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Global Navigation Satellite Systems (GNSS) have become
the standard choice for obtaining position, velocity, and time
of any vehicle or structure equipped with a receiver.1 Arrays
of identical antennas are currently proposed in many GNSS
applications for increasing visibility and improving received
signal quality maintaining, at the same time, robustness in
diverse and challenging scenarios where undesired perturba-
tions as interferences, jamming, spoofing signals, or even
multipath could be potential threats that severely degrade the
GNSS performance. An antenna array (AA) provides spatial
diversity, that is, the ability of discriminating incoming sig-
nals based on the characteristics of the generated radiation

pattern (RP) subspace.2 Signal discrimination based on its
direction of arrival (DOA) is one of the typical applications
allowed by the use of AAs.

Nowadays miniaturization is also an essential require-
ment, therefore small arrays using a reduced number of
antennas are highly desired.3–5 However, in such arrays the
influence of mutual coupling and electromagnetic diffraction
(MCED) is unavoidable.6 These phenomena have several
effects in terms of efficiency and final response of individual
RPs, both strongly related to each other.7,8 The so-called in
situ RPs are the resultant individual RPs when embedded in
the array and their surrounding electromagnetic environ-
ment. From classical theory of phased arrays with equally
behaved antennas, spatial diversity is provided by their
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relative positions so that signals arriving from all possible
DOAs can be discriminated by phase differences according
to each traveling path length.9 In that case, the optimal dis-
tance between elements is λ

2, being λ the carrier wavelength
of the traveling wave, because it provides maximum phase
resolution and no ambiguity. However, this ideal situation is
altered when considering actual in situ RPs, and even more
when arrays with less than λ

2 inter-element distances are
employed in compact designs. If we recall the case of two
equally behaved antennas in terms of their RPs, separated
by a distance of λ

2, the maximum range of phase differences

they can measure at carrier central frequency is − π
2,

π
2

� �
. The

same AA but separated a distance d< λ
2 can only measure

phase differences in the range − πd
λ ,

πd
λ

� �
which means

narrower resolution restricted by their relative positions. But
this is not always the case, as a particular coupled AA design
could actually improve performance.10 This result suggest
that proper designs for RPs can represent a benefit in terms
of efficiency and DOA discrimination, even though it also
implies more signal processing complexity because the com-
mon RP assumption is no longer valid. Indeed, it is an
advantage to exploit gain and phase differences in a joint
manner at the array design. Otherwise, the spatial diversity
could be degraded and the efficiency greatly reduced in
compact arrays.

Many compensation methods have been proposed to
reduce differences on the in situ RPs.11–14 However, they do
not account for the effects of antenna thermal noise. For a
multiantenna GNSS receiver, each channel/antenna signal is
essentially immersed into thermal noise that typically can be
considered independent and identically distributed (i.i.d.)
among them. After applying a given pattern compensation
algorithm, the signal coming from each antenna element
seems to be received by an ideal phased array, but the noise
distribution becomes distorted. However, i.i.d. noise assump-
tion is needed or desired in most of the classical theory of
phased arrays signal processing. Hence, to retain the advan-
tage of i.i.d noise after a transformation, the compensation
method must satisfy the restriction of being not only linear
but also orthonormal. In this work a unitary matrix transfor-
mation method for AAs is presented which is based on well-
known solution of the orthogonal Procrustes problem (OPP)
posed in Reference 15. The fundamental virtue of a unitary
transformation is that delivers a new “virtual” array without
altering any signal or noise power correlation structure. Then,
our method provides an antenna behavior compensation to
translate the in situ RPs into an equivalent AA of equally
behaved elements. Therefore, a particular array design that
has the ability of perceiving gain and phase differences can be
translated into an equivalent AA with almost identical RPs. In
particular, we present a simulated example of microstrip
antennas forming a compact array that can behave similar to a
λ
2-spaced AA whose elements have a common RP. It is worth

mentioning that the designed array performs efficiently
without needing any additional absorber material, resonant
structure, fences, or any decoupling and matching network
stages.4,5,16–18 The proposed method intends to turn many
efficient coupled AA designs workable with classic phased
array techniques.

The rest of the article is organized as follows. In Section 2,
received signals structure along with its parameters of interest
are described. AA efficiency is also considered and related to
in situ RPs. In Section 3, the unitary transformation method
is defined and characterized for optimal array compensa-
tion. In Section 4, a practical GNSS microstrip array design
is presented and evaluated after applying the orthonormal
compensation method. Finally, in Section 5, relevant con-
clusions are stated.

