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Order by disorder and phase transitions in a highly frustrated spin model on the triangular lattice
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Frustration has proven to give rise to an extremely rich phenomenology in both quantum and classical systems.
The leading behavior of the system can often be described by an effective model in which only the lowest-energy
degrees of freedom are considered. In this paper, we study a system corresponding to the strong trimerization
limit of the spin-1/2 kagome antiferromagnet in a magnetic field. It has been suggested that this system can be
realized experimentally by a gas of spinless fermions in an optical kagome lattice at 2/3 filling. We investigate
the low-energy behavior of both the spin-1/2 quantum version and the classical limit of this system by applying
various techniques. We study in parallel both signs of the coupling constant J since the two cases display
qualitative differences. One of the main peculiarities of the J > 0 case is that, at the classical level, there is an
exponentially large manifold of lowest-energy configurations. This renders the thermodynamics of the system
quite exotic and interesting in this case. For both cases, J > 0 and J < 0, a finite-temperature phase transition
with a breaking of the discrete dihedral symmetry group D6 of the model is present. For J < 0, we find a transition
temperature T <

c /|J | = 1.566 ± 0.005, i.e., of order unity, as expected. We then analyze the nature of the transition
in this case. While we find no evidence for a discontinuous transition, the interpretation as a continuous phase
transition yields very unusual critical exponents violating the hyperscaling relation. By contrast, in the case
J > 0, the transition occurs at an extremely low temperature, T >

c ≈ 0.0125 J . Presumably this low transition
temperature is connected with the fact that the low-temperature ordered state of the system is established by an
order-by-disorder mechanism in this case.
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I. INTRODUCTION

The study of frustrated quantum magnets is a fascinat-
ing subject that has stimulated many studies within the
condensed-matter community in recent years.1–3 Such systems
are assumed to be the main candidates for a rich variety
of unconventional phases and phase transitions, such as
spin liquids and critical points with deconfined fractional
excitations.4 Frustration can also play an important role in
classical systems. The phenomenon of order by disorder5,6

is the perfect example in which the interplay of frustration
and fluctuations produces the emergence of unexpected order.
Order by disorder implies that a certain low-temperature
configuration is favored by its high entropy, not by its low
energy. Order by disorder can also occur in a quantum system,
where a naive argument suggests that quantum fluctuations
play the same role as thermal fluctuations in the classical
system, albeit there are counterexamples in which their role is
in fact quite different.7

A particularly illustrative example is provided by the
spin-1/2 antiferromagnet on the kagome lattice. A spin gap
appears to be present both at zero magnetization2,8–14 (see,
however, Refs. 15–17) and at 1/3 of the saturation value, where
it gives rise to a plateau in the magnetization curve.7,18–21 One
would be tempted to believe that the nature of the ground state
is similar in both cases. However, whether the ground state at
zero field is ordered or not is still under debate. In addition,
the existence of a plateau in the isotropic spin-1/2 Heisenberg
model at magnetization 1/3 has been questioned recently.22,23

Nevertheless, the existence of a plateau at magnetization 1/3

is quite clear for easy-axis exchange anisotropies,7,19 and,
using a correspondence with a quantum dimer model on
the honeycomb lattice,24 the ground state is identified as an
ordered array of resonating spins.7,25

In this paper, we study an effective model that arises
in the strong trimerization limit of the spin-1/2 kagome
antiferromagnet.26 This model has played an important
role in analyzing the zero-field properties of the kagome
antiferromagnet,27,28 but here we will focus on magnetization
1/3 of the Heisenberg model, corresponding to full polariza-
tion of the physical spin degrees in the effective model. Thus,
we are left with the chirality degrees of freedom of the original
antiferromagnet, which we will treat as “spin” variables. In
this sense, our spin system can be considered as a purely
orbital model similar to compass models recently considered
in the literature (see, e.g., Refs. 29–37). As an experimental
realization of this model, a system of spin-polarized fermions
trapped in a trimerized optical kagome lattice at 2/3 occupancy
has been suggested.38–40 In fact, experimental realization of
an optical kagome lattice has been reported recently,41 albeit
using a setup that does not allow direct control of trimerization.

Beyond the particular realizations of our model, its very rich
physics, which results from the interplay between classical and
quantum fluctuations and frustration, makes it an interesting
model in its own right. As will be shown in this paper, a Hamil-
tonian with an (unusual) discrete symmetry but with a con-
tinuous degeneracy of the classical ground state, as would be
expected for a Hamiltonian with a continuous symmetry, is just
one aspect of the rich phenomena emerging from this model.
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The present paper is organized as follows. In Sec. II, we
present the Hamiltonian and the symmetries of the classical
and spin-1/2 cases. The Hamiltonian can be defined for both
signs of the coupling constant J . We deliberately discuss in
parallel the two cases throughout the entire paper to point
out their similarities and differences. The spin-1/2 case is
then treated in Sec. III by means of exact diagonalization
techniques, and we argue that a finite-temperature phase
transition takes place. Since exact diagonalization can access
only small lattices, we move to the classical model in
Sec. IV. We study in detail the manifold of lowest-energy
configurations and their corresponding spin-wave spectra.
The effect of soft modes in the order-by-disorder selection
mechanism is argued to be the origin for the phase transition
of the J > 0 case, in contrast to the J < 0 case, in which the
transition is of a more conventional purely energetic origin.
In Sec. V, we apply Monte-Carlo techniques to the classical
model and determine the transition temperature for J > 0 and
J < 0. We also analyze the universality class of the transition,
however, only for J < 0 since the transition temperature for
J > 0 turns out to be so low that it is difficult to access.
Finally, Sec. VI is devoted to some concluding remarks and
comments.

II. HAMILTONIAN AND SYMMETRIES

A. Hamiltonian

We will study the Hamiltonian

H = J

⎛
⎝X

hi,ji
T A

i T C
j +

X
hhk,jii

T A
k T B

j +
X

[[k,i]]

T C
k T B

i

⎞
⎠ , (1)

where

T A
i = S+

i + S−
i = 2Sx

i ,

T B
i = ωS+

i + ω2S−
i = −Sx

i −
√

3S
y

i , (2)

T C
i = ω2S+

i + ω S−
i = −Sx

i +
√

3S
y

i ,

with the third root of unity ω = e2πi/3. The sums in (1) run
over the bonds of a triangular lattice, each corresponding to
one of the three distinct directions of the lattice, as sketched
in Fig. 1(a).

The Hamiltonian (1) arises as an effective Hamiltonian for
the trimerized kagome lattice, sketched in Fig. 1(a) behind
the triangular lattice. Our notation follows the derivation
from the half-integer spin Heisenberg model for the case
in which the remaining magnetic degrees of freedom are
polarized.26 In this case, there are two pseudospin states of
opposite chirality for each triangle; see Fig. 1(b). As reviewed
in Appendix A, plain first-order perturbation theory of the
Sz-Sz interactions between two triangles yields Eq. (1), where
the exchange constant J is proportional to the intertriangle
exchange constant of the kagome lattice and would thus
typically be assumed to be antiferromagnetic (J > 0). Note
that we have chosen a convenient normalization of J . A similar
derivation starting from a Fermi gas with two atoms per trimer
also leads to the Hamiltonian (1).38

Due to the two possible chiralities on each triangle, the
pseudospin operators ESi should be considered as quantum

FIG. 1. (Color online) (a) Triangular lattice with assignment
of bonds to the three different directions and underlying trimer-
ized kagome lattice. (b) The two chirality states of a triangle.
(c) Assignment of the vectors Eei to the bonds of the triangular lattice
for the alternative representation (3) of the Hamiltonian.

spin-1/2 operators. The derivations26,38 also suggest a positive
J > 0 to be more natural. In this paper, we will relax these
constraints and, for reasons that will become clear later,
consider also classical spins, i.e., unit vectors ESi , and the case
J < 0.

