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Symmetric polymer blend confined into a film with antisymmetric surfaces:
Interplay between wetting behavior and the phase diagram
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We study the phase behavior of a symmetric binary polymer blend that is confined in a thin film. The film
surfaces interact with the monomers via short-range potentials. We calculate the phase behavior within the
self-consistent field theory of Gaussian chains. Over a wide range of parameters we find strong first-order
wetting transitions for the semi-infinite system, and the interplay between the wetting/prewetting behavior and
the phase diagram in confined geometry is investigated. Antisymmetric boundaries, where one surface attracts
the 4 component with the same strength as the opposite surface attracts the B component, are applied. The
phase transition does not occur close to the bulk critical temperature but in the vicinity of the wetting transition.
For very thin films or weak surface fields one finds a single critical point at ¢.= % For thicker films or
stronger surface fields the phase diagram exhibits two critical points and two concomitant coexistence regions.
Only below a triple point there is a single two-phase coexistence region. When we increase the film thickness
the two coexistence regions become the prewetting lines of the semi-infinite system, while the triple tempera-
ture converges toward the wetting transition temperature from above. The behavior close to the tricritical point,
which separates phase diagrams with one and two critical points, is studied in the framework of a Ginzburg-
Landau ansatz. Two-dimensional profiles of the interface between the laterally coexisting phases are calcu-
lated, and the interfacial and line tensions analyzed. The effect of fluctuations and corrections to the self-
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consistent field theory are discussed.

PACS number(s): 68.45.Gd, 05.70.—a, 83.80.Es

I. INTRODUCTION

The phase behavior of fluid mixtures in confined geom-
etry has attracted abiding interest over many decades [1,2].
The preferential interactions at the surfaces give rise to an
enrichment of one component at the surface. In a semi-
infinite system at phase coexistence, the thickness of this
enrichment layer diverges at the wetting transition [3—7].
Upon approaching the wetting transition temperature from
below, the thickness of the enrichment layer might increase
continuously (second-order wetting) or jump from a micro-
scopically thin layer to a macroscopic layer at the (first-
order) transition. This latter case is by far the most common
experimentally. If the transition is of first order, a continua-
tion of the singularity persists also slightly above the wetting
transition temperature. At a chemical potential (partial pres-
sure) of the preferred species, which is smaller than the co-
existence value (undersaturation), a thin and a thick enrich-
ment layer coexist. Upon following this coexistence line
(prewetting) to higher temperatures we decrease the differ-
ence in the enrichment layers of the coexisting phases and
encounter a prewetting critical point.

If a symmetric binary mixture is confined into a film with
antisymmetric boundaries, i.e., the upper surface attracts one
species with exactly the same strength as the lower surface
attracts the other species, no phase transition will occur close
to the bulk critical point. Upon decreasing the temperature
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the enrichment layers at both surfaces gradually develop and
stabilize an 4B interface in the center of the film (‘‘soft-
mode”’ phase). It is only close to the wetting transition tem-
perature that the symmetry is spontaneously broken and the
AB interface is localized close to one surface. This interface
localization-delocalization transition [8—13] and the anoma-
lous fluctuations of the delocalized 4B interface in the ‘‘soft-
mode’” phase have attracted recent interest [11,14—16] and
experimental realizations in terms of polymeric systems have
been investigated [14,15,17].

The application of experimental techniques (e.g., nuclear
reaction analysis or neutron reflectometry) is facilitated by
the large length scale of the enrichment layers, which is de-
termined by the molecule’s end-to-end distance R,. The
macromolecular architecture also allows a successful com-
parison to the results of the mean-field theory. The free en-
ergy cost of an 4B interface o-Rg on the length scale R,
increases with chain length; a fact that reduces the effect of
interface fluctuation on the phase diagram for very long
chains. The extended fractal shape of the polymers leads to a
strong interdigitation of different molecules. The large num-
ber of neighbors with which a molecule interacts strongly
suppresses composition fluctuations and imparts mean-field
behavior to the phase diagram except for the ultimate vicin-
ity of the critical point.

In the following, we consider a symmetric binary polymer
mixture confined into a thin film with antisymmetric bound-
aries and study how the wetting transition in the semi-infinite
geometry affects the phase stability in a film. We employ
self-consistent field calculations [18-22] to calculate the
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phase diagram as a function of the incompatibility, the short-
range surface interactions, and the film thickness. Our paper
is arranged as follows: In the next section we describe the
self-consistent field technique [21,22]. Then we present the
phase behavior in a thin film with antisymmetric boundaries.
For thick films or strong surface fields the phase diagram
contains two critical points, corresponding to the prewetting
critical points of each surface. Interfacial profiles between
the coexisting, laterally segregated phases are discussed, and
the interfacial and line tensions are analyzed. The paper
closes with a summary and a discussion of fluctuation ef-
fects.

II. SELF-CONSISTENT FIELD CALCULATIONS (SCF)

We consider a binary polymer blend in a volume V,
=AyXLXL. The film contains n polymers. A, denotes the
film thickness, while L is the lateral extension of the film. Let
p be the monomer number density in the middle of the film.
The density at the film surfaces deviates from the density in
the middle and it is useful to introduce the thickness (vol-
ume) A(V) of an equivalent film with constant monomer
density A=nN/pL?.

The two surfaces of the film are impenetrable and hard. In
a boundary region of width A,,, the total monomer density
drops to zero at both walls. In our calculations, we assume
the monomer density profile p®, to take the form [21,22]
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A film with the same number of monomers but uniform den-
sity would have the thickness A=A,—A, . We assume the
width of the boundary region to be small compared to the
characteristic length scale of the composition profile, i.e.,
A, /R,<1. In accordance with previous studies [21-24] we
choose A, =0.15R,. This particular choice of the density
profile is employed for computational convenience. If we
chose a smaller value of the ratio A,,/R, the results would
remain (almost) unaltered but the computational effort [i.e.,
the required number of basis functions (see below)] would
increase substantially.

Both polymer species of the blend—denoted A4 and
B——contain the same number of monomeric units N and are
of the same architecture. We model them as Gaussian chains
of end-to-end distance R,. There is a short-range repulsion
between the two monomer species that can be parameterized
by the Flory-Huggins parameter y. The reduction of the total
monomer density imparts also a lower segregation to the
boundary regions (‘‘missing neighbor”’ effect).

Both walls interact with the monomer species via a short-
range potential. The monomer wall interaction A in units of
the thermal energy kT is modeled as [21,22]

4\ R, X
A, 1 +cos A_u)] for Ag<x<<A,,
]Z(:T): 0 for A ,=<xsA,—A,, )
4A2Re W(AO_X)
AL [ + (A—w)] for Ag—A,<x=<A,.

A positive value [ H(x)>0] corresponds to an attraction for
the 4 monomers and a repulsion for the B species. The range
of the monomer-wall interaction is assumed to be much
smaller than the chain extension and, for convenience, we
employ the same numerical value as we do for the width of
the boundary region in the monomer density profile. The
normalization of the surface fields A and A,, which act on
the monomers close to the left and the right wall, is chosen
such that the integrated interaction energy between the wall
and the monomers is independent of the width of the bound-
ary region A,,. In the following we consider antisymmetric
surface fields, i.e., A=A |=—A,.