Consider an array of N identical antennas for GNSS signals.
Thus, the nth in situ antenna RP centered at (xn, yn, zn) posi-
tion and for a given (θ, φ) direction can be calculated as.9

hn θ,φð Þ= sn θ,φð Þgn θ,φð Þ, ð1Þ
where θ and φ represent elevation and azimuth coordinates;
gn is the nth embedded far-field gain pattern centered at its
own geometric center:

∵ gn θ,φð Þ= gn θ,φð Þj j∠gn θ,φð Þ,
sn is the n-th element of the steering vector that is unitary
and phase dependent on the geometry of the array:

∵ sn θ,φð Þ= ej
2π
λ xn sin θð Þcos φð Þ+yn sin θð Þsin φð Þ+ zn cos θð Þð Þ

where (xn, yn, zn) are the coordinates of the geometric cen-
ters of each antenna referred to the geometric center of the
array, that is, (0, 0, 0).

After reception by the antenna elements, the signal is
preamplified, band-limiting filtered, down-converted to
baseband, and digitized. If a narrowband signal model is
considered, the AA, front-end and analog to digital con-
verters stages can be modeled as a flat frequency response
system.19 Employing complex envelope notation for P inci-
dent signal sources, the received baseband digital signal over
each antenna at mth snapshot can be expressed as.20

xn m½ �=
XP
p=1

yp m½ �hn θp,ϕp

� �
+en m½ �, ð2Þ

where xn is the measured signal amplitude by the nth
antenna; yp is the digitized incoming signal amplitude by
the nth antenna from far-field orientation (θp, φp), for
p = 1, … , P; en is the total received thermal noise by n-th
antenna and their corresponding front-end.

In matrix notation, the measurement vector can be
expressed as

2. RECEIVED SIGNAL MODEL



x m½ �= S ∘Gð Þy m½ �+ e m½ �=H y m½ �+ e m½ �, ð3Þ
with [x]N × 1, [y]P × 1, [e]N × 1, ∘ denotes the Hadamard prod-
uct and

S= s1,…,sP½ �=
s1,1 � � � s1,P

..

. � � � ..
.

sN,1 � � � sN,P

2664
3775; sn,p = sn θp,ϕp

� �
,

G= g1,…,gP½ �=
g1,1 � � � g1,P

..

. � � � ..
.

gN,1 � � � gN,P

2664
3775; gn,p = gn θp,ϕp

� �
,

H = h1,…,hP½ �=
h1,1 � � � h1,P

..

. � � � ..
.

hN,1 � � � hN,P

2664
3775; hn,p = hn θp,ϕp

� �
,

where H is called the array matrix response.
In the following, we focus on the definition of AA effi-

ciency and how it reveals desired characteristics of compact
arrays. This is strongly related to its RPs and the obtained
spatial diversity.

For the sake of simplicity, the next analysis will be done in
transmission mode. In fact, for a reciprocal antenna system,
the Maxwell-Lorentz Electromagnetic Reciprocity Theorem
establishes the equivalence principle between radiating pat-
terns in transmitting and receiving mode as well as all char-
acteristic parameters of a multi-port system.7

The total delivered power to the radiating array by
applied signal vector x is

Ptotal = xHx: ð4Þ
The AA system, constitutes the physical medium where

radiation takes place. However, not all delivered power
translates into radiated power, because some of it can be
reflected at the channel ports and some is dissipated in
dielectric and metallic materials as ohmic losses, then, by
the Principle of Conservation of the Energy, it can be stated
that.7

Ptotal−Prefl ≥Prad, ð5Þ
that provides a practical limit to the total radiated power. It
can be further expressed as

xH IN−SHS
� �

x≥ xHΓx, ð6Þ
where S is the scattering parameters matrix and Γ is the radi-
ation power efficiency and distribution matrix. In previous
equations, equality holds if and only if all of the radiating
system can be assumed as a lossless structure.

