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Hybrid stars within a covariant, nonlocal chiral quark model
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6Physics Department, Comisión Nacional de Energı́a Atómica, Av. Libertador 8250, 1429 Buenos Aires, Argentina
7Gesellschaft für Schwerionenforschung mbH (GSI), D-64291 Darmstadt, Germany

8Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA
9Universidad Favaloro, Solı́s 453, 1078 Buenos Aires, Argentina

(Received 17 April 2007; published 14 June 2007)

We present a hybrid equation of state (EoS) for dense matter in which a nuclear matter phase is described
within the Dirac-Brueckner-Hartree-Fock (DBHF) approach and a two-flavor quark matter phase is modelled
according to a recently developed covariant, nonlocal chiral quark model. We show that modern observational
constraints for compact star masses (M ∼ 2M¯) can be satisfied when a small vector-like four quark interaction
is taken into account. The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy
ion collisions and points to a deconfinement transition at about 0.55 fm−3.
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I. INTRODUCTION

Understanding the properties of matter at moderate and
high densities is required, e.g., to explain the astrophysical
phenomena which accompany the birth of compact stars in
supernova explosions, and the further evolution processes of
cooling, spin-down, accretion, merging with companion stars,
etc., which lead to effects accessible to observation.

Nowadays, one of the questions in the focus of discussions
is the possibility of a phase transition to deconfined quark mat-
ter in the stellar cores. There is no doubt that deconfinement of
quarks shall occur at sufficiently high densities, in accordance
with the asymptotic freedom of QCD [1]. However, it is not
clear a priori whether the critical density for deconfinement is
low enough to be reached in the cores of neutron stars [2]. Even
if this condition can be fulfilled, the properties of dense quark
matter in the vicinity of the deconfinement transition might be
too similar to those of dense hadronic matter to result in clearly
distinguishable signals. On the other hand, there have been a
number of interesting suggestions about how the occurrence
of quark matter in neutron stars could manifest itself and
possibly contribute to the resolution of puzzling observations.
For the sake of illustration we remind the reader of the timing
behavior of pulsar spin-down [3], frequency clustering [4],
or population clustering [5,6] of accreting compact stars,
which are based on a softening of the equation of state and
therefore a compactification as well as a reduction of the
maximum allowable stellar masses. Since deconfined quark
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matter is rather stiff when compared to hyperonic matter, the
problem with rather low maximum masses of compact stars
with hyperonic interior could be solved by the occurrence of a
quark matter core [7]. Similarly, the description of the compact
star cooling evolution with superconducting quark matter
interior seems favorable over a purely hadronic modeling
[8]. A deconfinement transition during the protoneutron star
(PNS) evolution offers a mechanism to explain the gamma-
ray burst energy release of the order of 100 bethe (=1053

erg) [9–11]. The nucleation timescales for a quark matter
phase transition could explain the time delay statistics of
gamma-ray burst (GRB) subpulse structure [12,13]. In the
presence of a strong magnetic field, neutrino propagation in
hot, superconducting quark matter can become collimated
(beaming) and asymmetric, thus explaining a resulting kick
velocity for the PNS [14].

The recent progress in compact star observations justifies a
reinvestigation of the issue of hybrid stars with quark matter
cores and theoretical aspects of dense matter properties. In
particular, the high mass of M = 2.1 ± 0.2 M¯ for the pulsar
J0751+1807 in a neutron star-white dwarf binary system [15]
and the large radius of R > 12 km for the isolated neutron
star RX J1856.5–3754 (shorthand: RX J1856) [16] point to
a stiff equation of state at high densities. Measurements of
high masses are also reported for compact stars in low-mass
X-ray binaries (LMXBs) as, e.g., M = 2.0 ± 0.1M¯ for the
compact object in 4U 1636–536 [17]. With data of this kind,
new stringent constraints on the equation of state of strongly
interacting matter at high densities have been formulated (see
[18] and references therein). It has been argued [16,19] that
deconfined quark matter cannot exist in the centers of compact
stars with masses and radii as reported for these objects. In
view of recent works on the quark matter EoS, however, this
claim appears to be premature [20]. It has been demonstrated
within the Nambu–Jona-Lasinio model for quark matter [21]
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that the inclusion of a diquark condensate (leading to color
superconductivity) together with a vector meson condensate,
not only provides a more elaborate description of the EoS but
also allows us to describe the phenomenology of hybrid stars
in excellent accordance with the above-mentioned new mass
and mass-radius constraints. The two mechanisms at work
are (1) the lowering of the phase transition density due to
the diquark condensate, so that already typical neutron stars
with masses in the range 1.1–1.5 M¯ can be hybrid stars with
extended quark matter cores; (2) the stiffening of the EoS
due to the vector mean field, which implies an increase of
the maximum accessible masses of star configurations up to
∼2 M¯.