The microscopic A monomer density @ 4 can be expressed

as a functional of the polymer conformations {r,(7)}:

. NI 1
D (r)=—2 | drér—ry(7), 3)
P a=0 0

where the sum runs over all n 4, A polymers in the system and
0=7=<1 parametrizes the contour of the Gaussian polymer.

A similar expression holds for ) g(r). With this definition
the semigrandcanonical partition function of a binary blend
takes the form
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where n=n,+nyz and A u represents the exchange potential
between 4 and B polymers. The functional integral D sums
over all chain conformations of the Gaussian polymers and

3 (1 [dr\?
P[r]~exp( —WJO dT(;) )

denotes the statistical weight of a noninteracting Gaussian
polymer. This simple model neglects the coupling between
the interaction energy and the chain conformations, [25] and
a finite stiffness of the polymers. Hence, the chain extensions
parallel to the walls remain always unperturbed. The Boltz-
mann factor in the partition function incorporates the thermal
repulsion between unlike monomers and the interactions be-
tween the monomers and the walls. The last factor represents
the incompressibility of the melt in the center of the film and
enforces the monomer density to decay according to Eq. (1)
at the walls. A finite compressibility of the polymeric fluid,
which results in a reduction of the monomer density at an 4B
interface, is neglected.

Introducing auxiliary fields W,, Wy, ®,, ®g, and E,
we rewrite the partition function of the multichain system in
terms of the partition function of a single chain
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ks T '
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The free-energy functional has the form
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where O, denotes the single chain partition in the external
field WA .

1 1
Q-4 | Dl[r]Pl[r]eXP<— | dTWA<r<r>>),
™

and a similar expression holds for Qp.

The functional integration in Eq. (5) cannot be carried out
explicitly. Therefore we employ a saddle-point approxima-
tion, which replaces the integral by the largest value of the
integrand. This maximum occurs at values of the fields and
densities determined by extremizing G with respect to each
of its five arguments. These values are denoted by lower-case
letters and satisfy the self-consistent set of equations

wy(r)=xN¢p—H(r)N+&(r),

wp(r)=xNe¢,+H(r)N+§(r),

7 DQ B Vexp(Au/2kyT)
¢A(r)__§DWA_ 7,0 fplpl

Xfoldfﬁ(r—r(r))exp(—foldTwA(r(T))),
®)

and a similar expression for ¢ . The abbreviation Q denotes
the semigrandcanonical single chain partition function

O=exp(Au2kzT)Q +exp(—Aul2kgT)Qp.  (9)

At this stage, fluctuations around the most probable con-
figuration are ignored. Most notably, the AB interfaces in the
self-consistent (SCF) field calculations are ideally flat and
there is no broadening by fluctuations of the local position of
the AB interface (capillary waves).

To calculate the monomer density it is useful to define the
end segment distribution ¢ ,(r,#):

qa(r,t)= fOtDl[r]P][r] o(r— r(t))eXp< - foldTWa(r( T))) ,
(10)

and a similar equation holds for gz(r,7). The end segment
distribution satisfies the diffusion equation

dg4(r,t) R

o —quA(l'J)_WA‘IA- (11)

The 4 monomer density can be expressed via the end seg-
ment distribution
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and the single chain partition function is given by
1
QA:V_ drq,(r,1). (13)
0

Substituting the saddlepoint values of the densities and fields
into the free-energy functional (6) we calculate the free en-
ergy of the different phases:

| uad f d : f dr ¢® 14
Py nQ— - [ dré,dp= 1 | drédg. (14)
The free energy and the monomer densities are invariant un-
der a change &(r)— &(r) + c. Hence, we adjust the constant ¢
such that the last term in the equation above vanishes. For an
homogeneous bulk (i.e., Aj—), we obtain from Eq. (8):

Ap b4
kBT 1_¢A

—XN(2¢,—1), (15)
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The Helmholtz free-energy F' in the canonical ensemble is
related to G via the Legendre transformation

Ap
F=G+—=(ny=np), (17)

and for the homogeneous bulk system F takes the Flory-
Huggins form

nkBT:ln%_'—(ﬁA ¢+ (1= ¢)n(1—d,)

+XNo(1—y). (18)

In inhomogeneous systems we expand the spatial depen-
dence of the densities and fields in a set of orthonormal func-
tions:

v2 sin(mkx/Ay) for [=0,k=12,...,

Sr(x)

This procedure results in a set of nonlinear equations that
are solved by a Newton-Raphson-like method. For the one-
dimensional profiles (/=0, k=1, ...) we use up to 120 basis
functions and achieve a relative accuracy 10~ in the free
energy.

In order to investigate the interface between laterally co-
existing phases, we employ two-dimensional SCF calcula-
tions in the canonical ensemble. In the canonical ensemble
the relation between the fields w, and w and the densities is
still given by Eq. (8), but the densities are obtained via

_ VDQ, V¢, (!
r)=—¢,—~———=——| dtq(r,t)q,(r,1—1);
¢A( ) d)A QA DWA VOQA 0 (’IA( )qA( )
(20)
(;A denotes the average composition of the system. We use

320 basis functions for film thickness Ay=0.9R,. The
Helmbholtz free energy takes the form

. _
TG bt (1= g )In(1=6,) =, Q,

— N
~1-39n Q=2 [arg s, @)

where we have used [dr £P,=0.

The temperature scale in the SCF calculations is set by the
incompatibility xN, the length scale is set by the molecule’s
end-to-end distance R, , and the strength of the surface fields

~ | V2 sin(mkx/Ag)V2 cos(2arly/L) for 1>0,k=12,... .

(19)

appears only in the combination AN and A,N. Moreover,

we employ the reduced chain length N- =(pR2/N)2 to mea-
sure the degree of mutual interdigitation. In the framework
of the SCFT, systems with the same values of y/NV and R, but

different N exhibit identical behavior. As we shall discuss,
the mean-field approximation is appropriate in many aspects

in the limit N- — o, whereas there are corrections to the SCF

calculations for finite N. A different interesting behavior
emerges at strong segregation yN— oo (SSL). In this regime,
many properties of the SCF calculations are describable by
simple analytical expressions, and we shall denote these ex-
pressions by SSL in the following.

III. RESULTS
A. Bulk phase diagram and wetting behavior

Coexistence between different phases occurs if the two
phases have the same semigrandcanonical energy at fixed
temperature 1/yN and exchange potential Au. Since the
bulk is symmetric with respect to exchanging 4=25, phase
coexistence occurs at Au.=0 and the phase diagram is
given implicitly by Eq. (15). The critical temperature is
given by 1/x.N=1/2. Of course, the SCF theory yields a
parabolic shape of the binodal close to the critical point,
because it is a mean-field theory.