Note that the Hamiltonian (1) is not symmetric under
reflections of the lattice. Our conventions agree with those
of Ref. 26 where this Hamiltonian appeared first, while some
more recent works38–40,42 use a reflected convention for the
chirality. Note, furthermore, that our conventions for J differ
by a factor 4 from previous studies of the model (1).39,40
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It may also be useful to represent the Hamiltonian (1) in a
more compact form,43

H = 4 J
X
hi,ji

(Eei · ESi) (Eej · ESj ) , (3)

where the vectors Eei are indicated in Fig. 1(c): for each bond,
one has to choose Eei and Eej as in the corresponding bond of the
bold triangle. For example, for each horizontal bond hi,j i, one

needs to choose Eei = ( 1
0 ) for the left site i and Eej = 1

2 ( −1√
3 ) for

the right site j .
Models that are very similar to (1) have recently been

studied in the context of spin-orbital models (see, e.g.,
Refs. 29–37).

B. Symmetries

The Hamiltonian (1) has the following symmetries on an
infinite lattice:

(i) Translations Tx , Ty along the two fundamental directions
of the lattice.

(ii) Simultaneous rotation R2π/3 of the lattice and all spins
around the z axis by angles of 2π/3 (the latter rotation amounts
to a cyclic exchange of T A

i , T B
i , and T C

i ).
(iii) A rotation by π around the z axis in spin space: P :

Sx
i 7→ −Sx

i , S
y

i 7→ −S
y

i while keeping the lattice fixed.
(iv) A spatial reflection combined with rotation of all spins

around a suitable axis in the x-y plane by an angle π . One
particular choice is I : Sx

i 7→ Sx
i , S

y

i 7→ −S
y

i , Sz
i 7→ −Sz

i ,
combined with a reflection of the lattice along the dashed line
in Fig. 1(a).

(v) For spin 1/2, there is another symmetry implemented
by

Q =
Y

i

¡
2 Sz

i

¢
. (4)

Conservation of Q means that the number of spins pointing up
(or down) along the z axis is a good quantum number modulo
2. This conservation law is most easily verified by observing
that the interaction terms in (1) always invert a pair of spins in
an eigenbasis of Sz.

The choice of factors in (4) ensures that Q2 = 1. Further-
more, one has R3

2π/3 = P 2 = I 2 = 1. R2π/3 and P together
generate the Abelian group Z6

∼= Z3 × Z2, as described, for
instance, in Ref. 39. The combination of R2π/3, P , and
I generates the dihedral group D6, which is non-Abelian
(I R2π/3 I = R−1

2π/3). Finally, R2π/3 and I generate the symmet-
ric group S3, which can be traced to the point-group symmetry
of the underlying kagome lattice. The operators R2π/3, P , and
I leave the Hamiltonian (1) invariant irrespective of the value
of the spin quantum number. Thus, the group D6 is a symmetry
also of the classical variant of the model.

The symmetries P and Q are not present in the underlying
kagome lattice, hence they should be specific to the lowest-
order approximation.26,38 Indeed, at least in the derivation
from the Heisenberg model, one observes that already the
next correction42 breaks the symmetries P and Q.

Now let us consider the consequences of the combination
of I and Q for the spin-1/2 model on a finite lattice with N

sites. Then the relation I Sz
j I = −Sz

j leads to

I Q I = (−1)N Q . (5)

Since the eigenvalues of Q are q = ±1, this implies that I is
an isomorphism between the subspace with q = −1 and the
subspace with q = 1 for odd N and spin 1/2.

III. QUANTUM SYSTEM: EXACT DIAGONALIZATION
FOR SPIN 1/2

In this section, we will present numerical results for the
Hamiltonian (1) with spin 1/2. We impose periodic boundary
conditions and use the translational symmetries Tx ,Ty in order
to classify the states by a momentum quantum number Ek. We
only consider lattices that do not frustrate a potential three-
sublattice order, i.e., only values of N that are multiples of 3.
For the system sizes N considered already in Refs. 39 and 40
we will use the same lattices. In particular, the N = 12, 21,
and 24 lattices are shown in Fig. 9 of Ref. 40. Furthermore,
we will consider the N = 27 lattice, which can be found, e.g.,
in Fig. 1 of Ref. 44.

Let us briefly discuss the consequences of the other
symmetries mentioned above. We did not make explicit use
of P , although it is present for any lattice. However, the
symmetry Q [which is also present for any lattice, see (4)] is
easily implemented if we work in an Sz eigenbasis. Concerning
the rotation R2π/3, it is not possible to find lattices for all N

such that it is a symmetry. If R2π/3 is a symmetry, we use
it to select one representative Ek for all equivalent momenta.
Finally, the presence of the symmetry I is more delicate. We
have performed computer checks and found that most of the
lattices under consideration have a suitable spatial reflection
symmetry, ensuring that I is a symmetry. The only exception is
the N = 21 lattice, where there is no such reflection symmetry.
Nevertheless, we find the same spectra in the subspaces with
q = −1 and 1 also for N = 21. Therefore, for N odd we can
choose representatives for all symmetry sectors in the subspace
with q = 1.

For N 6 21, the translational symmetries and Q lead to
matrices with dimension up to 49 940 and we can obtain all
eigenvalues. Dimensions increase up to 2 485 592 for N = 27.
In this case, we have used the Lanczos method to compute the
n lowest eigenvalues in each sector. Mainly for reasons of CPU
time, we restrict to n ≈ 70 (150) for N = 27 (24) and J > 0.

A. Low-lying spectra

Let us first look at the spectra. In order to take degeneracies
into account, in Fig. 2 we show the integrated density of states,
i.e., the number of states with energy less than or equal to 1E

above the ground state.
Panel (a) of Fig. 2 shows results for J < 0. These results

extend previously presented results40 for N = 12, 18, and 21
to higher energies and larger N . One observes that there are at
most eight states for energies 1E . 3 |J | with a substantial
density of states setting in at higher energies. This suggests a
thermodynamic gap ≈ 3|J |.
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FIG. 2. (Color online) Integrated density of states, i.e., number of
states with energy less than or equal to 1E above the ground state,
for (a) J < 0 and (b) J > 0.

Figure 2(b) shows the density of states for J > 0, extending
previously published results for N = 18, 21, and 24.39,40 In
this case, we observe a large density of states at substantially
lower energies than for J < 0. This large density of states is
reminiscent of the large density of nonmagnetic excitations
observed in the spin-1/2 Heisenberg antiferromagnet on the
kagome lattice, both at zero magnetic field10,11 and on the
one-third plateau.7 In particular, the N = 27 data presented
in Fig. 2(b) show a large density of states for 1E & 0.02J .
On the other hand, one observes at most eight states with
1E . 0.012J in Fig. 2(b) for a given system size N . From
these observations, we infer that a gap is at most on the order
of 0.02J if present at all.

Since an ordered ground state breaks the symmetry group
D6, such a ground state should be sixfold-degenerate. Indeed,
classical and semiclassical considerations predict a sixfold
degeneracy in an ordered state (see Sec. IV below). However,
there is no clear separation of six low-lying states from the
remainder of the spectrum for J < 0 [see Fig. 2(a)], and even
less so for J > 0 [Fig. 2(b)]. The considered lattice sizes may
be too small to observe the expected low-energy structure of the
spectrum. However, correlation functions exhibit pronounced
120◦ correlations already on these small lattices.39,40

B. Specific heat

The specific heat C can be expressed in terms of the
eigenvalues of the Hamiltonian. Since we have all eigenvalues
for N 6 21, it is straightforward to obtain the specific heat for
all temperatures and both signs of J . Figure 3 shows the results
of the specific heat per site C/N . The case J < 0 is shown
in panel (a). There is a finite-size maximum slightly above
T ≈ |J |. The large finite-size effects that are still observed
here are consistent with a phase transition around T ≈ |J |,

0
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FIG. 3. (Color online) Specific heat per site for the S = 1/2
model with (a) J < 0 and (b) J > 0.

in which case C should become nonanalytic for N → ∞.
Because of a possible phase transition, we have tried to
obtain a low-temperature approximation to the specific heat
for N > 21, J < 0 by keeping low-energy states. However,
for N = 24 even 12 462 low-lying states going up to energies
as high as 1E . 12.6|J | turned out to yield a specific heat that
has sufficiently small truncation errors only for temperatures
T . 0.9|J |. This result for N = 24 [also included in Fig. 3(a)]
clearly does not include the maximum of the specific heat C.