Another lesson to be learned from NJL model studies is
that at low temperatures there is a sequential deconfinement:
strange quarks occur only at densities well above the decon-
finement of light quarks [22–27]. If those densities could be
reached in a compact star, the corresponding strange quark
matter cores would be in a superconducting CFL phase, which
renders the hybrid star configuration mechanically unstable
[21,28,29]. In the present work we will restrict ourselves to the
discussion of the two-flavor case, applying the more elaborate
formalism of a recently developed nonlocal, covariant chiral
quark model [30–32]. Moreover, we consider a generalized
version of this model, including an isoscalar vector meson
current which, in the same way as in the case of the Walecka
model for nuclear matter, leads to a stiffening of the quark
matter EoS.

Although we understand hadrons as bound states of quarks,
there does not yet exist a unified approach which accurately
describes the thermodynamics of the transition from nuclear to
quark matter. Therefore, we apply a two-phase description by
performing a Maxwell construction describing the transition
from a nuclear matter EoS to the quark matter EoS. The nuclear
equation of state to be considered here results from calculations
within the DBHF approach [33] and has already been applied
for the description of compact stars before [18,21]. Since this
EoS is rather stiff, several modern compact star observations
have been well reproduced. In particular, within this approach
one is able to obtain large neutron star masses (Mmax =
2.33M¯) and radii (R = 12–13 km for typical neutron stars).
On the other hand, the DBHF description is not so well suited
to reproduce the results obtained from elliptic flow data in
symmetric nuclear matter (SNM): from these results, it can be
seen that the DBHF EoS tends to be too stiff beyond densities
of 3 times the saturation density nsat = 0.16 fm−3 [18]. We
show here that this problem can be solved by a phase transition
to quark matter while simultaneously fulfilling the constraints
on the behavior of dense matter for the case of hybrid stars.

The article is organized as follows. A brief description of
the DBHF approach and the quark matter model used here
is given in Secs. II A and II B, respectively. In Sec. III we
show our numerical results, comparing them with present
empirical constraints on the behavior of dense matter under
constraints for conditions in neutron stars and heavy ion
collisions. Our conclusions are stated in Sec. IV. Finally, in
the Appendix we provide some details of the quark matter
model.

II. THEORETICAL FORMALISM

As mentioned in the Introduction, in the present calculation
we use a two phase description to account for the transition
from a nuclear matter EoS to a quark matter EoS. In the
following two subsections we briefly discuss the theoretical
approaches considered here to describe each of these phases.

A. Nuclear matter equation of state

For the description of the nuclear matter equation of state we
rely on the relativistic Dirac-Brueckner-Hartree-Fock (DBHF)
approach where the nucleon inside the medium is dressed
by the self-energy 6. This self-energy is obtained from the
Bethe-Salpeter equation for the nucleon-nucleon T-matrix in
the ladder approximation, using the Bonn-A potential in the
interaction kernel [34].

We employ a parametrization of the resulting EoS based
on a parabolic dependence of the energy per nucleon on the
asymmetry parameter α = 1 − 2x, given in the form

E(n, α) = E0(n) + α2ES(n), (1)

where x = np/n is the proton fraction, E0(n) is the energy
per nucleon in SNM, and ES(n) is the (a)symmetry energy.
Both contributions E0(n) and ES(n) have been extracted
from DBHF calculations for the cases α = 0 and α = 1,
respectively. The parabolic interpolation in Eq. (1) has been
widely used in the literature, see, e.g., Refs. [18,35], and
proves to be an excellent parametrization of the asymmetry
dependence for the purpose of the present study. An exact
reproduction of a given EoS might require higher order
terms, which have been neglected here. The advantage of the
parabolic interpolation lies in the fact that all zero temperature
equations of state for neutron star matter (NSM) can be
derived by applying simple thermodynamic identities [36].
In particular, we obtain

εB(n, α) = nE(n, α), (2)

PB(n, α) = n2 ∂

∂n
E(n, α), (3)

µn,p(n, α) =
µ

1 + n
∂

∂n

¶
E0(n)

−
µ

α2 ∓ 2α − α2n
∂

∂n

¶
ES(n), (4)

for the baryonic energy density ε(n), the pressure P (n), and the
chemical potentials of neutrons µn (upper sign) and protons
µp (lower sign), respectively.