The location of the wetting transition can be determined
via the Young equation [26]. The 4 component wets the
surface, if oyp— oyy> 0,5, Where o 45 denotes the 4B in-
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terface tension between the coexisting bulk phases, and o4
and o5 denote the excess surface free energies per unit area
of a surface in contact with the 4-rich or B-rich phase, re-
spectively. In the strong segregation limit (SSL), i.e., xN
>2, the AB interface tension takes the form [27]

n2
"A“ fw(l-_+

(SSL). (22)

The excess surface free energy of a surface in contact with
the A-rich phase has two contributions. On the one hand the
polymer conformations are restricted due to the presence of
the surface and the decay of the density profile in the vicinity
of the wall. Since the 4 and B polymers have identical archi-
tecture, this conformational entropy contribution to the ex-
cess surface free energy is, however, the same for the two
species and does not enter into the difference oy p— oy
[28]. On the other hand, the surface fields A; and A, give
rise to a contribution to the excess surface free energy. If the
surface is completely covered by the 4 component, this con-
tribution amounts to

w

E Ay/2
szBT:pfo dXH(x)q)O('x):pReA (23)

The contribution of a surface covered by the B component
has the opposite sign.

If the wetting transition occurs at high incompatibility it
will be of first order. In this case the enrichment layer in the
nonwet state is negligibly small. Monte Carlo simulations
show that this is a good approximation [28]. The Young
equation [28] yields for the strength of the surface field at the
wetting transition

41In2
A yelN=~ \/XwerN/24( 1— +

wet

(SSL, first-order wetting). (24)

If the integrated monomer-wall interaction AR,~ AN,
which is the experimentally relevant quantity, does not de-
pend on the chain length N, the left-hand side of the equation
will be large and the wetting transition in the binary polymer
blend will occur in the strong segregation limit, i.€., Xyet
~(AR,)*>>1/N. This is in contrast to the behavior of mix-
tures of small molecules, where the Cahn argument [3] sug-
gests that the wetting transition occurs close to the critical
point.

If the wetting transition is first order, a prewetting line
emanates from the coexistence curve above the wetting tran-
sition temperature. Along this line, a thin and a thick enrich-
ment layer coexist at undersaturation. For short-range forces
the prewetting line approaches the bulk coexistence curve
linearly A pprewer™ (T Tyer)/In(T—Tye) [29]. Upon increas-
ing the temperature, the difference in the thickness of the
enrichment layers decreases and the prewetting line ends in a
prewetting critical point. This prewetting behavior is perti-
nent to the phase behavior in thin films.

Only for very weak surface fields the wetting transition
occurs close to the critical point. In this limit, polymers ex-
hibit a behavior similar to small molecules and the wetting
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behavior has been studied within the square-gradient ap-
proximation [30,31]. The latter assumes that the concentra-
tion varies slowly on the length scale R, . In this approxima-
tion the dependence of the bare surface free energy on the
composition at the wall plays a central role. In our model,
both the surface fields and the ‘‘missing neighbor’’ effect
due to the decay of the monomer density at the wall give rise
to a composition dependence of the bare surface free energy:

S bas)= —pi¢ —lg oy
wall\ ¥A4s L k T 1%4s 2 1%4s

A, A,
= [ et g X 80)—xb 0

:_(¢AS_¢BS)R€A_]§AWX¢AS¢BSD (25)

where ¢4, =1lim,_,, ¢,(z)/Py(z) denotes the composition at
the surface. Other contributions to the bare surface free en-
ergy (e.g., terms proportional to the gradient of the compo-
sition at the surface) are omitted. From this we identify the
coefficients u; =2AR,+ xA,, /8 and g, = — xA, /4. One cen-
tral result of the square-gradient theory is that wetting tran-
sitions close to the critical point are of second order and
occur at u;=—g(1—¢7"™) (a detailed derivation of this
equation in the framework of the square-gradient approxima-
tion can be found in Ref. [30]). Using the parameters of our
model we rewrite this result in the form

Ao N~ 1 N A ( -9 ¢bulk)
wet 16 T7 Xwet s

(WSL, second-order wetting). (26)

For arbitrary strength of the surface fields we expect the
variable A NV to be a function of y,,./V and the above equa-
tions describe the limits yN—o and yN—2.

B. Interface localization-delocalization transition

Rather than focusing on the detailed composition profile
across the enrichment layers at the surface, much qualitative
insight into the wetting behavior and the interface
localization-delocalization transition can be gained from
characterizing the profile only by the distance / between the
wall and the 4B interface. The dependence of the free energy
per unit area—the effective AB interface potential g.,;(/)
=F(I)/L*=pkgTAf/N—on the distance / determines the
wetting behavior. The short-range surface fields distort the
profile in the vicinity of the wall and give rise to an effective
interaction that decays exponentially with the distance / be-
tween the wall and the AB interface. Qualitatively, the effec-
tive interface potential g.;(/) in the semi-infinite system
can be expanded in the form [4]

a(xN)exp(—NI)—b exp(—2N\I)+cexp(—3\I).
(27)

gwall(l) =

This expression retains only the lowest powers of
exp(—A\I/), which are necessary to bring about the salient fea-
tures of the wetting behavior. We neglect the temperature
dependence of the coefficients b and c. N denotes the inverse
length scale of the interaction between the surface and the
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FIG. 1. (a) Schematical illustration of the Ginzburg-Landau free energy for the case of the two critical points (#=1>0) and for a single
second-order transition (r=—1<0) (inset). The values of the temperaturelike variable 7 are given in the key. Coexisting values and critical
points are marked by points, while straight lines present Maxwell constructions connecting the two coexisting phases. (b) free energy in the
canonical ensemble as a function of yN and ¢ for A;=0.9 and AN=0.5. The temperatures correspond to a supercritical isotherm, the
critical isotherm, a temperature between 7, and T, the triple temperature, and an even lower temperature.

AB interface (see below). In principle, the numerical values
of the coefficients can be obtained from fitting the results of
our SCF calculation to the equation above, but we cannot
offer analytical expression for the coefficients in the frame-
work of the SCFT. In the following, we discuss the qualita-
tive behavior that arises from an effective interface potential
of type (27).

If the coefficient b is negative, the wetting transition is of
second order and occurs when the coefficient a changes its
sign. Following Parry and Evans [2,9] we obtain the effec-
tive interface potential g(/) in a thin film by superimposing
the interactions originating from each individual wall; g(7)
=g () + gwan(A—1). The qualitative form of the potential
is shown in the inset of Fig. 1(a), where the parameter m
~[—A/2 is proportional to the distance of the interface from
the center of the film. The values of ¢ correspond to various
temperatures. A second-order wetting transition gives rise to
a second-order interface localization-delocalization transi-
tion. Above the transition, a single 4B interface parallel to
the surfaces is stable, the system is in the one-phase region.
Below the transition, the system phase separates laterally
into phases where the 4B interface is located close to the
right or the left surface, respectively. The transition is of
second order, i.e., the composition difference between the
coexisting phases increases continously. The transition tem-
perature approaches rapidly the wetting transition tempera-
ture of the semi-infinite system from below as we increase
the film thickness.