Now we turn to the case J > 0, which is shown in panel
(b) of Fig. 3. In this case, finite-size convergence at high tem-
peratures is much faster than for J < 0. This fast convergence
indicates that there is no phase transition associated with the
high-temperature maximum (the position of this maximum is
at T ≈ 2.1225J with a value C ≈ 0.105 717 N for N = 21).
The reduced finite-size effects and the smaller value of C at the
maximum reflect that there is a substantially smaller energy
scale for J > 0 as compared to J < 0.

For J > 0, a second peak emerges in the specific heat at low
temperatures, see Fig. 3(b). In order to investigate this in more
detail, we use again the low-temperature approximation for the
specific heat obtained from the low-lying part of the spectrum.
For N = 24 and 27, we have used a total of 7029 and 3906
eigenvalues, respectively [the N = 24 data are included in
Fig. 3(b), but they are difficult to see there since they are valid
only at very low temperatures]. Figure 4 shows the specific
heat divided by temperature [panel (a)] and the entropy per
site [panel (b)] in the low-temperature region for J > 0 and
system sizes N = 18, 21, 24, and 27. Our result for the specific
heat with N = 21 obtained from the full spectrum agrees with a
previous result for N = 21 based on approximately 2000 low-
lying states.40 The finite T = 0 limit of the entropy for N = 21
and 27 in Fig. 4(b) corresponds to the twofold degeneracy of
the ground state for these system sizes, see Fig. 2(b). Although
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FIG. 4. (Color online) Low-temperature behavior of the specific
heat divided by temperature C/T (a) and entropy S (b) per site N for
J > 0.

the maximum value of C/T increases with increasing N , there
are nonsystematic finite-size corrections to the position of this
maximum. Thus, we can only conclude that if there is a finite-
temperature ordering transition for J > 0, it should have a
very low transition temperature Tc . J/100.

Figure 4(b) shows that there is a remarkably large en-
tropy S/N ≈ 0.2, . . . ,0.3 associated with the finite-size low-
temperature peak of the specific heat. This is comparable to the
entropy associated with the degeneracy of the classical ground
states; see Sec. IV C below. Therefore, this observation lends
further support to the interpretation40 of the low-energy states
for S = 1/2 in terms of the classical ground states for J > 0.

IV. CLASSICAL SYSTEM: LOWEST-ENERGY
CONFIGURATIONS AND SPIN-WAVE ANALYSIS

We will now proceed with a discussion of the low-energy,
low-temperature properties of the classical variant of the model
(1), i.e., we will assume that the ESi are unit vectors. We will
parametrize the spin at site i by angles αi and γi :

ESi =
⎛
⎝ cos γi cos αi

cos γi sin αi

sin γi

⎞
⎠ . (6)

Because the z components do not contribute to the energy,
configurations with extremal energy should have spins lying
in the x-y plane (γi = 0). The energy E({αi}) for a given set
of angles {αi}, γi = 0 is obtained from (1) by identifying

T A
i = 2 cos (αi) ,

T B
i = 2 cos (αi + Ä) , (7)

T C
i = 2 cos (αi − Ä)

with Ä = 2 π/3.

We will further be interested in small fluctuations {αi + ²i},
{γi = ²̃i} around a ground-state configuration {αi,γi = 0}. The
energy can then be expanded as

E ({αi + ²i}) = E ({αi}) +
X
i,j

²i Mi,j ²j

+Ezz + O({²i,²̃j }3) . (8)

Here, Ezz is a diagonal quadratic function of the out-of-plane
fluctuations ²̃i that, to quadratic order, decouples from the
relevant degrees of freedom ²i . The eigenvalues fi of the
symmetric matrix Mi,j correspond to the spin-wave modes.
The fact that {αi} describes a ground state implies fi > 0. We
will call a mode with fi = 0 a “pseudo-Goldstone mode.”

A. Ground states with a small unit cell for J < 0

Let us first consider the case J < 0. Then a ground
state is given by a certain three-sublattice configuration
where the angles αi between different sublattices differ by
multiples of 2π/3.39,40 Figure 5 shows such a low-temperature
configuration as a snapshot that was taken during a Monte-
Carlo simulation (details to be given in Sec. V below). The
energy of such states, E<

class = 6JN , is invariant under global
rotations of the spin configuration in the x-y plane, i.e., there
is a one-parameter family of ground states (note that this
invariance under a continuous group is not a symmetry of the
Hamiltonian). We parametrize this global rotational degree of
freedom by an angle α of the spins on one sublattice. Using a
three-site unit cell, we can exploit the invariance of this ground
state under translations to represent the matrix (8) in Fourier
space by the following 3 × 3 matrix:

M = J

⎛
⎝ 6 −2A −2B

−2A? 6 −2 C
−2B? −2 C? 6,

⎞
⎠ (9)

where

A = ei k1 sin2 (α) + ei k2 sin2 (α + Ä)

+ei k3 sin2 (α − Ä) ,

B = e−i k1 sin2 (α − Ä) + e−i k2 sin2 (α)

+e−i k3 sin2 (α + Ä) , (10)

C = ei k1 sin2 (α + Ä) + ei k2 sin2 (α − Ä)

+ei k3 sin2 (α) ,

and

k1 = kx , k2 = −kx

2
+

√
3

2
ky , k3 = −kx

2
−

√
3

2
ky .

(11)

Let us analyze now the effect of the fluctuations by
computing the free energy associated with (8). To this end,
we can compute the partition function

Zα = e−βH0Zzz

Z Y
Ek

d²(Ek)e−β
P

i,Ek f α
i (Ek) ²(Ek)2

, (12)
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FIG. 5. (Color online) Snapshot of a configuration during a
simulation for J < 0 at T = 10−3|J | on a 12 × 12 lattice. Periodic
boundary conditions are imposed at the edges.

where f α
i (Ek) are the eigenvalues of (9) and Zzz is the Gaussian

integral over the N quadratic variables corresponding to the
out-of-plane fluctuations.