B. Quark matter equation of state

Early reviews on the treatment of quark matter within the
NJL model as a chiral quark model with a local current-
current–type interaction can be found, e.g., in Refs. [37–39].
In order to include color superconductivity, techniques were
needed which are described, e.g., in Refs. [40,41].

We use here a generalization of these approaches to a
nonlocal chiral quark model which includes scalar and vector
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quark-antiquark interactions and antitriplet scalar diquark
interactions. The corresponding effective Euclidean action in
the case of two light flavors is given by

SE =
Z

d4x

½
ψ̄(x)(−iγ µ∂µ + mc)ψ(x) − GS

2
j

f

S (x)jf

S (x)

− H

2

£
ja
D(x)

¤†
ja
D(x)−GV

2
j

µ

V (x)jµ

V (x)

¾
. (5)

Here mc is the current quark mass, which is assumed to be equal
for u and d quarks, whereas the currents jS,D,V (x) are given
by nonlocal operators based on a separable approximation to
the effective one gluon exchange model (OGE) of QCD. These
currents read

j
f

S (x) =
Z

d4zg(z)ψ̄
³
x + z

2

´
0f ψ

³
x − z

2

´
,

j a
D(x) =

Z
d4zg(z)ψ̄C

³
x + z

2

´
iγ5τ2λaψ

³
x − z

2

´
, (6)

j
µ

V (x) =
Z

d4zg(z)ψ̄
³
x + z

2

´
γµψ

³
x − z

2

´
,

where we have defined ψC(x) = γ2γ4ψ̄
T (x) and 0f =

(11, iγ5 Eτ ), while Eτ and λa , with a = 2, 5, 7, stand for Pauli
and Gell-Mann matrices acting on flavor and color spaces,
respectively [notice that γµ = ( Eγ , γ4) are Euclidean Dirac
matrices]. The functions g(z) in Eqs. (7) are nonlocal covariant
form factors characterizing the effective quark interaction [32].

The effective action in Eq. (5) might arise via Fierz
rearrangement from some underlying more fundamental in-
teractions, and is understood to be used—at the mean field
level—in the Hartree approximation. In general, the ratios of
coupling constants H/GS,GV /GS would be determined by
this microscopic couplings; for example, OGE interactions
in the vacuum lead to H/GS = 0.75 and GV /GS = 0.5.
However, since the precise derivation of effective couplings
from QCD is not known, there is a large theoretical uncertainty
in these ratios. Details of the values used in the present work
will be given below.

We proceed by considering a bosonized version of this
quark model, in which scalar, vector, and diquark fields
are introduced. Moreover, we expand these fields around
their respective mean field values, keeping the lowest order
contribution to the thermodynamic quantities. The only non-
vanishing mean field values in the scalar and vector sectors
correspond to isospin zero fields, σ̄ and ω̄, respectively, while
in the diquark sector, owing to the color symmetry, one can
rotate in color space to fix 1̄5 = 1̄7 = 0, 1̄2 = 1̄.

Now we consider the Euclidean action at zero temperature
and finite baryon chemical potential µB . Introducing different
chemical potentials µf c for each flavor and color, the corre-
sponding mean field grand canonical thermodynamic potential
per unit volume can be written as

ÄMFA = σ̄ 2

2GS

+ 1̄2

2H
− ω̄2

2GV

− 1

2

Z
d4p

(2π )4
ln det[S−1(σ̄ , 1̄, ω̄, µf c)], (7)

where the inverse propagator S−1 is a 48 × 48 matrix in Dirac,
flavor, color, and Nambu-Gorkov spaces [30,31]. Its explicit
regularized form ÄMFA

