3 = 0.4 for various values of J2. For J2 = 0, we
see a broadened peak at a (q,q) position that has already
moved away from the Néel point k = (π,π ). This peak further
moves along the Brillouin-zone diagonal for increasing J2.
For J2 & 0.6, it is seen that the peak smoothly deforms into
an arc and that the weight at the Brillouin-zone boundary
increases. Between J2 = 0.7 and J2 = 0.8, close to the
classical first-order transition, the ridge has constant weight,
and the maximum jumps to a (π,q) direction to then further
evolve toward the collinear points k = (0,π ), k = (π,0) and to
acquire more prominence. Therefore, remnants of the classical
correlations survive into the QP regime. Very similar behavior
is evidenced by ED.23

IV. CONCLUSION

To summarize, we have studied the quantum phases of
the frustrated planar J1-J2-J3 spin-1/2 quantum AFM, using
FRG, CCM, and CUT SE. This includes evaluations of
momentum-resolved susceptibilities, the GS energy, magnetic-
order parameters, and the elementary excitation gaps. Our
results provide clear evidence for a sizable QP region that
opens up between the Néel, collinear, and spiral states of
the purely classical model. A long-range-ordered (π,q)-spiral
phase, which is also present classically, has not been observed
in the quantum model in the parameter range we have
investigated. Where applicable, the agreement between the
critical lines determined from all three methods is remarkably
good. While our computational approaches cannot determine
potentially broken symmetries in the QP state, the fact that
the critical lines that we have obtained from FRG and CCM
agree well with those from the CUT SE that is based on a
plaquette VBC, is indicative of VBC ordering with substantial
plaquette correlations in the QP region—in those parameter
ranges where CUT SE applies. Our results are consistent with
second-order transitions from the Néel and the collinear states
into the QP. Unexpectedly, our CCM results do not provide
a definite signal of a transition from the spiral state into the
QP. This may simply be related to an insufficient order of
the LSUBn approximation but could also hint at a first-order
transition and an intermediate phase between the VBC and
the spiral state. Finally, while our findings do not show a
(π,q)-spiral state as in the classical model, FRG convincingly
demonstrates that the latter is replaced by corresponding
short-range correlations in the QP region.
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