Performing the Gaussian integral, we get

Zα ∼ e−βH0Zzz

Y
i,Ek

√
πq

β f α
i (Ek)

, (13)

which yields the free energy as

F = H0 + Fzz + N ln β

2β
+ 1

2 β

X
i,Ek

ln
£
f α

i (Ek)
¤ + · · · , (14)

where Fzz = − ln Zzz/β.
The low-temperature behavior is therefore determined by

the following contribution of the fluctuations to the free energy:

F<(α) =
X
i,Ek

ln f α
i (Ek) =

X
Ek

ln det M , (15)

where M is the matrix (9). The result of the integral (15) is
shown in Fig. 6. F<(α) is a 2 π/3-periodic function since the
spin angles on the different sublattices differ by 2π/3. Hence,
it is sufficient to consider α ∈ [0,2π/3]. One observes that
F< and thus the low-temperature limit (14) of the free energy
has minima at α = (2n + 1)π/6, n = 0,1, . . . ,5. This implies
that the 120◦ classical ground-state configuration locks in at
these angles for T → 0. This lock-in can indeed be verified
in histograms of Monte-Carlo simulations; see Ref. 43 for a
planar variant of this model and also Fig. 11 below. Lock-
in of the classical ground-state configuration at α = (2n +
1)π/6 follows also from the semiclassical approach.40 In this
approach, the ground-state energy is given by

E<
semclass(α) = E<

class + 6JS + 1

2 N

X
Ek

i = 1,2,3

ω<
i (Ek,α) , (16)

where ω<
i (Ek,α) are the three sheets of spin-wave (SW) frequen-

cies obtained from the linear Holstein-Primakoff approxima-

0 π/6 π/3 π/2 2 π/3
α

4.58

4.59

4.6

4.61

4.62

F
< /N

FIG. 6. (Color online) Low-temperature contribution to the free
energy (15) for J < 0 of the fluctuations above the 120◦ ground state
as a function of the spin angle α.

tion and where the sum over Ek runs over the magnetic Brillouin
zone. The SW frequencies are connected with the classical
eigenmodes f <

class,i by f <
class,i(α) = [ω<

i (Ek,α)]2/(24S2|J |). One
finds that E<

semclass(α) has minima at α = (2n + 1)π/6. The
expressions for f <

class,i(α) are too cumbersome to be given
explicitly. Instead, Fig. 7 shows a plot of the three eigenfre-
quencies fi at α = (2n + 1)π/6. The lowest sheet has a unique
quadratic minimum at Ek = 0 with f <

class,1(Ek) ≈ 9|J |Ek2/8 for
Ek ≈ 0.

B. Ground states with a small unit cell for J > 0

Now we turn to the case J > 0. There is a first ground
state39,40 described by αi = α with an arbitrary angle α. This
“ferromagnetic” state has energy Eferro

class = −3JN . However,
for J > 0 there is another ground state with a small unit
cell,39,40 again with three sublattices where the angles αi

between different sublattices differ by multiples of 2π/3. Also

2
1
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0

2
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−1

4

0

6

−1

1

8

2
−2

fi

|J|

kx

π/3

ky

2 π/(3
√

3)

FIG. 7. (Color online) The three eigenmodes fi for the 120◦

ground state with J < 0, assuming a lock-in of the ground state
at α = (2n + 1)π/6. Note that the shaded surfaces extend only over
the first Brillouin zone.
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FIG. 8. (Color online) Snapshot of a low-temperature configura-
tion during a simulation for J > 0 at T = 10−3J on a 12 × 12 lattice.
Periodic boundary conditions are imposed at the edges. Different
colors are used for each of the three sublattices.

the energy E>
class = −3JN is invariant under global rotations.

The latter state is illustrated by the global structure of Fig. 8,
which shows a snapshot of a low-temperature configuration
taken during a Monte-Carlo simulation (details again to be
given in Sec. V below). Note that the sense of orientation
around a triangle, i.e., the chirality of the spins in Fig. 8, is
exactly the opposite of Fig. 5.

The ferromagnetic state is the simplest case for the
computation of fluctuations since Mi,j is diagonalized by a
Fourier transformation. One finds the modes

f ferro
class (kx,ky)

4J
= 3

4
+ sin (α) sin (α − Ä) cos (k1)

+ sin (α + Ä) sin (α − Ä) cos (k2)

+ sin (α) sin (α + Ä) cos (k3) , (17)

with the ki defined in Eq. (11). As for the case J < 0, the
classical frequencies f ferro

class are proportional to the squares of
the SW frequencies ωferro obtained from a linear Holstein-
Primakoff approximation:40 f ferro

class = (ωferro)2/(12S2J ).
By computing the contribution of the modes f ferro

class to the
free energy, we find minima for α = nπ/3, n = 0,1,2, . . .,
so that the spins in the ferromagnetic structure lock in to
the lattice directions of the triangular lattice. For the lock-in
values of α, f ferro

class depends only on one of the ki and has
a line of zeros in the perpendicular direction in momentum
space.

The three-sublattice state leads to the following 3 × 3
matrix in Fourier space:

M = J

⎛
⎜⎝

3 2 Ã 2 B̃
2 Ã? 3 2 C̃
2 B̃? 2 C̃? 3

⎞
⎟⎠ , (18)

where

Ã = eik2 sin(α + Ä) sin(α − Ä)

+ [eik1 sin(α + Ä) + eik3 sin(α − Ä)] sin(α),

B̃ = e−ik1 sin(α + Ä) sin(α − Ä)

+ [e−ik3 sin(α + Ä) + e−ik2 sin(α − Ä)] sin(α),

C̃ = eik3 sin(α + Ä) sin(α − Ä)

+ [eik2 sin(α + Ä) + eik1 sin(α − Ä)] sin(α). (19)

For α = nπ/3, diagonalization of (18) leads to three com-
pletely flat branches,

f >
class,1(Ek) = 0, f >

class,2(Ek) = f >
class,3(Ek) = 9

2J . (20)

In particular, the lowest branch f >
class,1 = 0 corresponds to

a branch of soft modes. In real space, these soft modes
correspond to the rigid rotation of one single triangle.40 Note
that there is no such flat branch of soft modes for a value of α

that is not an integer multiple of π/3.
When computing the contribution of fluctuations around

these configurations (α = nπ/3) to the free energy, one finds
that one-third of the modes are quartic instead of quadratic.
This yields a free energy of the form

F = H0 + Fzz + Fxy, (21)

where, again, Fzz ∼ N ln β/(2β) corresponds to the trivial
contribution of out-of-plane fluctuations and (compare also
Ref. 6)

Fxy = N ln β

3β
+ N ln β

12β
+ · · · . (22)

At low temperatures, this term dominates the free energy. The
flat branch of soft modes reduces the coefficient of ln β/β

from N/2 as in the case of only quadratic modes [compare
(14)] to N/3 + N/12 = 5N/12. This implies two things: first,
the angles of the 120◦ state should lock in at α = nπ/3
for low temperatures. Secondly, a thermal order-by-disorder
mechanism should favor the 120◦ state over the ferromagnetic
state for T → 0.

As in the case of the ferromagnetic state, one finds that the
relation f >

class,i = (ω>
i )2/(12S2J ), where ω>

i , i = 1,2,3, are
the SW frequencies obtained from a linear Holstein-Primakoff
approximation,39,40 holds for arbitrary values of α. Using the
results for ωferro(Ek,α) and ω>

i (Ek,α) to calculate semiclassical
ground-state energies Eferro

semclass(α) and E>
semclass(α) in the

same manner as in (16), one finds that both are minimal
at α = nπ/3 and that E>

semclass(nπ/3) < Eferro
semclass(nπ/3).

Thus the semiclassical approach is fully consistent with the
classical findings.

C. Enumeration of ground states for small N

Direct computer inspection of all states with angles αi =
niπ/3, ni ∈ {0,1,2,3,4,5} for N = 12 shows39,40 that there
are further ground states for J > 0. On the one hand, CPU
time for a similar enumeration of all 6N such configurations
becomes prohibitively long for N & 15. On the other hand,
all known ground states turn out to have mutual angles that
are multiples of 2π/3. Furthermore, we eliminate a global
rotational degree of freedom by fixing one arbitrary angle
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TABLE I. Number DN of classical ground states for J > 0 on a
lattice of size N with one angle fixed. The ng in the decomposition
DN = P

g ng denote the number of ground states with g pseudo-
Goldstone modes.