Radiation matrix elements Γik can be expressed in terms
of antenna efficiencies and the beam coupling factors as.7,9

Γi,k = ϵ*i η
*
i βi,kϵkηk, ð7Þ

where ϵi (ϵk)stands for the ith (kth) antenna reflection effi-
ciency, ηi (ηk) stands for the ith (kth) antenna radiation effi-
ciency, superscript * denotes complex conjugate, and

βi,k =
þ
�h
�
i θ,φð Þ�h�*k θ,φð Þsin θð Þ dθdφ, ð8Þ

defines the beam coupling factor between ith and kth
antenna responses. The RP �h

�
i θ,φð Þ is the �h�i θ,φð Þ defined in

Equation 1 but normalized so that βi, i = 1.
The amount 1 − |ηi|

2 is the proportion of power that is
lost by ohmic losses in metallic and dielectric materials
given by their geometry and finite conductivity. Similarly,
1 − |ϵi|

2 is the relative amount of power that is reflected out
of the antenna system at channel ports, that is,

ϵij j2 = 1−
XN
k=1

Si,k
�� ��2: ð9Þ

Therefore, from Equations 6 to 9, the following conclu-
sions about particular cases can be enounced:

• If SHS is not a diagonal matrix, then the reflection effi-
ciency is limited by reflection and coupling losses.

• If SHS is a diagonal matrix with nonzero elements, then
it is verified that βi. k form an identity matrix and ϵi < 1,
for some i index in i = 1, … , N.

• If SHS is a completely null matrix, no reflection losses
exist.

In consequence, a completely matched and lossless sys-
tem needs ϵi = ηi = 1, with i = 1, … , N, besides βi, k = 0,
with i 6¼ k. Then, it is straightforward to conclude that an
ideal radiation structure must provide N orthogonal beam
patterns by means of N perfectly matched ports without
mutual coupling losses. This condition seems more easily
achievable for large arrays, but not a simple objective for
compact arrays where MCED is unavoidable.

The following examples present simple arrays, whose
RPs are actually orthogonal, and that meet the desired char-
acteristics for efficient radiation.

First we consider the classic and ideal linear array of N iso-
tropic antennas, being N an even number, whose gain ampli-
tude is normalized to 1 for single frequency operation at
wavelength λ. Antennas are aligned along the x-axis, cen-
tered at the origin of coordinates, and separated by a distance
d between them. In Figure 1, an illustrative scheme is pres-
ented where the dependency of the variable φ is omitted for
the sake of simplicity.

It is a phased array with identical elements where an
array factor of constant amplitude is the common term as the

2.1. AA efficiency

2.2. Example 1



RP vector. The only change is the phase dependency according
to the signal orientation. Then, the RP vector results

h θ,ϕð Þ=

ej
2π
λ − N−1ð Þd2ð Þsin θð Þcos ϕð Þð Þ

ej
2π
λ − N−3ð Þd2ð Þsin θð Þcos ϕð Þð Þ

..

.

ej
2π
λ + N−1ð Þd2ð Þsin θð Þcos ϕð Þð Þ

266664
377775 ð10Þ

If no reflection losses can be assumed, it can be verified
from Equation 8 that the desired characteristics for Γ matrix
are met when d= λ

2, yielding

βi,k =
þ
ejπ sin θð Þcos ϕð Þ i−kð Þ

4π
sin θð Þ dθdφ=

1 i= k

0 i 6¼ k

�
ð11Þ

It should be noted that not only phased arrays can achieve
this condition. We consider next another example where the
antennas share the same phase center and, for instance, signals
always arrive without relative phase differences.

The crossed-loop antennas, like the crossed-dipole antennas,
is another simple case of an AA.21 It was very helpful at the
beginning of the XX century as an analog system for direction
finding, and its built-in structure to this application was
known as the Watson-Watt Direction Finder. A simplified
scheme is shown in Figure 2. It contains two crossed-loop
antenna with approximated RP given by cos(φ) and sin(φ)
functions when described over xy-plane. At this system, each
antenna is connected to a receiver and both channel signals
are simultaneously displayed on a cathode ray tube as a XY
graph so that an impinging wave on the array can be esti-
mated with the bearing angle of resulting graph. Given the
azimuth ambiguity of π radians, bearing angle can only be
discriminated without ambiguity at a reduced range, that is,
− π

2 ≤ϕ≤ π
2. It can also be realized that the magnitude of the

RPs changes according orientation, but not its phase. There-
fore, it can be said that their phase center is shared and it is
located at the geometric center of the loop array.

As an AA, its performance will be analyzed in terms of
its efficiency and compared to an equivalent design based on
equally behaved antennas.