If the coefficient b is positive, the form of g,,;(/) leads to
a first-order wetting transition in the semi-infinite system
where a thin layer of thickness /_=1/\ In(2¢/b) coexists
with a macroscopically thick enrichment layer at a,.
=b?/4c. The prewetting critical point is located at Apwe
=16a./9 and /.= 1/\ In(9¢/2b). The superposition of in-
teractions between the 4B interface and the opposing walls
yields the effective interface potential in a thin film. The
qualitative shape of the potential is shown in Fig. 1 (a) sche-
matically, while panel 1 (b) presents the results of the SCF
calculations for Ay=0.9R, and AN=0.5.

At low temperature, we find phase coexistence between
two laterally segregated phases. Upon increasing the tem-

perature, we encounter a triple point at which these two
phases, where the 4B interface is located close to the right or
the left surface, respectively, coexist with a third phase,
where the AB interface is delocalized at the center of the
film. The location of the triple point (/yipe and ay;pe) is given
by the conditions g(/,)=g(A/2) and ﬁg/&l|1t=0. For large

film thickness this yields ayipie— @ye= b exp(—NA/2)
+ O(exp(—\A)); i.e., as the film thickness is increased, the
triple temperature converges exponentially fast to the tem-
perature of the first-order wetting transition of the semi-
infinite system from above. Above this triple point there are
two coexistence regions that each correspond to the prewet-
ting coexistence of the semi-infinite system. At Au<<0 we
find the coexistence of a thick and a thin enrichment layer of
the A species at the A-attracting surface and at Au>0 a
similar coexistence at the opposite surface. The two coexist-
ence regions end in critical points close to the prewetting
critical temperature of the semi-infinite system. This first-
order interface localization-delocalization behavior is the
analogon of the first-order wetting behavior of the semi-
infinite system.

The different coexisting phases and their semigrandca-
nonical free-energy G are presented in Fig. 2 for A,
=0.9R, and AN=0.5. Below the triple point 1/yN<0.108,
the phases are well-segregated. The monomer density pro-
files of the 4 component are depicted on the left side. Upon
following the coexistence curve to higher temperatures, G
decreases. At the triple temperature, these two phases coexist
with a third phase in which the interface is delocalized in the
middle of the film. From there onward, there are two coex-
istence regions at positive and negative values of the ex-
change potential Au. Profiles of the two phases of the 4-poor
coexisting region are presented on the right side. They con-
sist of a thin (upper right inset of Fig. 2) and a thick (lower
right inset) enrichment layer of the 4 component at the sur-
face that favors 4.

For our strictly antisymmetric system, the concentration
corresponding to the triple point always is exactly 1/2 due to
the symmetry. This has an interesting consequence if one
cools a mixture at ¢=1/2: while in the bulk this mixture



PRE 62
38 1 ' 1 ' 1 AHcoe>(<0
05 1 dost 1] 77 AMcoex-o
0 L_n__._ 0 L
37 r~_Zo o045 o9 0 045 097
I x/R,
x =<2
£ 1 N
5 \
36 o5} 1 05 | 1
0 0
0 045 09 0 045 09
35 : .
0.10 0.11 0.12
1/xN

FIG. 2. Semi-grand-canonical free-energy G of the coexisting
phases at AN=0.5 and Aj=09R,. For Ap =0 and T<T,
=0.108 an A-rich phase coexists with a B-rich phase, while for
A preoex<0 and T>T, both coexisting phases are B-rich and differ
in the thickness of the 4 layer at the surface. For 7>T,, there exists
another coexistence region with Au.,.,>0 that is related to one
displayed by exchanging 4 vs B. The insets show the 4 density
profiles across the film for the coexisting phases at yN=10 (left)
and yN=38.7 (right).

would undergo a second-order phase separation (critical un-
mixing at x= Y= 2/N, ¢= = 1/2), one finds a single
first-order unmixing transition at x = Xyiple. FOr asymmetric
compositions, however, enrichment layers form gradually at
a wall close to the bulk critical temperature. This stabilizes
an AB interface, which runs parallel to the surfaces. The
interface is located close to one surface; its position is given
by the composition of the system. Close to the prewetting
critical point, the enrichment layer may phase separate later-
ally into a thick and a thin enrichment layer. Upon further
cooling, we encounter a second phase transition where the
thickness of the thick enrichment layer becomes comparable
to the film thickness, i.e., two almost completely segregated
phases coexist.

Previous Monte Carlo simulations [28] yield evidence
that the interaction range 1/ in Eq. (27) is determined by the
bulk correlation length & for large distances between the AB
interface and the surface. This is in accordance with the ex-
pectation that the 4B interface profile in the outer wing is
characterized by the length scale & which measures the de-
cay of composition fluctuations in the bulk, rather than w/2,
which characterizes the slope of the AB interface profile at
the center of the interface. This is further corroborated by our
SCF calculations. For two temperatures y N=5 and 8 above
the critical temperature we have measured the free-energy
density f'as a function of the composition ¢ for various film
thicknesses. Around ¢ =1, the free-energy density can be
expanded in the form f=f,+ f>(¢—%)>. This yields for the
effective 4B interface potential g(/)=pkzTAf/N~const
+£,(I—A/2)%/A. Above the critical temperature, we can es-
timate the effective range 1/\ of the interaction according to
g()~exp(—NA/2)~f,/A. In Fig. 3, we plot f,/A vs the
film thickness A. For large film thicknesses the data exhibit
an exponential dependence on the film thickness. Upon in-
creasing the temperature, the interaction increases as the sur-
faces repel the 4B interface more strongly. For large A the
interaction range is compatible with 1/A=§&=~R,/ V18,
where we have used the behavior of the correlation length at
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FIG. 3. Curvature of the interface potential at the center of the
film. Symbols represent SCF calculations for yN=5 and 8, and
AN=0.5. Solid lines correspond to g~ f,/A~exp(—\A/2) with
1/N= ¢, while dashed lines depict the behavior for 1/A =w/2.

strong segregation. For small A, i.e., distances between the
AB interface and the surface that are not very much larger
than the interfacial width w, the interaction decays somewhat
faster: w<<1/A<<£. At these intermediate distances a rather
complicated interaction has been predicted [27].

Upon varying the sign of the coefficient b we alter the
order of the interface localization-delocalization transition.
At the tricritical point the order of the transition changes. For
small values of » we make a phenomenological Ginzburg-
Landau ansatz for the effective interface potential g(m) in
terms of the (not normalized) order parameter m~ ¢—5~1
—A/2. For antisymmetric surface fields, the effective inter-
face potential is invariant under the transformations 4=28
and must be an even function of m. We assume the simplest
ansatz that allows for three-phase coexistence:

g(m)=m?*(m>—r)>+tm>. (28)

The coefficients of this Landau expansion (28) can be de-
rived from an effective interface Hamiltonian (27): »
=—15g,/g¢ and (=360g, /g6—225gi/gé, where g,
=7"g,a1/0!"|s, denotes the nth derivative of the wall-
interface potential at the center of the film.