N DN = P
g ng

lnDN

N

12 40 = 61 + 312 + 23 + 14 0.3074
15 102 = 601 + 202 + 203 + 25 0.3083
18 286 = 921 + 1122 + 513 + 304 + 16 0.3142
21 688 = 2601 + 2102 + 2033 + 145 + 17 0.3111
24 1838 = 3841 + 9582 + 1993 + 2804 + 166 + 18 0.3132
27 5054 = 10681 + 9722 + 22573 + 3514 + 3785 0.3158

+ 96 + 187 + 19

α0 = π . Then there remain just 3N−1 configurations with αi ∈
{π/3,π, − π/3} to be enumerated. Direct enumeration of these
3N−1 configurations can be carried out with reasonable CPU
time for N 6 27, but becomes quickly impossible for larger N .
We have therefore performed such enumerations for N 6 27,
using the same lattices as in Sec. III.

The number of ground states DN determined in this manner
is given in Table I for J > 0. Note that the ordered states that
we have described in Sec. IV B are just two of the DN states,
but there are many other ground states that can be interpreted
as defects in and domain walls between the ordered states.39,40

Indeed, also closer inspection of the snapshot shown in Fig. 8
reveals the presence of defects in the three-sublattice structure.
The 240 = 6D12 states described previously39,40 for N = 12
are recovered by a global rotation of the angles such that
α0 takes on the six values α0 = nπ/3. The last column of
Table I lists ln(DN )/N . The fact that these numbers stay almost
constant indicates a finite ground-state entropy per site slightly
above 0.3 in the thermodynamic limit.

It is straightforward to derive the N × N matrix Mi,j de-
fined in (8) for any ground state and diagonalize it. Among the
eigenmodes fi , one can then identify the g pseudo-Goldstone
modes fi = 0 and in turn count the number ng of ground
states with g pseudo-Goldstone modes. These numbers are
also given in Table I in the form DN = P

g ng . One observes
that all ground states have at least one pseudo-Goldstone
mode. There are at most N/3 pseudo-Goldstone modes, and
there is only one ground state with this maximal number of
pseudo-Goldstone modes corresponding to the three-sublattice
state described in Sec. IV B (apart from N = 15; however, this
lattice is special in that it has a period-3 translational symmetry
T 3

y = 1).
There are N/3 ground states that differ from the perfect

three-sublattice state by a rigid rotation of the spins on
certain triangles by an angle 2π/3, and another N/3 ground
states where the spins on a different set of triangles are
rotated by −2π/3. These ground states have two pseudo-
Goldstone modes less than the three-sublattice state. The
data in Table I show that these 2N/3 configurations with
N/3 − 2 pseudo-Goldstone modes account for all states, with
the second largest number of pseudo-Goldstone modes for
N > 21. This indicates that ground states deviating from
the homogeneous three-sublattice state are obtained at the
expense of pseudo-Goldstone modes. At finite temperature,
such “inhomogeneous” ground states are then penalized by

an entropic cost because of the reduced number of pseudo-
Goldstone modes. This indicates that ground states with bigger
deviations from the three-sublattice ground state have a higher
free energy for small T since they have fewer soft modes.
Thus, the global minimum of the free energy is the perfectly
ordered state with many close-by configurations that deviate
only locally from the perfect order. These arguments predict a
thermal order-by-disorder selection of the 120◦ state among the
macroscopic number of ground states for T → 0 and J > 0.

The above enumeration procedure can also be performed
for J < 0. In fact, in this case we have carried it out twice, first
with αi ∈ {π/3,π, − π/3} and α0 = π , and then again with all
αi shifted by π/6 in order to match the lock-in predicted in
Sec. IV A. In sharp contrast to the large degeneracy found for
J > 0, we confirm that the ground state is unique (up to global
rotations of all angles) for J < 0 and thus identical to the three-
sublattice state described in Sec. IV A. Diagonalization of the
corresponding N × N matrix M yields one pseudo-Goldstone
mode, in complete agreement with the fi shown in Fig. 7,
which have just one zero, namely f <

class,1(Ek = 0) = 0.

V. CLASSICAL SYSTEM: MONTE CARLO ANALYSIS

Section IV already contained some discussion of the low-
temperature properties in the classical limit. The results of
Sec. III lead us to suspect a finite-temperature transition in the
quantum system at least for J < 0. Indeed, a finite-temperature
phase transition is allowed45 since the model has only discrete
and no continuous symmetries (compare Sec. II). Since such a
finite-temperature phase transition should be a classical phase
transition, we may hope to gain insight into its universality
class by studying the classical counterpart of the model. This
motivates us to present results of a Monte-Carlo simulation
of the classical model, treating the spins ESi as classical O(3)
vectors. Simulations were performed on square lattices with
diagonal bonds (topologically equivalent to the triangular
lattice) and periodic boundary conditions.

First, we have used a standard single-spin flip Metropolis
algorithm (see, e.g., Ref. 46). Some results obtained from such
simulations have already been published in Ref. 43, but the
results to be presented here have been obtained from new runs
using the “Mersenne Twister” random number generator.47 In
order to determine error bars, we have used between 100 and
400 independent simulations for J < 0.

For J > 0, the standard single-spin flip algorithm turns
out to be no longer ergodic for temperatures T . 0.1J . Such
problems are in fact expected in view of the large ground-state
degeneracy, which we discussed in Sec. IV C. In this region,
we have therefore used the parallel tempering Monte Carlo
method (also known as exchange Monte Carlo—see Refs. 48–
51 and references therein). In this framework, n simulations
are performed in parallel, each at a different temperature using
the standard Metropolis algorithm. Periodically, the exchange
between the configurations of two simulations consecutive in
temperature is proposed and accepted depending on the energy
balance of such a move. A careful choice of the temperature
points allows each configuration to shuffle through the entire
temperature range during the simulation, greatly reducing
the probability of getting stuck in a local minimum of the
free energy. In principle, this allows an efficient exploration of
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the phase space, while not having to wait for rethermalization
of the systems after each configuration switch. Strategies to
optimize the choice of the temperature grid have been proposed
(see, e.g., Ref. 51), but we simply opted for constructing
a fine-grained temperature set using the rule of thumb that
the probability for a configuration switch to be accepted
should always be at least around 70%–80%. The resulting
grid consists of at least 96 points for T/J ∈ [0.01,0.7], where
of course most points lie in the low-temperature region.
After an initial thermalization, observables are sampled until
convergence of their error bars is observed (the typical duration
of a simulation being at least 3 × 107 Monte-Carlo sweeps per
system). We would like to insist that even if parallel tempering
is adequate to the task of studying the low-temperature
properties of such a highly degenerate frustrated magnet, it
is still by no means easy to obtain physically relevant data at
such a low temperature for continuous spherical spins, as we
shall see later.

A. Specific heat

Figure 9 shows results for the specific heat of the classical
model for J < 0 [panel (a)] and J > 0 [panel (b)]. Statistical
errors should be at most on the order of the width of the lines.
Although all lattice sizes are bigger than those used previously
for the quantum model, there are remarkable similarities of
the specific heat of the classical model shown in Fig. 9
with the specific heat of the quantum model; see Fig. 3.
For J < 0, a singularity seems to develop in the specific
heat for temperatures around T ≈ 1.5|J |, signaling a phase
transition. For J > 0, there is also a broad maximum at “high”
temperatures, T ≈ 0.3J . The finite-size effects for the latter
maximum are small, indicating that this does not correspond
to a phase transition. In this case, the interesting features of the
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FIG. 9. (Color online) Specific heat per site for the classical model
with (a) J < 0 and (b) J > 0. Error bars do not exceed the width of
the lines.
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FIG. 10. (Color online) Enlarged views of the specific heat per
site for the classical model: (a) in the vicinity of the maximum for
J < 0, (b) in the low-temperature region for J > 0. Statistical errors
do not exceed the width of the lines or the size of the symbols,
respectively.

specific heat lie in the low-temperature region, as displayed in
Fig. 10(b). As the system size increases, one can see that a
small peak builds up in the specific heat for T ≈ 0.02J . This
seems to indicate that a phase transition might occur around
that temperature, two orders of magnitudes smaller than for
J < 0. We are unfortunately not on a par with the J < 0 data,
as the CPU requirements are too steep to secure relevant data
for systems larger than 27 × 27 sites even though the specific
heat is a comparably robust quantity, and it is clear that other
observables are needed before a conclusion can be made with
regard to the existence of this phase transition.