The RP vector of the crossed-loop antennas to a given
DOA (θ, φ) is

h θ,ϕð Þ=
cos tan −1 cos2θ+ sin2θ sin2ϕ

� �1
2

sinθcosϕ

 !" #

sin tan −1 cos2θ+ sin2θ sin2ϕ
� �1

2

sinθcosϕ

 !" #
2666664

3777775: ð12Þ

Hence, from Equation 8 the βik elements

βi,k =
þ
�h
�
i θ,φð Þ�h�*k θ,φð Þsin θð Þdθdφ=

1 i= k

0 i 6¼ k

(
ð13Þ

which is the same beam coupling matrix that could be achieved
with a λ

2 separated pair of ideal isotropic antennas, as shown
in the previous example, taking N = 2. Moreover, given that
current distribution along each metallic structure does not
generate an electric field that could strongly interfere with the
port of the neighbor antenna, the “no coupling losses” is a
valid assumption. Hence, a perfectly matched and lossless pair
of crossed-loop antennas can be said to be an efficient array.

If we restrict to the xy-plane, the corresponding RP vector
simplifies to

h
π

2
,ϕ

� 	
=

cos ϕ

sin ϕ


 �
: ð14Þ

In this case, it is easier to find a transformed array whose
response can distinguish impinging signals by phase instead
of amplitude differences. Its array response can be translated
into the RP vector that resembles the one corresponding to a
set of two identical isotropic elements aligned to the y-axis
and centered at the origin, that is

eh π

2
,ϕ

� 	
=

e− jϕ

e+ jϕ

" #
, ð15Þ

and which is performed by means of the following transfor-
mation matrix

2.3. Example 2

FIGURE 1. Phased antenna array

FIGURE 2. Crossed-loop antennas direction finding system



W =
1

√2

1 j

1 − j


 �
: ð16Þ

The RP vector in Equation 15 changes the way that
phase argument varies according to φ in comparison to a
phased array whose RP vector is

h
� π

2
,ϕ

� 	
=

e− jπ2 sinϕ

e+ jπ2 sinϕ


 �
: ð17Þ

However, the phase argument − π
2 ≤ϕ≤ π

2 varies in the
same range as an array of two isotropic elements separated
by d= λ

2 do, that is, − π
2 ≤

π
2 sinϕ≤ π

2. This fact puts in evi-
dence that their behaviors are not far from each other, nei-
ther to the crossed-loop antennas. Hence, a strategy for
finding equivalent arrays by means of an orthonormal
transformation is needed and will be proposed in the next
section.

The objective of the proposed method is to compensate the
actual AA response x, transforming it into the signal vector
~x, whose new structure can be described by some equivalent
array response. From Equation 3 we can express

ex m½ �=WHy m½ �+We m½ �= eHy m½ �+ee m½ �, ð18Þ

where W is the sought for unitary matrix transformation and
~H is the new equivalent array matrix response, as close as
possible to the H� desired response.

The actual array response matrix H can be constructed
based on DOAs of P impinging signals at every instant
m for real-time processing, or can be pre-defined for a
generic set of P DOAs of interest as a static stage. In the first
case, the advantage of the transformation can be an increase
in the algorithmic precision if DOAs and array responses
are well known, but it can require high signal processing
capabilities. The second case reduces computational com-
plexity by resigning precision because of performing a global
transformation.

Figure 3 shows a block diagram of a generic GNSS
receiver with a transformation stage for compensation of the
individual AA responses at a given DOA (θ, φ).

Regarding the noise terms, when thermal agitation is
the main source, the vector e of N random variables can
be assumed as complex normally distributed, being mutu-
ally independent and also to signals of interest, and identi-
cally distributed along the received signal vector, that is,ex= CN Hy,σ2INð Þ, with σ2 the noise variance. After applying
the transformation matrix W, it is desirable that the resulting
noise vector ee inherits not only the same probability distribu-
tion but also preserves independence so as not to affect

signal processing in the next stages. By constraining W to
be an unitary matrix (WHW = WWH = IN), the original input
covariance structure is not modified, that is,

Cov xf g=E xxH
� 


−E xf gE xH
� 


= σ2IN , ð19Þ

Cov ~xf g=WCov xf gWH =Wσ2INWH = σ2IN , ð20Þ

where the superscript H represents Hermitian transpose, E
{�} and Cov{�} are the expectation and covariance operators
respectively.