This effective interface potential is depicted in Fig. 1(a).
For <0 (inset) the coefficient in front of the fourth-order
term m* is positive and we find a single second-order phase
transition at .= —r%, m.=0, and u.=0. The case >0 cor-
responds to a first-order interface localization-delocalization
transition. For #=0, there is a three-phase coexistence, at
which the order parameter of the coexisting phases takes the
values 0 and * \/r. Of course, the Landau expansion is only
appropriate for small r. The parameter ¢ characterizes the
temperature difference to this triple point. Above the triple
temperature, we find two coexistence regions and, eventu-
ally, we encounter two critical points at z.=772/5 and order
parameters m .= *2r/5. The critical chemical potential
w.=0af/dm|, is given by 64v2r¥%/25\/5. r=0 marks the
tricritical transition; the three coexisting phases collapse to a
single one with order parameter m =0. The critical and triple
temperature coincide likewise. The fourth-order coefficient
in the Ginzburg-Landau ansatz vanishes and the binodals
close to the critical temperature open like m~ =+ (—¢)? with
Byi=  rather than with =1 (in mean-field approximation).
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FIG. 4. Phase diagrams in a thin film (A;=0.9R,) with antisymmetric surface fields. The values of the surface fields AN are indicated
in the key. For AN<0.1425 we find a single critical point, while we find two critical points for larger surface fields. (a) displays the phase
diagram in the temperature-composition plane, while (b) presents the coexistence curves A p oo ( XNV). [For AN=0.15 the two critical points

are indistinguishable on the scale of panel (b)].

The qualitative features of this scenario are confirmed by
the SCF calculations. Results for film thickness A,=0.9R,
are presented in Fig. 4. Panel (a) presents the phase diagram
for various strengths of the surface fields as a function of
temperature and composition. For weak surface fields AN
the interface localization-delocalization transition is of sec-
ond order and we obtain phase diagrams with one critical
point at ¢p.=3. Upon increasing the strength of the surface
fields, the critical point shifts to lower temperatures. Around
AN=0.1425 the binodal become flatter and are compatible
with an exponent B,;= 1. In accordance with the Ginzburg-
Landau ansatz this marks the tricritical transition. At stronger
surface fields we obtain phase diagrams with two critical
points, which correspond to the prewetting critical points of
the first-order wetting transition in the semi-infinite system.
When we increase AN further, the two critical points, which
are located symmetrically around ¢=3, gradually move to
lower temperatures, and higher or lower 4 concentration, re-
spectively. Moreover, the temperature distance between the
critical points and the triple point increases. (See Table 1.)

Figure 4(b) depicts the behavior in terms of temperature
and chemical potential difference. For second-order interface
localization-delocalization transitions the coexistence chemi-
cal potential is A.,.x=0 by virtue of the symmetry with
respect to exchanging 4=28. The same holds true for first-
order transitions below the triple point. At the triple point,
however, the coexistence curve bifurcates into two sym-
metrical branches, which correspond to the prewetting lines
of the semi-infinite system. These lines end at critical points.
Upon increasing the strength of the surface fields, the two
critical points move to lower temperatures and larger abso-
lute values of Au.

To make a closer connection to the Ginzburg-Landau an-
satz, we assume that the parameter », which drives the tran-
sition between the two types of phase diagrams, varies as a
function of the surface field AN. Then the Ginzburg-Landau
ansatz predicts that the quantities (¢.—3)*~\T.—T,
~Au*>~r(AN). This is tested in Fig. 5. Indeed, our SCF
calculations confirm that these quantities exhibit a very simi-
lar dependence on the surface field close to the transition.
Moreover, we estimate the critical value of the surface field

to be AN~0.1425. The corresponding power laws for the
location of the critical points in the vicinity of tricriticality
are also displayed in the Figs. 4(a) and 4(b). Additionally,
the inset of Fig. 5 shows that the binodals are characterized
by an exponent 3,;= 7 at this tricritical value of the surface
field. This provides strong evidence that the Ginzburg-
Landau ansatz captures the salient features of the tricritical
transition.

Square-gradient calculations [10] and recent Monte Carlo
simulations [32] of the Ising model indicate that the interface
localization-delocalization transition can be second order in
thin films (Ag<A;), even if the wetting transition is first
order. Within our Ginzburg-Landau ansatz this finding can
be rationalized as follows: Close to the tricritical point the
coefficient »~g, is small and the temperature of the triple
point is given by the condition 0=¢~g,+O(r*) or @ riple
=4b exp(—NA/2)—9c exp(—NA)+O(?). At the tricritical
film thickness A the coefficient »(#=0) changes its sign.

[ ®5.62(0,~1/2)° o]
0.4 '2-35(TC_T1)1/2 o
2/5
* Auo
03 | é ]
n | |
0.2 r s 1 A
f = i
/T
o1 | My = 11
// 0 L L
‘ 0.1 02 1yN 03
0 1 1 1 1
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FIG. 5. (q&c—;-)z, JT.—T,, and Au?? as a function of the

c
surface field AN. In agreement with the Ginzburg-Landau ansatz,
all quantities show the same dependence on the parameter (AN).
The dashed line is only a guide to the eye. The location of the
critical surface field is indicated. A ;. N~0.1425. The inset display
the behavior of the binodals for AN=0.1425~A _N. The curve
corresponds to the SCF calculations, while the dashed line indicates

the p— 0.5~ *=|T—T,|# with B=1.
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TABLE 1. Properties of the antisymmetric system at A,
=0.9R, . Phase diagrams with two critical points.

SYMMETRIC POLYMER BLEND CONFINED INTO A ...

AN b, Aw.lkyT — T,=1x.N T, =1/x,N
0.5 0.2414 —0.113 0.1190 0.10791
0.3 02667  —0.0574 0.2033 0.19123
0.2 03249  —0.0123 0.2770 0.27163
0.175 03584  —0.00378 0.3011 0.29867
0.15 0429  —0.00014 0.32949 0.32927

Neglecting terms of order O(r%) we obtain
r(t=0)~—a+16b exp(—NA/2)—81c exp(—\A)
~12b exp(—NA/2)—T2c exp(—\A).

If the semi-infinite system exhibits a first-order wetting tran-
sition, the coefficients b and ¢ are positive. Hence, for large
A the coefficient r is positive and leads to a first-order inter-
face localization-delocalization transition. If the film width A
becomes comparable to the correlation length 1/\, however,
the second-term might drive the coefficient » negative upon
decreasing the film thickness.

This is further explored in our SCF calculations. In Fig.
6(a) we present the phase diagrams as a function of the film
thickness at AN=0.5. For large film thickness Ay=2.6R,,
we find a first-order interface localization-delocalization

=
=
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transition. Upon decreasing the film thickness, the two criti-
cal points move to lower temperatures and closer to the sym-
metry axis. A,=0.605 corresponds to the tricritical transi-
tion: There is only a single critical point but the binodals are
describable by the exponent B,;= ;. Upon further decreasing
Ay, the critical temperature increases and the binodals as-
sume parabolical shape. The corresponding coexistence
curves are shown in Fig. 6(b).