An important difference between the S = 1/2 and the
classical model arises at low temperatures: the specific heat
of the quantum system has to vanish upon approaching the
zero temperature limT →0 C/N = 0, while due to the remaining
continuous degrees of freedom, the specific heat of the classical
system approaches a finite value for T → 0. For J < 0, the
equipartition theorem predicts an N/2 contribution to the
specific heat for each transverse degree of freedom, which
yields limT →0 C/N = 1, in excellent agreement with the
results depicted in panel (a) of Fig. 9. For J > 0, one must
take into account the fact that the flat soft-mode branch
of the three-sublattice state is expected to contribute only
N/12 to the specific heat. Thus for J > 0 one should expect
limT →0 C/N = 11/12 = 0.916 666 . . . . As can be seen in
Fig. 10(b), we observe a specific heat lower than 1 in the
low-temperature region along with a downward trend as T

goes to 0 for all the system sizes studied. However, according
to the data that we have at our disposal, it seems that one would
have to go to very low temperatures T < 10−3J in order to
verify the prediction for the zero-temperature limit.

224410-9



HONECKER, CABRA, EVERTS, PUJOL, AND STAUFFER PHYSICAL REVIEW B 84, 224410 (2011)

Returning to the finite-temperature transition for J < 0,
Fig. 10(a) shows an enlarged view of the relevant temperature
range, including data for up to N = 90 × 90 spins. At these
bigger system sizes, the position of the maximum continues
to shift to lower temperatures and the maximum sharpens.
However, the N = 45 × 45 and 90 × 90 curves in Fig. 10(a)
demonstrate that the maximum value of the specific heat starts
to decrease as one goes to system sizes beyond N = 45 ×
45. This implies that the exponent α that characterizes the
divergence of the specific heat at the critical temperature is
very small or may even be negative.

B. Sublattice order parameter, Binder cumulant, and transition
temperature for J < 0

According to Sec. IV A, we expect that the phase transition
observed for J < 0 is a transition into a three-sublattice
ordered state. This ordering is indeed exhibited at least at a
qualitative level by snapshots of Monte-Carlo simulations at
low temperatures (compare Fig. 5). In addition, one observes
in Fig. 5 that the spins are lying essentially in the x-y plane
for low temperatures.

Furthermore, we expect a lock-in of the spins to one
of six symmetrically distributed directions in the plane at
low temperatures (compare Fig. 6). The latter prediction is
indeed verified by the histogram of the angles of the in-plane
component of the spins φi at low temperatures shown in
Fig. 11. Note that the histogram is rather flat for the smaller
lattices (in particular, the N = 6 × 6 lattice) and sharpens
noticeably as the lattice size increases to N = 36 × 36 (the
largest lattice that we have considered in this context). The fact
that the lock-in occurs only on large lattices can be attributed
to the replacement of the sum over Ek in (15) by an integral
being a good approximation only for large lattices.

To test for the expected three-sublattice order, we introduce
the sublattice order parameter

EMs = 3

N

X
i∈L

ESi , (23)
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FIG. 11. (Color online) Histogram of in-plane angles φi for
J < 0. Averaging has been performed over 1000 independent
configurations at T = 10−3|J |.
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FIG. 12. (Color online) Square of the sublattice order parameter
m2

s = h EM2
s i for the classical model with J < 0. Error bars do not

exceed the width of the lines.

where the sum runs over one of the three sublattices L of the
triangular lattice. Figure 12 shows the behavior of the square
of this sublattice order parameter for J < 0. One observes
that the sublattice order parameter indeed increases for T <

2|J | and goes indeed to m2
s = 1 for T → 0, as expected for a

three-sublattice ordered state. Inclusion of larger lattices (up to
N = 90 × 90) allows one to restrict the ordered phase to T .
1.7|J |. However, more accurate estimates for the transition
temperature can be obtained in a different manner.

A useful quantity to determine the transition into an ordered
state accurately is the “Binder” cumulant46,52,53 associated
with the order parameter (23) via

Us = 1 − 3
 EM4

s

®
5
 EM2

s

®2 . (24)

We have chosen the prefactor in (24) such that Us = 0 for
a Gaussian distribution around zero of the order parameter
P ( EMs) = ( c

π
)3/2 exp(−c EM2

s ). Such a distribution is expected
at high temperatures, and we expect Us → 0 for T À |J |.
Conversely, in a perfectly ordered state one will have h EM4

s i =
h EM2

s i2 such that Us = 2/5 in this case. Hence, for an ordered
state, we expect Us ≈ 0.4 for T < Tc.

Figure 13 shows results from classical Monte-Carlo simu-
lations for the Binder cumulant Us of the system with J < 0.
First, the broad temperature range shown in Fig. 13(a) confirms
that indeed Us ≈ 0.4 in the ordered low-temperature phase
and Us ≈ 0 for high temperatures. The transition temperature
can now be accurately extracted from the crossings of the
Binder cumulants at different sizes N .46,52,53 For this purpose,
Fig. 13(b) shows an enlarged view of the relevant temperature
range, including bigger system sizes N . Although the crossings
between any pair of system sizes N1 and N2 fall into
a narrow temperature window, there still remains a small
residual dependence on the sizes N1 and N2 considered. In
order to perform an extrapolation N → ∞, we have analyzed
the crossings between neighboring system sizes N2 > N1 >
9 × 9. This leads to the estimate

T <
c

|J | = 1.566 ± 0.005 (25)

for the thermodynamic limit N → ∞.
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FIG. 13. (Color online) Binder cumulant Us for the classical
model with J < 0: (a) global behavior, (b) in the vicinity of the
critical temperature and for bigger lattices. Error bars in panel (a) do
not exceed the width of the lines.

C. Nature of the phase transition for J < 0

Having determined the transition temperature for J < 0,
one would like to clarify the universality class of the phase
transition.

On the one hand, there is no evidence for any latent
heat in the specific heat at T <

c , see Fig. 10(a), i.e., the
ordering transition appears to be continuous for J < 0. On
the other hand, a negative dip in the Binder cumulant for
T > Tc, as observed in Fig. 13(a), is sometimes taken as
evidence for a first-order transition (see, e.g., Ref. 54). In
order to distinguish better between the two scenarios, we
use histograms of the energy E of the microstates real-
ized in the Monte-Carlo procedure.55–57 We have collected
such histograms for several system sizes and temperatures.
Figure 14 shows two representative cases on the N = 90 × 90
lattice, namely T = 1.7025|J |, which corresponds to the
maximum of the specific heat for the 90 × 90 lattice [compare
Fig. 10(a)], and T = 1.566|J |, the estimated critical tempera-
ture of the infinite system; see Eq. (25). We always find bell-
shaped almost Gaussian distributions, which are characteristic
for a continuous transition. We never observed any signatures
of a splitting of this single peak into two, as would be expected
for a first-order transition.55–57 Hence the transition appears
to be continuous, and we will now try to characterize its
universality class further in terms of critical exponents.

We start with the correlation length exponent ν, which
can be extracted from the finite-size behavior of the Binder
cumulant: close to Tc, the Binder cumulant should scale with
the linear size of the system L as46,52,53

dUs

dT
≈ aL1/ν(1 + bL−w). (26)
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FIG. 14. (Color online) Probability to find a state with energy
E/|J | on the N = 90 × 90 lattice for J < 0 at two selected
temperatures: T/|J | = 1.566 (left) and 1.7025 (right). Error bars
in the lower panel do not exceed the width of the lines.