(reg) is given in the Appendix, together with
further details about the model. The mean field values σ̄ , 1̄

and ω̄ are obtained from the coupled equations

dÄMFA

d1̄
= 0,

dÄMFA

dσ̄
= 0,

dÄMFA

dω̄
= 0. (8)

In principle one has six different quark chemical potentials,
corresponding to quark flavors u and d and quark colors r, g,
and b. However, there is a residual color symmetry (say,
between red and green colors) arising from the direction of
1̄ in color space. Moreover, if we require the system to be in
chemical equilibrium, it can be seen that chemical potentials
are not independent from each other. In general, it is shown
that all µf c can be written in terms of three independent
quantities: the baryonic chemical potential µB , a quark electric
chemical potential µQq

and a color chemical potential µ8. The
corresponding relations read

µur = µug = µB

3
+ 2

3
µQq

+ 1

3
µ8,

µub = µB

3
+ 2

3
µQq

− 2

3
µ8,

(9)

µdr = µdg = µB

3
− 1

3
µQq

+ 1

3
µ8,

µdb = µB

3
− 1

3
µQq

− 2

3
µ8.

The chemical potential µQq
, which distinguishes between up

and down quarks, as well as the color chemical potential
µ8, which has to be introduced to ensure color neutrality
[42–44], vanish for an isospin symmetric quark matter system.
Thus, in this case, the corresponding EoS can be obtained after
calculating the mean field values σ̄ , ω̄ and 1̄ from Eqs. (8).

Now, if we want to describe the behavior of quark matter
in the core of neutron stars, in addition to quark matter we
have to take into account the presence of electrons and muons.
Thus, treating leptons as a free relativistic Fermi gas, the total
pressure of the quark matter + lepton system is given by

P = −ÄMFA
(reg) − Äl, (10)

where Äl is the thermodynamical potential per unit volume for
a gas of noninteracting electrons and muons (see Appendix). In
addition, it is necessary to take into account that quark matter
has to be in β equilibrium with electrons and muons through
the β decay reactions

d → u + l + ν̄l , u + l → d + νl, (11)

for l = e, µ. Thus, assuming that (anti)neutrinos escape from
the stellar core, we have an additional relation between fermion
chemical potentials, namely,

µdc − µuc = −µQq
= µl (12)

for c = r, g, b, µe = µµ = µl .
Finally, in the core of neutron stars we also require the

system to be electric and color charge neutral, hence the
number of independent chemical potentials reduces further.
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FIG. 1. (Color online) Pressure as a func-
tion of the baryochemical potential for isospin
symmetric matter. The nuclear matter phase
is modelled by the DBHF equation of state
with the Bonn-A potential [33] (solid line) and
the results for the covariant, nonlocal chiral
quark model are given for different scaled vec-
tor coupling strengths g = 0.03, 0.05, 0.07, 0.09
(dotted, dash-dotted, dashed, and dash-double-
dotted curves, respectively) and scaled diquark
coupling strengths of h = 0.70 (left panel) and
h = 0.74 (right panel). A phase transition to
quark matter is obtained at the crossing of nuclear
and quark matter curves, for discussion see text.

Indeed, µl and µ8 get fixed by the condition that charge and
color densities vanish,

ρQtot
= ρQq

−
X
l=e,µ

ρl

=
X

c=r,g,b

µ
2

3
ρuc − 1

3
ρdc

¶
−

X
l=e,µ

ρl = 0,

ρ8 = 1√
3

X
f =u,d

(ρf r + ρfg − 2ρf b) = 0, (13)

where the expressions for the lepton densities ρl and the quark
densities ρf c can be found in the Appendix. Note that the set
of color chemical potentials required to ensure color neutrality
of the system depends on the choice of the orientation of
the diquark condensate orientation in color space [45]. For the
standard choice employed in the present work, µ8 is sufficient.
In summary, in the case of neutron star quark matter, for each
value of µB one can find the values of 1̄, σ̄ , ω, µl , and µ8

by solving Eqs. (8), supplemented by Eqs. (12) and (13). This
allows us to obtain the quark matter EoS in the thermodynamic
region we are interested in.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present our numerical results, showing
the behavior of both isospin symmetric hadronic matter and
neutral hadronic matter for finite baryochemical potential.
The nuclear-to-quark matter phase transition is treated in the
traditional way, following a two-phase scheme in which the
nuclear and quark matter phases are described by the theoret-
ical approaches presented in the previous section.