The mechanism is most clearly visible in the effective 4B
interface potential g(/)~Af, which is presented in Fig. 6(c)
for yN=9 as a function of the distance /=A ¢ between the
surface and the 4B interface. For the largest film thickness
Ay=2.6R,g(]) is to a good approximation the effective po-
tential of the nearest surface g,;. xN=9 corresponds to a
temperature above the wetting (triple) transition but below
the (prewetting) critical temperature of the thick film. Each
surface repels the AB interface and there is a shoulder in the
effective interaction around /.~ 0.22R,. Qualitatively,
the SCF calculations confirm that g(/) is the linear superpo-
sition of the interactions with each surface. When we de-
crease the film thickness larger values of / become unfavor-
able, because the more the interface moves away from one
surface the more it experiences the repulsion from the oppo-
site surface. This results in a minimum of g(/) close to each
surface. The shape of g(/) corresponds to a temperature be-
low the triple point, i.e., the interface is localized at one or
the other surfaces. This shows that the triple temperature

0.12

T~1/xN

0.08

(b)
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N,

02 f4

0.1 n

0.0 g HEE T

(d) AJR

FIG. 6. (a) Phase diagram for AN=0.5 and various film thicknesses A,. For A;=2.6R, and 0.9R,, the interface localization-
delocalization transition is first order, A;=0.605R, corresponds to a tricritical transition, while the transition is second order for A
=0.5R,. (b) Phase diagram as a function of temperature and chemical potential for the same parameters than in (a). (¢) Effective interface
potential g(I)~Af(¢) at [=A ¢ as a function of the film thickness A, for YN=09. (d) Surface field (circles) and temperature (squares) of

the tricritical transition as a function of the film thickness A, .
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increases when we decrease the film thickness. The first-
order character of the transition is associated with the shoul-
der of gy, around /ey . Obviously, this feature of g(/)
disappears when the film thickness A is of the order 2/,,, and
we find second-order transitions for smaller film thicknesses.

This thickness dependence implies that the value AN
=0.57 obtained from the phase diagram of rather thin films
Ay=0.9R, is not a reliable approximation of the strength of
the surface fields at which a tricritical wetting transition in
the semi-infinite system occurs. We have attempted to locate
the strength of the surface fields at which the binodals are
describable by the exponent 8,;=; as a function of the film
thickness A. The results of this procedure are collected in
Fig. 6(d). As we increase A, the surface fields at which the
tricritical transition occurs decreases and the transition tem-
perature approaches the critical point. For film thickness
much larger than the range of interaction 1/\ between the
surface and the 4B interface we expect a thin film to behave
similar to a semi-infinite system. Close to the critical point,
however, the range of interaction 1/\ ~ & between the surface
and the 4B interface increases. Therefore we anticipate very
pronounced finite-size effects even for film thicknesses that
exceed the end-to-end distance R, by far. These difficulties
prevent us from reliably estimating the tricritical wetting
transition of the semi-infinite system or comparing our cal-
culations to the prediction (26) of the square-gradient ap-
proximation [30,31]. From the behavior at film thickness
Ay=5R, we conclude that critical wetting transitions in the
semi-infinite systems occur only for AN<0.01 and N
<2.04 in our model. Qualitatively, this is in agreement with
SCF calculations of Carmesin and Noolandi [33] and Monte
Carlo simulations [28] that find only first-order wetting tran-
sitions, except for the ultimate vicinity of the critical point
that has not been investigated.

C. Interfacial profiles

The effective interface potential also determines the com-
position profiles across an interface between the laterally co-
existing phases. At low temperatures the coexisting phases
are almost completely segregated, i.e., the thickness of the
enrichment layers of the minority components are small. In
this case the interface between the coexisting phases is pla-
nar and makes an angle ® with the surface. The contact
angle O is given by the Young equation

Owa— Ows _

AN
T48B VXN/24

cos O = (SSL). (29)

The width w of the interface between the coexisting phases is
given by w=A; cot ©, where A;/2 denotes the distance of the
AB interface from the center of the film in each phase. At a
second-order interface localization-delocalization transition,
the contact angle decreases linearly with the distance from
the transition temperature ¢ and the composition difference
between the coexisting phases vanishes like A,~|¢|"%
Hence, the width of the interface between the coexisting
phases diverges like w~|¢| "V, where v= 75 is the mean-field
exponent for the correlation length upon approaching the
critical point.
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FIG. 7. Shape of the interface between the coexisting 4-rich and
B-rich phases below the triple point. The profiles have been ob-
tained from the Eq. (31) using input from the one-dimensional SCF
calculations.

Close to a first-order interface localization-delocalization
transition, the effective interface potential exhibits more
structure and this will modify the shape of the interface.
Within the mean-field approximation, the shape of the inter-
face will minimize the effective interface free energy. Ap-
proximating the AB interface profile as a sharp kink at the
position /, we obtain for the free energy the effective inter-
face Hamiltonian [34]:

F[1]

- f dydz{o 5[ TT (dlldy) 11+ g(1)}

OB dl 2
NLJ dyl 2 (dy

where we have assumed that the position / of the 4B inter-
face depends only on one lateral coordinate y. The last ap-
proximation is valid if the angle between the interface and
the surface is small. This is justified in the vicinity of the
wetting transition, but the approximation breaks down at low
temperature, where the interface runs almost perpendicular to

the surfaces. This effective interface Hamiltonian yields the
Euler-Lagrange equation

d*l d(_&)

+e()y, (30)

048

that can be interpreted as the trajectory / of a particle in the
potential —g/o 5. To obtain a qualitative insight we extract
the effective interface potential from the one-dimensional
SCF calculations g(l)/(TAB=kBT\/ﬁAf(@‘)/O'ABRg at /
=Ady.

Typical shapes of the interface between the coexisting
phases for a film thickness A;=0.9R, are presented in Fig.
7. Far below the triple temperature, the interface is planar
and makes an angle ® with the surfaces. Slightly below the
triple temperature, however, the interfacial profile becomes S
shaped, i.e., the angle between the interface and the surface
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FIG. 8. Composition profiles of the interface between the A-rich and B-rich phase at y N=13, 12, 10, 9.63, and 9.44 and film thickness
Ay=0.9R, and lateral extension L/2=35.25, 6 and 8.5R,. For clarity the aspect ratio of the figure has been decreased.

is larger in the vicinity of the surface than at the center of the
film. Note that the lateral interfacial width can exceed the
film thickness by far in the vicinity of the triple temperature.
The flatter portion in the center of the film is a consequence
of the metastability of the third phase with composition ¢
=1 or the additional local minima in g(/), respectively.
Upon approaching the triple temperature, the interfacial
width becomes larger and the central portion of the profiles
becomes flatter and more extended. This central portion
might be conceived as a microscopic layer of the metastable
delocalized phase (¢=7%), which completely wets the inter-
face between the 4-rich and B-rich phase at the triple point.
In the semi-infinite system, the interfacial tension varies
smoothly upon raising the temperature through the wetting
transition temperature. The excess free energy of the inter-
face approaching the surface—the line tension =—varies rap-
idly close the wetting transition. Employing an effective in-
terface Hamiltonian of the form (30), Indekeu [35] has
obtained a simple expression for the line tension 7:

T= \/2 0-Alij;ocdl{ \/5gwall(1) - \/5gwall(m)}r (32)

where [, is the position of the minimum of g,;(/) close to
the surface and 6g 1= gwa(!) — gwan(Z1). This formula has
been applied to analyze recent experiments [36]. The behav-
ior of the line tension close to the wetting transition depends
on the order of the transition and the range of the monomer-
wall interaction. For short-range forces, the line tension 7

reaches a finite positive value at the wetting transition tem-
perature, while it is negative far below the wetting tempera-
ture.