Moreover, if an unitary matrix W is applied to x, the total
received power remains unaltered, that is,

eP=exHex= xHWHWx=Ptotal, ð21Þ

and Equation 6 now holds for the new excitation vector ~x
resulting in

exH IN−SHS
� �ex≥exHΓex: ð22Þ

In the following, a method for solving this constrained
optimization problem based on the OPP will be presented.

rix W that belongs to a N × N unitary group over
a complex field, W 2U N,Cð Þ, performs rotations on some
N-dimensional element inside the subspace it is contained.
The traditional problem of finding the closest matrix to
another through a linear transformation that only admits
rotations over the N-dimensional subspace—in Euclidean

γ = WH−H
�
Q

�� ��2
F: ð23Þ

where k�kF is the Frobenius norm.
The problem posed in Equation 23 is the classical

weighted OPP (WOPP) and has a closed-form solution. This
formulation includes a real positive definite diagonal weight
matrix Q which allows making different penalizations
according to any chosen DOA. For a global compensation it

3. ORTHONORMAL TRANSFORMATION
METHOD

3.1. Orthogonal Procrustes problem

A mat

FIGURE 3. Global Navigation Satellite Systems receiver model

� �
distance—is called the OPP.15 The transformation W can be
found by minimizing the following cost function



can be set as an identity matrix, but it can be useful when
performing compensation on a reduced number of DOAs.

Calling B = HQ and A = HQ�, with A,B 2 CN × P, and
expanding Frobenius norm by means of matrix trace, it is
found that

γ = WB−Ak k2F =
= tr BHWHWB
� 


+ tr AHA
� 


−2tr BHWHA
� 


: ð24Þ
Noting that only the third term depends on W, the opti-

mal solution with respect to this variable is obtained by max-
imizing the opposite of this term. Introducing the singular
value decomposition (SVD) of ABH = UΣVH yields

tr BHWHA
� 


= tr ABHWH� 

=

= tr UΣVHWH� 

= tr ΣVHWHU
� 


, ð25Þ
where Σ = diag([σ1, σ2, … , σP]), with singular values
σp ≥ 0, is a real positive semi-definite diagonal matrix and
VHWHU is a new unitary matrix. Hence, it can be proved that
Equation 25 maximizes when the unitary matrixW equals to.15

Wopt = argmax
W

tr ΣVHWHU
� 
� 


=UVH , ð26Þ

W
tr ΣVHWHU
� 
� 


= tr Σf g: ð27Þ

Therefore, Equation 26 is the closed-form solution for
W that can be found in terms of the SVD of the ABH =
H�QQHHH matrix.

Previous results show how an optimal solution to the WOPP
can be found for a given array response at DOAs of interest.
Now, we are interested in finding a transformation as exact
as possible. Hence, for a given objective AA response H�, it
is necessary to propose a properly designed array response
H so that the degrees of freedom of an orthonormal matrix
W are enough to reduce the magnitude of Equation 23 as
much as possible.

Employing transformation Equation 26 and according to
the desired DOAs that determine H and H�, the matrices A
and B can be expressed in terms of the SVD, which delivers
an orthonormal base of left and right eigenvectors of both
matrices besides its own singular values

A=UAΣAVH
A ; B=UBΣBVH

B : ð28Þ
Eigenvector bases UA and UB belong to the same vec-

tor subspace, in the same way as VA and VB do. Our tool is
an unitary matrix that performs a linear transformation
(rotation) over the left eigenvector base and it can be
applied to get WUB = UA whereas the rest is not modified.
Hence, a good fit will be obtained if eigenvalues and right
eigenvectors are the same, that is, ΣA = ΣB and VA = VB.

Or equivalently, it should be verified that matrices RA =
AHA and RB = BHB match perfectly, that is,

RB =BHB=AHA=RA: ð29Þ
If this condition is verified, then Equation 28 becomes.

A=UAΣAVH
A ; B=UBΣAVH

A , ð30Þ
which allows the SVD of ABH =UAΣ2

AU
H
B to be achievable.

In this condition, Equation 26 results Wopt =UAUH
B , and

consequently Equation 23 equals to

γ0 = UAUH
B

� �
UBΣAVH

A

� �
−UAΣAVH

A

�� ��2
F =0: ð31Þ

Matrices B and A are respectively defined by the actual
array and the objective array characteristics correspondingly.
Therefore, it is insightful to make a proper design of both
so that Equation 29 is met as close as possible. Actually,
Equation 29 establishes a necessary and sufficient condition
to satisfy γ = 0, so that an exact transformation can be
obtained for every design of H and H� that meets Equa-
tion 29. That allows us to settle the array design problem in
terms of the minimization of the new cost function γp,