Figure 13(b) shows that there is very little curvature in the
Binder cumulants Us as a function of temperature T close to
the estimated critical temperature (25). Therefore, dUs/dT can
be extracted without much sensitivity to the error of (25). The
result is shown by the symbols in the top panel of Fig. 15. Now
we can determine ν by fitting this to (26). Since inclusion of
the correction term renders the fit unstable, we use only the
leading term [i.e., we set b = 0 in (26)]. A fit (which is shown
by the line in the top panel of Fig. 15) then yields

1

ν
= 0.24 ± 0.02. (27)

We now turn to the order parameter exponent β, which can
be extracted from the finite-size behavior of the sublattice order
parameter ms. The sublattice order parameter should have a
scaling behavior (see, for example, Refs. 46 and 58)

m2
s =  EM2

s

® = L−2 β/ν M2

µ·
1 − T

Tc

¸
L1/ν

¶
. (28)

Specialization of (28) to T = Tc yields

 EM2
s

®¯̄
T =Tc

= L−2 β/ν M2 (0) . (29)

The middle panel of Fig. 15 shows the Monte-Carlo results for
m2

s at three temperatures that cover the estimate (25) for T <
c

and its error bars. The fits of these results to (29), which are
shown by the lines in the middle panel of Fig. 15, lead to

2 β

ν
= 0.257 ± 0.006 . (30)

Finally, we turn to the specific-heat exponent α. We proceed
in the same manner as for the order parameter exponent β and
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FIG. 15. (Color online) Scaling of different quantities with linear
size L for L × L lattices, J < 0, and close to the critical temperature
T <

c . The slope of the Binder cumulant yields the correlation length
exponent ν (top panel), the sublattice magnetization ms yields the
exponent β, and the specific heat C yields the exponent α. Lines
show the fits that have been used to estimate the exponents. Note that
the scale is double-logarithmic in all three panels.

make again a scaling ansatz for the specific heat:46,58

C|T =Tc
= Lα/νC(0). (31)

The lower panel of Fig. 15 shows the specific-heat results at the
estimate (25) for T <

c . One observes that this does not follow
a power law very well. Indeed, it is known that nonscaling
contributions to the specific heat can be important.58 However,
including a constant in the ansatz (31) does not lead to a stable
fit. We therefore fit only the data for L = 27, 36, 45, and 90
(lines in the lower panel of Fig. 15). This procedure leads to
the estimate

α

ν
= 0.016 ± 0.003. (32)

Note that the error bar includes just the error of the fit. In view
of the deviations from a simple power law, this is probably too
optimistic. Indeed, α could very well be (slightly) negative,
as is suggested by the fact that the maximal value of C in
Fig. 10(a) decreases when the system size increases from
N = 45 × 45 to 90 × 90.

Even if the error bars in (25), (27), and (32) are too
optimistic, it remains safe to conclude that we find a rather
large correlation length exponent ν & 3. It should be noted
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FIG. 16. (Color online) Average squared sublattice magnetization
for the classical model with J > 0. Error bars are of the order
of the lines’ width in this graph. Inset: average squared sublattice
magnetization in the low-temperature region.

that in combination with a specific-heat exponent α ≈ 0, we
then find that the hyperscaling relation46

dν = 2 − α (33)

(with the spatial dimension d = 2) is strongly violated. On
the other hand, we could use the relation (33) to estimate
α, in particular if we expect it to be negative (compare,
e.g., Ref. 59 for a similar situation). Insertion of (27) into
(33) yields a very negative exponent α/ν = −1.52 ± 0.04.
Again, this reflects the large exponent ν. In fact, a large
correlation length exponent ν ≈ 4 has been found in other
two-dimensional disordered systems.60,61 However, in those
cases the large exponent corresponds to approaching the
critical point via a fine-tuned direction in a two-dimensional
parameter space, and there is a second, substantially smaller
correlation length exponent.60,61 Thus, we are left with not
completely unreasonable, but definitely highly unusual values
of the critical exponents ν and α.

D. Critical temperature for J > 0

As mentioned earlier, for J > 0, the specific heat alone
is only mildly conclusive regarding the existence of a low-
temperature phase transition to a three-sublattice ordered state.
This statement must be supported by the analysis of other
observables. The sublattice magnetization (23) will tell us
whether significant order is developing in the low-temperature
region. Our results shown in Fig. 16 show that three-sublattice
order is indeed developing, although an appreciable order
develops only at temperatures that are so low that they become
increasingly difficult to access with increasing system size. To
take a closer look at the low-temperature ordered state, we
took some snapshots of the system during the simulation for
N = 12 × 12 spins. A typical configuration is reproduced in
Fig. 8. While the global structure corresponds indeed to a 120◦
three-sublattice ordered state, we also observe the presence of
defects. The presence of these defects is neither a surprise nor
in contradiction with the existence of the phase transition, as
they are in fact necessary ingredients of the order-by-disorder
mechanism. Note also that the spins in Fig. 8 lie essentially
in the x − y plane and—up to small fluctuations—are aligned
with the lattice.
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FIG. 17. (Color online) Binder cumulant for the classical model
with J > 0 in the low-temperature region. Error bars are of the order
of the lines’ width in this graph. Inset: Binder cumulant for 6 × 6,
9 × 9, and 12 × 12 spins zoomed around the crossing region.

As for J < 0, the Binder cumulant (24) allows us both
to further support our conclusions concerning the low-
temperature ordered state and to obtain an estimate of T >

c .
Figure 17 shows that all the curves for the different system
sizes cross in a region around T ≈ 0.015J . First, this is a strong
argument in favor of the existence of the ordering transition.
We used the smallest three system sizes (N = 6 × 6, 9 × 9,
and 12 × 12), for which we have the best statistics to obtain
an estimate for the transition temperature:

T >
c

J
= 0.0125 ± 0.0009. (34)

The error bars on the data are unfortunately too large to get
precise values for the critical exponents and thus prevent us
from investigating the nature and the universality class of the
transition. However, the fact that the low-temperature ordered
state breaks the same symmetries irrespective of the sign of J

suggests that the universality class for J > 0 is the same as for
J < 0.

VI. DISCUSSION AND CONCLUSIONS

Although the Hamiltonian (1) may seem unusual in the
context of frustrated magnetism, it is instructive in many re-
spects and illustrates the rich phenomenology often present in
this subject. Either seen as the strong trimerization limit of the
kagome lattice of spin 1/2 in a magnetic field, or as a possible
illustration of an orbital model,29–37 the underlying physics
associated with this Hamiltonian is extremely interesting for
both signs of the coupling constant J .

In the quantum case (for spin 1/2), we show, by studying
the low-energy spectra using the Lanczos method, that a ther-
modynamic gap of the order of 3|J | is present for J < 0, while
for J > 0 the gap, if present, would be at most of the order of
0.02J . The sixfold degeneracy of the would-be ordered ground
state, which is predicted by semiclassical considerations, is
not observed in our numerical results, probably due to the
small lattices considered. These results illustrate very well
how the deep quantum (S = 1/2) regime differs from the
large S spin-wave predictions. The specific-heat curves point
to a phase transition around T ≈ |J | for J < 0, while a lower
temperature peak shows up in the positive-J case. This last
peak could be due to an ordering phase transition at a very
low temperature Tc 6 J/100. In both cases, one is tempted

to envisage a finite-temperature phase transition whose nature
could be understood by the analysis of the classical model.