The effective interface Hamiltonian captures only the
qualitative behavior. Monte Carlo simulations and SCF cal-
culations have shown that the properties of the 4B interface
depend on the distance / from the surface. This gives rise to
a position dependence of the tension [28] and width of the
AB interface [16]. A more detailed description of the inter-
face is provided by the two-dimension composition profiles
in Fig. 8. Due to the choice of basis functions, the profiles
are periodic in y direction and only half the system is shown.
In qualitative agreement with the considerations above, the
interface between the A4-rich and B-rich phases runs straight
across the film at low temperatures (yN=13 and 12). The
contact angle at yN=12 is about 30°.

Upon increasing the temperature, the contact angle be-
tween the surface and the interface decreases and the inter-
face becomes S shaped in the vicinity of the triple point. The
SCF calculations also reveal that the interface becomes
broader when we increase the temperature. Moreover, the
width of the interface is broader in the vicinity of the sur-
faces than in the middle of the film. This effect is due to the
reduction of the monomer density in the vicinity of the sur-
face, which imparts a reduced effective incompatibility
(“‘missing neighbor effect’”) on the surface region. A similar
effect has been observed in confined systems containing co-
polymers [21,22]. This effect gives rise to a negative contri-
bution to the line tension when the interface approaches the
surface.
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FIG. 9. Behavior of the line tension 7 upon approaching the
triple point. Squares denote the line tension as extracted from two-
dimensional SCF calculations, the dashed line corresponds to Inde-
keu’s approximation applied to a thin film. The coefficient 3 and
the 4B interface tension o 4 are displayed as a circle and full line,
respectively. The vertical lines mark the triple temperature.

We decompose the free energy of systems containing two
interfaces between an A-rich and a B-rich phase into bulk,
surface, and line contributions:

F—Fbulk=2(LAE+2LT) or

2

A ZRQE 4Re~ ]
S=Soun )_T tIA 7 with

- ERﬁ TR,
S=—— F=—. (33)

VNipT kT

Note that the surface fields and the entropy loss of the chains
at the surfaces give rise to a thickness dependence of the
bulk free-energy density fy,. Varying both L and A, we
have estimated the coefficients in our SCF calculations and
the results are displayed in Fig. 9. Qualitatively similar to the
behavior at a first-order wetting transition, the line tension
changes its sign from negative to positive upon approaching

the triple point temperature from below. The coefficient 3,
decreases as we approach the triple point. To a first approxi-
mation, one would expect a behavior of the form 2
~0,50.

The data are also compared to Indekeu’s formula (32). In
order to apply the formula to thin films, we extend the inte-
gration only to the middle of the film and we shift the con-
stant 8g () accordingly to 8g,.i(A/2). In the dimen-
sionless units of the SCF calculations we obtain

A 3(TABRg !
T~ 2l —| —

Nk, T
N =sen) (34)

This approximation for a thin film gives a reasonable esti-
mate for the temperature dependence and the order of mag-
nitude of the line tension; however, the value of the line
tension in a thin film is systematically underestimated. When
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we apply the above approximation to thicker films, the value
of the line tension increases. If we use the film thickness
Ay=2.6R, instead of A;=0.9R,, the approximation yields
7= —10.016 instead of 7= —0.032. Unfortunately, we are un-
able to extend our SCF calculations to larger film thick-
nesses.

In addition to the finite film thickness there are other ef-
fects that might upset the comparison between the SCF cal-
culations and the effective Hamiltonian description: It is un-
clear how accurate the identification of the effective interface
potential via g(I)=pkzTAf(¢p=1/A)/N is. This identifica-
tion of the interface position via the absorbed amount is a
good approximation for large distances between the surface
and the 4B interface. In this case, the composition profile
across the 4B interface is well described by the interfacial
profile between the coexisting bulk phases. If the AB inter-
face is close to the surface, however, the profile becomes
strongly distorted (see Fig. 2) and the definition of the inter-
face position / is somewhat ambiguous, but this is exactly the
region that gives the dominant contribution to the line ten-
sion. Moreover, there are nonlocal contributions to the free
energy, e.g., due to the conformational entropy. The poly-
mers change their conformations so as to fill the wedge-
shaped volume between the surface and the AB interface.
This differs from the behavior close to a surface or an 4B
interface and gives rise to a contribution to the line tension,
which is only partially described by the effective interface
Hamiltonian.

IV. SUMMARY AND DISCUSSION

We have calculated the phase diagram of a symmetric
polymer mixture confined to a thin film in mean-field ap-
proximation. The left surface attracts the 4 component with
the same strength as the right surface attracts the B compo-
nent of the mixture. The calculations reveal a rich interplay
between the phase behavior in confined geometry and the
wetting behavior of the semi-infinite system. If the wetting
transition of the semi-infinite system is second order, so is
the interface localization-delocalization transition in a thick
film [9].

At stronger surface fields, the wetting transition in the
semi-infinite system is first order and this gives rise to a
first-order interface localization-delocalization transition in a
thick film. The phase diagram in a thick film exhibits two
critical points symmetric around ¢= 5. These correspond to
the prewetting critical points of the semi-infinite system. At
lower temperatures we encounter a triple point at which an
A-rich phase, a phase where the AB interface is located in the
center of the film, and a B-rich phase coexist. This triple
temperature converges from above to the wetting tempera-
ture as we increase the film thickness. Below the triple tem-
perature there is a single coexistence region between an
A-rich and a B-rich phase. The interplay between the prewet-
ting behavior and the phase diagram in a thin film has been
considered for symmetric surface fields (capillary condensa-
tion) [28,37,38], but, to the best of our knowledge, phase
diagrams with two critical points far below the bulk critical
temperatures in films with antisymmetric surface fields have
neither been discussed analytically [23,24] nor observed in
experiments or simulations. As we shall discuss below, we
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do not expect corrections to the mean-field calculations to
alter our conclusions qualitatively and we hope our predic-
tions will be confirmed by experiments or simulations.

Qualitatively, the interplay between the prewetting behav-
ior and the phase diagram in a film with antisymmetric
boundaries is not specific to polymer blends but is rather
characteristic of all binary mixtures. Symmetric polymer
mixtures might, however, be especially suitable model sys-
tems for exploring these effects experimentally and we hope
our detailed calculations will provide some guidance.