γp = AHA−BHB
�� ��2

F = QH HHH−H
�H
H

�
h i

Q
��� ���2

F
: ð32Þ

Expanding Equation 32 in terms of the RP vectors, the
sought for array design constraint becomes clearer

hi,hkh i≈ h
�
i ,h

�
i

� �
, ð33Þ

where hi,hkh i= hHi hk is the inner product 8i, k = 1, … , P.
From Equation 33, it can be concluded that a necessary

condition for this transformation method to be exact is that,
for every pair of desired DOAs, the vector correlation remains
equal between actual and objective arrays. If we generalize
this for all possible pairs of DOAs (θ0, φ0) and (θ00, φ00), a
new four-dimensional correlation function r can be defined

r θ0,φ0,θ00,φ00ð Þ= h θ0,φ0ð Þ,h θ00,φ00ð Þh i: ð34Þ
This function has lot of valuable information about the

characteristics of AAs. It maps correlation of RP vectors h
for all possible combinations of DOA variables. Its magni-
tude indicates how collinear two particular vectors are at two
different DOAs. If these two orientations are highly corre-
lated, they can be easily confused when, for example, per-
forming DOA estimation. The optimal case would be perfect
orthogonality, while maximum correlation points out that
both directions are indistinguishable by their respective RP
vectors. Moreover, in the case of performing interference
rejection, the information of how much it will affect to put a
null on interference DOA to the maximum achievable gain
over signal of interest DOA is also contained in the correla-
tion function r. Many AA applications can be interpreted by
means of the correlation function r because it has informa-
tion about all possible DOAs dependencies. It describes the
capacity of an AA to discriminate every pair of orientations

3.2. Correlation function of AAs

which yields

∵ max



in far-field. In consequence, two different array configu-
rations will be declared equivalent, in terms of an unitary
matrix transformation, if they have the same correlation
function.

Recall the previously described example of Section 2.2.
We analyze the RP only over the xz-plane so that the corre-
lation function (34) can be plotted. It will be analyzed over
the two elevation variables θ0 and θ00, obtaining the follow-
ing expression

r θ0,θ00ð Þ=
XN2−1

n= −N
2

ej
dπ
λ 2n+1ð Þ sin θ00ð Þ− sin θ0ð Þ½ �: ð35Þ

In Figure 4 the absolute value of the correlation function
| r(θ0, θ00)| is compared for two isotropic antennas according
to their separation d. For every point in the graph we can
appreciate how correlated is the vector h(θ0) to h(θ00). It
can be seen that for two antennas at short distances the
resolution is very poor, but it improves with increasing
distance. However, if distance increases too much, ambi-
guity appears, like in the case of d = λ where maximum
correlation occurs at least twice when moving horizontally
or vertically on an imaginary line in graph. For a pair of
ideally identical antennas separated d= λ

2 there exist maxi-
mum resolution without ambiguity (except at end-fire condi-
tion, ie, null elevation), which is usually taken as the traditional
rule of design.

In Figure 5 the absolute value of the correlation function
jr(θ0, θ00)j is compared for N isotropic antennas with pairwise
separation d= λ

2. Now, with an increase in the number of
antennas, the array aperture increases and it has the advan-
tage of expanding the low amplitude region in correlation
function map. Besides, the resolution increases too, which is
considered as the distance from some point at the principal
diagonal (φ0 = φ00) to the first correlation null when moving
horizontally or vertically. In the cases analyzed earlier, their
different capabilities can be clearly described by means of
their correlation functions. They all have proper correlation
functions and they represent important characteristics of
these AAs of ideal isotropic elements in this case.

We now reconsider the example proposed in Section 2.3 of an
AA of the crossed-loop antennas and a similar λ

2-spaced phased
array. Figure 6 compares correlation function r(φ0, φ00) for
both cases mentioned above. It can be seen that both func-
tions are quite similar but there are some changes about their
resolution. Crossed-loop antennas have equal resolution at
every reference point and it is π

2. On the contrary, in the
case of the two element phased array, resolution changes
according to reference DOA, being π

2 at ϕ0 = − π
2 ,0,

π
2; and

taking smaller values in between.
Some other array designs may have neither the same nor

similar correlation functions that correspond to a realizable
AA of identical antennas. Then, the equivalent arrays that
can be obtained by means of the unitary transformation
could be understood as virtual phased arrays with different
characteristics and, perhaps, with some improved performance
at certain DOAs. Therefore, this method can be highly prom-
ising for efficient compact array designs.