The analysis of the classical model has turned out to be
also quite interesting and instructive. For J < 0, the lowest-
energy configuration consists in an in-plane antiferromagnetic
arrangement of the spins with given chirality accompanied
by a “spurious” continuous rotational degeneracy that does
not correspond to any symmetry of the Hamiltonian. This
pseudo degeneracy is lifted by entropy at finite temperature
giving rise to an ordering at low temperature as observed by
Monte Carlo data, which locate the transition temperature at
Tc/|J | = 1.566 ± 0.005. Inspection of the histograms of the
energy close to the transition temperature gave no evidence of a
first-order transition. Hence, we analyzed it within the scenario
of a continuous transition and estimated unusual values for the
critical exponents α and ν, strongly violating the hyperscaling
relation. It should nevertheless be mentioned that we cannot
exclude the existence of a crossover scale that exceeds the
lattice sizes accessible to us. The fact that lock-in of the spin
components to the lattice requires a certain length scale may
point in this direction. An unambiguous determination of the
universality class of the transition would require improved
methods. A first possibility is to restrict the degrees of
freedom to the in-plane configurations43 that are realized in the
low-temperature limit. Even more efficiency could be gained
by additionally restricting each spin variable to the six spin
directions that are stabilized in the zero-temperature limit.
However, it remains to be investigated whether the second
modification changes the universality class of the transition.

For J > 0, the situation is even more interesting. Although
a “spurious” rotational degeneracy is also present for the
antiferromagnetic 120◦ configuration (with the opposite chi-
rality from the one for J < 0), the manifold of lowest-energy
configurations is more complex. There exist local discrete
“flips” of triangles that bring one from the homogeneous
antiferromagnetic lowest-energy configuration to another con-
figuration with the same energy. The mechanism that gives
rise to ordering is again understood by analyzing the entropic
spectra over each of these configurations. The homogeneous
antiferromagnetic configuration has a whole branch of soft
modes in its classical spin-wave spectrum. Flipping one
triangle to jump to another lowest-energy configuration also
destroys one soft mode. One is then left with a scenario that can
be understood with an Ising-type low-temperature expansion
picture of the system, where each “flippable” triangle plays the
role of an Ising spin. The difference is in the fact that flipping
one spin on an otherwise perfectly ordered background costs
no energy but an entropy, or if one wishes a temperature-
dependent pseudo energy. An ordering transition will also take
place, as in a normal energetic system, but at a much smaller
temperature. This transition temperature is observed in the
Monte-Carlo analysis to be at around Tc/|J | ≈ 0.0125, two
orders of magnitude smaller than in the J < 0 case.

For J > 0, one may also wonder how the 120◦ ordered state
of the model (1) relates to the structure of the magnetization
1/3 state of the homogeneous kagome lattice.7,25 In order
to address this question, we need to associate a variational
wave function to the classical 120◦ ordered state, which is
indicated in Fig. 8. First, we associate quantum wave functions
to the three classical spin directions as in Fig. 18(a). The phase
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FIG. 18. (Color online) (a) Identification of chirality pseudospin
states of a triangle with spin configurations on a triangle for the
underlying kagome lattice. (b) Expression of the 120◦ ordered state
on a triangle in the effective model in terms of spin configurations of
the corresponding nine sites in the underlying kagome lattice. Note
that chirality spins for the effective model lie in the x-y chirality
plane, whereas spins on the kagome lattice point along the z axis.

factors are chosen in order to yield a convenient representation
in terms of spin configurations of a triangle after insertion
of Fig. 1(b) for the chirality pseudospins. Insertion into the
120◦ wave function for a triangle of the triangular lattice
on the left side of Fig. 18(b) then yields the expression in
terms of the eight spin configurations of a nine-site unit of the
underlying kagome lattice shown on the right side of Fig. 18(b).
Note that the two terms on the first line of the right side of
Fig. 18(b) amount exactly to the variational wave function
for the magnetization 1/3 state of the homogeneous kagome
lattice,7,25 as it follows from a mapping to a quantum-dimer
model on the honeycomb lattice.24 Thus, the present results
for the strongly trimerized kagome lattice may be smoothly
connected to the 1/3 plateau state of the homogeneous kagome
lattice.

To conclude, the model (1) has turned out to be a very
interesting laboratory to understand the emergence of a
hierarchy of energy scales originating from different levels
of order by disorder. The emergence of such a hierarchy in
a classical model is related to similar hierarchies in quantum
systems, such as, for example, the huge difference between
the magnetic and nonmagnetic gaps in the kagome spin-1/2
system at magnetization 1/3.7 Moreover, if the transitions
observed in this work can be confirmed to be continuous, the
exponents will probably correspond to exotic models, such as
parafermionic conformal field theories.62
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APPENDIX: RELATION TO THE HEISENBERG MODEL
ON THE TRIMERIZED KAGOME LATTICE

The Hamiltonian (1) has already been derived several times
in the literature.26,38,42 Nevertheless, for completeness we also
give a derivation.

We start from the interaction between the triangles of the
spin-1/2 Heisenberg model on a trimerized kagome lattice,

Hint = Jint

X
hi,ji

ESA,i · ESB,j

= Jint

X
hi,ji

½
1

2
(S+

A,i S−
B,j + S−

A,i S+
B,j ) + Sz

A,i Sz
B,j

¾
,

(A1)

where the sum over hi,j i runs over the nearest-neighbor pairs
of triangles i and j in Fig. 1(a), and the corners of the triangle
A and B have to be chosen so as to match the connecting bond.
The ESA,i are physical spin-1/2 operators.

In first order and for N triangles, we need to compute
the matrix elements of (A1) between all 2N combinations of
the states in Fig. 1(b). Note that the expectation values of the
operators acting on different triangles factorize. Since in the
present case magnetization is fixed in each triangle to 1/3,
matrix elements of S±

A,i vanish, thus simplifying the derivation
considerably.

For the lower left corner of a triangle i, we findµ h+|Sz
L,i |+i h+|Sz

L,i |−i
h−|Sz

L,i |+i h−|Sz
L,i |−i

¶
=

µ
1/6 −ω2/3
−ω/3 1/6

¶
i

= 1
3

¡
1
2 − T C

i

¢
, (A2)

for the lower right cornerµ h+|Sz
R,i |+i h+|Sz

R,i |−i
h−|Sz

R,i |+i h−|Sz
R,i |−i

¶
=

µ
1/6 −1/3
−1/3 1/6

¶
i

= 1
3

¡
1
2 − T A

i

¢
, (A3)

and finally for the top cornerµ h+|Sz
T,i |+i h+|Sz

T,i |−i
h−|Sz

T,i |+i h−|Sz
T,i |−i

¶
=

µ
1/6 −ω/3
−ω2/3 1/6

¶
i

= 1
3

¡
1
2 − T B

i

¢
. (A4)

Using (A2)–(A4) for the matrix elements of (A1), we find the
effective Hamiltonian

Heff = Jint

9

⎧⎨
⎩

X
hi,ji

µ
1

2
− T A

i

¶ µ
1

2
− T C

j

¶

+
X

hhk,jii

µ
1

2
− T A

k

¶µ
1

2
− T B

j

¶

+
X

[[k,i]]

µ
1

2
− T C

k

¶ µ
1

2
− T B

i

¶⎫⎬
⎭ , (A5)
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where the three sums run over the different bond directions
as sketched in Fig. 1(a). Since the sum over roots of unity
vanishes, we have T A

i + T B
i + T C

i = 0. Hence, Eq. (A5) can
be rewritten as

Heff = Jint

9

⎧⎨
⎩

X
hi,ji

T A
i T C

j +
X

hhk,jii
T A

k T B
j +

X
[[k,i]]

T C
k T B

i

⎫⎬
⎭

+NJint

12
. (A6)

Up to an additive constant, this is merely Eq. (1) with
J = Jint/9. The intra-triangle coupling needs to be chosen
positive in order for the two states shown in Fig. 1(b)
to be ground states of a triangle. Accordingly, it is natu-
ral to also choose the intertriangle coupling Jint positive,
i.e., J > 0.

Very similar arguments can be applied, e.g., to spinless
fermions with nearest-neighbor repulsion,38 leading to the
same effective Hamiltonian.
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