The existence of the triple point also influences the shape
of the interface between the laterally segregated, coexisting
phases. At low temperatures the interfaces run straight across
the film and the angle between the interface and the surface
is given by the macroscopic contact angle. Upon approach-
ing the triple point from below, however, the profiles become
S-shaped with a flatter portion at the center of the film. This
signals the metastability of the third delocalized phase with
composition ¢= 5. At the triple point the delocalized phase
completely wets the interface between the A-rich and B-rich
phase. Upon approaching the triple temperature from below,
the line tension changes sign from negative to positive. The
properties of the interface between the coexisting phases are
in qualitative agreement with the results of an effective
Hamiltonian description.

In thin films the interface localization-delocalization tran-
sition might be of second order even though the wetting
transition is of first order. This has been predicted in the
framework of a square-gradient approach by Swift et al.
[10], and is in accordance with simulations of the Ising
model [32]. A similar behavior is found in our self-consistent
field calculations for polymer blends. For our model, second-
order wetting transitions are restricted to the ultimate vicinity
of the critical point of the bulk while second-order interface
localization-delocalization transitions can be observed far
below the bulk critical temperature for film thicknesses com-
parable to the end-to-end distance R,. This leads us to an-
ticipate very strong finite film thickness effects close to a
second-order wetting transition even for film thicknesses that
exceed R, by far.

Of course, our self-consistent field calculations neglect
fluctuations. In the vicinity of the critical point, we rather
expect 2D Ising critical behavior with much flatter binodals
than the parabolic binodals of the mean-field universality
class. The Ginzburg criterion ensures, however, that these
composition fluctuations are only important in the ultimate

vicinity of the critical point |1 — x N/xN|~1/ \/ﬁ_, where the
reduced chain length N= (pRg/N)2 measures the degree of

interdigitation. As we increase N, the relative temperature
distance from the critical point for which these composition
fluctuations are important decreases. For small and interme-
diate chain lengths an interesting interplay between mean-
field, 3D Ising and 2D Ising critical behavior is anticipated.
In the limit of large interdigitation, however, we expect com-
position fluctuations to be only of minor importance for most
parts of the phase diagram.

Moreover, the interface profiles in the self-consistent field
calculations are ideally flat, i.e., there are no capillary waves
of the interfaces. The importance of these fluctuations is not
restricted to the vicinity of critical points. On the one hand,
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capillary waves lead to a broadening of profiles across the
interface. The ‘‘internal’”> 4B interfaces run parallel to the
surfaces and the effective interaction between the 4B inter-
face and the surface imparts a long wavelength cutoff &, to
the spectrum of capillary waves. Hence, the interfacial width
does not grow unbound as we increase the lateral system
size, but still the self-consistent field calculations might se-
verely underestimate the width of the ‘‘internal’’ AB inter-
faces [14—16]. Within a convolution approximation, the ap-
parent width w,, of the 4B interface, which is observed in
experiments or simulations, is related to the intrinsic width
wgt in the SCF calculations via

Wcap : kBT gH
~1+ 5 In| —
Weef 40—ABWscf B
3V6 VxN_ (&
In E (SSL), (35)

~

> &
where we have used the temperature dependence of the in-
terfacial tension and width for strong segregation to obtain
the last expression [18,27]. B is a short length cutoff for the
capillary wave spectrum. Analytical calculations and recent
Monte Carlo simulations show that B tends to mw[39] or

3.8wys [40], respectively, in the strong segregation limit.
Even though the second term in the above equation is only of

the order 1/ \/]\—/ , the increase of the apparent interfacial width
due to capillary waves typically is of the order of the intrin-
sic width for experimentally relevant chain lengths
[41,14,15].

On the other hand, capillary waves renormalize the effec-
tive interaction between the surface and the 4B interface. For
instance, the effective interaction range 1/\ is increased to
(1+ w/2)/N, where the capillary parameter [42,43]

kpT\? 1

(36)

measures the strength of fluctuation effects and decreases

like 1/\/N.

At weak segregation (AR,)*~(R,/&)*~(1—2/xN) and
kT ]VUABR§~(1 —2/xN)~*?, and the capillary parameter
increases like w~ []\7(1 —2xN)]~ V2. In the ultimate vicinity
of the bulk critical point, the mean-field theory breaks down

and we expect a crossover to a constant value [43]. The
divergence of w upon approaching the critical point is cutoff

around 1 — x.N/xN~1/N, in accordance with the Ginzburg
criterium for the crossover from mean-field to Ising critical
behavior. In the strong segregation limit, the correlation
length ¢ approaches the temperature-independent limit
R,/ V18 and  the capillary parameter scales like
927X N/6\N].

Conformational changes are incompletely described by
our self-consistent field calculations. Within the Gaussian
chain model the lateral extension R of a molecule parallel to
the surfaces remains always unperturbed, i.e., it is indepen-
dent of the local composition, the distance between the mol-
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ecules and the surface, and the film thickness. Experiments
and Monte Carlo simulations, however, do reveal a depen-
dence of the lateral chain extension on the parameters above.
Partially, some of these effects can be rationalized as fol-
lows: If the film thickness is very thin, the lateral chain ex-
tension R has to increase so as to restore a constant mono-
mer density. This increase of the lateral chain extensions

occurs if pRﬁA <NorA/R, <1/ \/N . Under these conditions,
the chains are quasi-two-dimensional and the density of
monomers belonging to the same chain inside the coil vol-
ume is not small [44]. An 4 chain in a B-rich environment
shrinks as to exchange energetically unfavorable intermo-
lecular contacts with contacts along the same chain. By re-
ducing its size, it increases the density of its own monomers
inside the coil volume. The energy gain upon shrinking is
counterbalanced by the loss of conformational entropy. Scal-
ing arguments, Monte Carlo simulations, and SCF calcula-
tions [25] yield for the relative reduction of a minority chain
in the strong segregation limit: AR/R~ yN/ \/]; .

In the limit of infinite interdigitation N—o, the above
correction to the SCF calculations becomes small. However,
even for experimentally relevant chain lengths, finite N ef-
fects might give rise to sizable corrections to the SCF calcu-
lations (e.g., broadening of the apparent width of 4B inter-
faces by capillary waves).

Aside from finite N effects, there are other corrections
that are not captured by the SCF calculations and that remain
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important even in the limit of infinite interdigitation. The
finite compressibility of the polymeric fluid, for instance,
gives rise to packing effects at the surfaces. The monomer
density profile in the vicinity of the wall is determined by an
intricate interplay between equation of state effects, loss of
conformational entropy, fluidlike packing effects, and sur-
face fields. These effects are not included in the SCF calcu-
lations of Gaussian chains, but require a detailed consider-
ation of the molecular architecture and fluidlike packing
structure. However, we do not expect these effects to change
our conclusions qualitatively.

Likewise, it is difficult to find an experimental realization
of a symmetric mixture confined into a film with antisym-
metric boundaries. The effects of deviations from perfectly
antisymmetric surfaces and the crossover between capillary
condensation (for strictly symmetric boundary fields) to in-
terface localization-delocalization has been explored in the
framework of our model.[24] This study shows that phase
diagrams with two critical points also occur for nearly anti-
symmetric surface fields. The stronger the order of the wet-
ting transition (the more extended the prewetting line) the
more stable is the topology of the phase diagram against
small deviations from perfect antisymmetry.
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