Typically, GNSS receivers employ microstrip antennas since
they are characterized by having good hemispherical radia-
tion properties, which is important to maximize the visibility
range of available satellites. In addition, microstrip antennas
can be easily designed to achieve circular polarization, they
are low cost, mechanically robust and have low profile. In
particular, in this work a microstrip AA of square patches
with truncated corners was selected to obtain right hand cir-
cular polarization (RHCP).9

Each antenna has a single coaxial feed and is implemented
on a (Rogers Corporation) RT/duroid 6002 substrate with
relative dielectric permittivity εr = 2.94.22 For the array
structure, a disposition of two linearly aligned antennas sep-
arated by a distance of d = 0.3λ with same substrate and
ground plane is proposed, being λ the wavelength of the cen-
ter frequency of the L1 band of the Global Positioning Sys-
tem (GPS), fc = 1.57542 GHz. The AA and its parameters

3.3. Example 1 Revisited

3.4. Example 2 Revisited

4. EFFICIENT COMPACTMICROSTRIP AA

4.1. Array design

FIGURE 4. Correlation function of a phased array of two antennas



of interest are shown in Figure 7. The selected parameters,
as well as distance and disposition between array elements
were chosen to reduce the impedance mismatch and cou-
pling losses.

Final dimensions of the already described microstrip AA
were obtained by means of computer-aided simulations and
are presented in Table 1.

bandwidth of 16 MHz where the scattering parameters are
all below the threshold given by |Sik| < −10 dB as it can be
seen in Figure 8A. Matching and coupling losses are equal
between antennas because of the rotational symmetry of the
array structure. It is also important to note the frequency

variation of jS21j because it shows that a considerable
amount of received power is reflected except at fc surround-
ings. Despite the active antenna mutually exciting the passive
one, their current distributions are not the same. While
the active antenna tends to have an adequate current distri-
bution for RHCP, the behavior of the second antenna is
described according to MCED effects. Particularly at fc
frequency, the current distribution in the passive antenna is
mostly horizontally aligned. Consequently, the resultant
electric field seen at the passive port is reduced in magni-
tude and, correspondingly, the mutual coupling parameter
jS21j is nearly null.

In Figure 8B, the radiation efficiency of each element
(ηi, i = 1, 2) is shown in pink. Conversely, the purple curve
represents total efficiency (ϵiηi, i = 1, 2), taken as the prod-
uct of radiation and reflection efficiencies, so the pink curve
represents an upper bound to the total achievable efficiency.
It can be seen that the reflection losses are almost negligible at
fc and its surroundings because both curves are nearly equal in
the range where all |Sik| parameters are under the −10 dB level.
Moreover, the maximum total efficiency is achieved at fc with
a value of −0.5 dB, and also keeps above −1 dB within a range
of 20 MHz, being the array more than adequate for the GPS

λ
2

λ
2-spaced phased array

Parameter Dimension (mm)

c 5.4

h 13.6

g 150

l 100

e 54.6

t 1.524

4.2. Array response

The simulated AA was tuned to be matched at fc with a

FIGURE 5. Correlation function of a phased array with inter-element distances d=

TABLE 1. Antenna dimensions

FIGURE 7. Patch antenna element and two-element linear array FIGURE 8. Array efficiency simulated results

FIGURE 6. Comparison of the correlation function of the crossed-loop

antennas and a two element



signal bandwidth requirements. It is important to remark that
the total efficiency achieved by this AA example is higher
than many recently proposed compact designs.4,5,17,18,23,24 The
main reason is that these array designs are intended to reduce
reflected power at the expense of creating a lossy structure by,
for example, employing high dielectric permittivity, fences, res-
onant structures, or decoupling and matching networks, which
actually creates an inefficient array system. However, as we
have previously described, it is not necessary to make use of
these elements if our approach is adopted.

The correlation function in the xz-plane -|r(θ0, 0�, θ00, 0�)|-
of the microstrip array is shown in Figure 9A. It shows that at
the zenith region the DOAs are received with greater ampli-
tude than at end-fire region. As it was previously discussed,
the sought for objective array must be selected according to the
correlation function of the designed array and selected DOAs.
In this case, a grid was defined in the range 0� ≤ θ ≤ 90�

and 0� ≤ φ < 360� with a step angle of 5�, resulting in 1368
different DOAs for the fitting purposes. Considering a desired

virtual array that behaves like equal and uncoupled antennas,
Equation 33 suggests that an adequate common RP for the
objective array needs to satisfy

gi,gih i≈ g
�
i ,g

�
i

� �
, ð36Þ

which means that the RP gain at each of the selected DOAs
should be equal to the root mean square of the actual AA
gain patterns. Moreover, given its apparent resolution capac-
ity indicated by the shape of the null correlation function
region—a similar behavior is achieved with a pair of identi-
cal antennas separated by a distance d = 0.45λ. Their corre-
lation function is presented in Figure 9B. Similarities of the
two-element 0.3λ separated microstrip array to an ideal
phased array of two identical elements separated by 0.45λ
are evident, and then, a good transformation is possible.

In Figure 10, the upper hemisphere of RHCP RPs of the
microstrip antennas are presented. Side lobes at lower hemi-
sphere are not relevant since ground plane dimensions are
big enough to moderate their magnitude. It can be noticed
that due to the high coupling between antennas, their indi-
vidual RPs have increased their directivity to different orienta-
tions, and such differences offer the proper conditions for
almost orthogonal RPs. In Figure 11, the RHCP RPs of the
proposed objective array are shown. Equal gain amplitude and
the characteristic phase response of a phased array of two
0.45λ separated elements is presented. Finally, the resultant
RPs after the unitary transformation are shown in Figure 12.
The RPs of the equivalent array can achieve very similar
responses compared to the proposed phased array as predicted
with the correlation function in Figure 9.

FIGURE 9. Correlation function comparison of the designed microstrip
antenna array and the objective array

FIGURE 10. Resulting right hand circular polarization radiation patterns of the designed 0.3λ separated microstrip array

FIGURE 11. Right hand circular polarization radiation pattern responses of the 0.45λ separated objective array



Joint current distribution of the pair of coupled antennas
provides previously described RHCP RPs. As a consequence,
the left hand circularly polarized (LHCP) RP changes its
behavior in comparison to an isolated antenna too. Figure 13
presents the LHCP RP of the designed AA. Its polarization
efficiency is high for some DOAs but low for some others.
It is a simple array that has the advantage of ease of imple-
mentation but a more detailed and complex geometry could
improve the polarization efficiency by redirecting the overall
current distribution. Considering that we used single feed
patch antennas, an increase in polarization purity could be
achieved by means of a dual port feeding network. In Figure 14
the resultant LHCP RPs of the transformed array are
shown. Changes about their directivity can be noticed as
well as different behaviors about their phase patterns. How-
ever, given that the transformation matrix fulfills the condition
of being unitary, it does not make changes in the amount of
total power that an array is able to receive at each DOA, even
though LHCP RPs can change in shape.

The compact GNSS AA design presented is an efficient
radiating structure with simple reconfiguration capabilities given
that its behavior can be translated to an equivalent ideal phased
array to ease further signal processing stages. More sophisti-
cated smart antennas can be designed based on this proposed
technique for compact arrays. In particular, in future develop-
ments polarization purity will be addressed. However, even in
the case that the proposed compact array is just an example of
the proposed design method, it is already much more efficient
than traditional arrays that tries to force the common RP rule by
design as inter-element distance decreases.3–5

In this work we have presented a new compact AA design
method based on orthogonal in situ RPs rather than equal
patterns, and a unitary transformation that allows to use it
as if it were a λ

2-spaced array with equally behaved patterns.

5. CONCLUSIONS

FIGURE 12. Transformed array right hand circular polarization radiation pattern responses

FIGURE 13. Resulting left hand circularly polarized radiation patterns of the designed array

FIGURE 14. Transformed array left hand circularly polarized radiation pattern responses



Orthogonal in situ RPs is a necessary condition to avoid losses
and therefore to have an efficient compact AA. To ensure this
orthogonality, joint phase and magnitude differences in RPs
should be considered for array design. A proper design can
accomplish these objectives, as shown with a computer-aided
AA example, so that it has enough spatial diversity improve-
ment in comparison to an ideally behaved compact phased
array design. Hence, complex information about RPs should be
determined by simulation/calibration, stored, and properly
employed at signal processing stages. Therefore, the proposed
orthonormal array design and signal processing method that
allows to translate an efficient compact AA into an equivalent
phased array which must be described by sharing the same cor-
relation function. An array design should have an adequate cor-
relation function to behave efficiently. In addition, some of its
properties could be enhanced or relaxed within several design
considerations as, for example, array resolution optimization
according to DOAs of interest. The correlation function of an
actual array design is not necessarily restricted to be fitted by a
phased array. The objective array may be completely defined
by user specifications so far as it fits such function.

The proposed method is meant to reduce array signal
processing complexity of smart antennas by being a nexus
between actual compact AAs designs and classical phased
arrays. Several designs for efficient compact arrays, without
restriction in the number of elements, can be considered for
smart AAs by employing the proposed technique. In spite of
the application example is being defined for GNSS, the pro-
posed method is clearly not restricted for GNSS array designs
only. The general assumption is that signals fit to a narrowband
model, so that array RPs can be considered constant along the
bandwidth. A generalization of the proposed method to other
applications where a narrowband model does not apply is also
possible and it will be addressed by the authors in the future.
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