As stated, the nuclear matter phase is described according
to the DBHF approach, in which the nucleon self-energy is
calculated from the Bethe-Salpeter equation considering a
Bonn-A potential in the interaction kernel. Regarding the quark
matter model, we note first that, according to previous analyses
carried out within nonlocal scenarios [30,31], the results are
not expected to show a strong qualitative dependence on the
shape of the nonlocal form factors. Thus we will consider
(in momentum space) a simple and well-behaved Gaussian
function,

g(p2) = exp(−p2/32), (14)

where 3 is a free parameter of the model, playing the role of an
ultraviolet cutoff. The value of 3, as well as the values of the
free model parameters GS and mc, can be fixed from low en-
ergy phenomenology. Here we have chosen these input param-
eters so as to reproduce the empirical values for the pion mass
mπ = 139 MeV and decay constant fπ = 92.4 MeV, and to ob-
tain a phenomenologically reasonable value for the chiral con-
densate at vanishing µB , namely, h0|q̄q|0i1/3 = −230 MeV.
In this way we obtain mc = 6.49 MeV, GS = 0.515 ×
10−4 MeV−2, and 3 = 678 MeV [46].

The values of the scalar diquark coupling and the isoscalar
vector coupling H and GV , or equivalently the dimensionless
ratios h = H/GS and g = GV /GS , are considered here as
parameters to be chosen in accordance with phenomenological
constraints from flow data analyses of heavy-ion collisions and
the new mass and mass-radius constraints from compact star
observations. In accordance with our previous investigation
of the phase diagram of neutral quark matter in Ref. [32]
we choose two typical values h = 0.70 and h = 0.74 for the
diquark/scalar coupling ratio, and analyze the phase transition
features for different values of g so as to obtain an acceptable
transition density.

In Fig. 1 we show the curves for the pressure as function of
the baryochemical potential, for both nuclear and quark matter
phases, in the case of isospin symmetric matter. Left and right
panels correspond to h = 0.70 and h = 0.74, respectively, and
in each case three values of the scaled vector coupling g have
been chosen. As can be seen from the figures, within these
ranges of g both nuclear and quark matter EoS behave similarly
in the relevant domain of baryochemical potentials, therefore
the value of the critical µB strongly depends on the value of the
vector coupling. In any case, for both h = 0.70 and h = 0.74
it is possible to tune the value of g so that the softening due
to the deconfinement transition occurs at a density of about
0.55 fm−3. At this point the DBHF EoS becomes too stiff,
being unable to fulfill the flow constraint [47]. This situation
is sketched in Fig. 2, where we show the area allowed by
the flow constraint and the corresponding DBHF curve in
the density-pressure plane. For h = 0.70 and h = 0.74, the
values g = 0.05 and g = 0.07, respectively (dotted lines in
the P − µB curves of Fig. 1) lead to nuclear-to-quark matter
phase transitions such that the stiffness of the pressure curve is
softened and the flow constraint can be satisfied. On the other
hand, values of g outside the range considered in Fig. 1 would
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FIG. 2. (Color online) Pressure as a function of the density for
isospin symmetric matter. The phase transition to quark matter softens
the EoS at densities above 0.55 fm−3, relative to the nuclear DBHF
EoS, thus allowing us to fulfill the flow constraint derived in Ref. [47].
Line styles as in Fig. 1.

lead to either a too early phase transition or to a situation
in which there is no transition to quark matter at all. We
emphasize that both the nuclear and quark matter EsoS behave
almost identically over a wide range of the baryochemical
potential in Fig. 1. This results in an almost direct crossover
transition with a small or even negligible density jump at the
transition density, as shown in Fig. 2. As a further consequence,
the transition density strongly depends on small changes of g.

Finally, let us take into account the hadronic matter models
leading to the curves in Fig. 2, considering now the description
of neutral hadronic matter in the interior of compact stars. In
Fig. 3, we show the sequences of compact star configurations
obtained as solutions of the Tolman-Oppenheimer-Volkoff
equations of general-relativistic hydrodynamic stability, for
self-gravitating dense hadronic matter described by these
theoretical models. The results quoted in Fig. 3 represent the
main outcome of this work: using the quark matter EoS derived
from a covariant nonlocal chiral quark model, generalized
here by including a vector interaction, we obtain hybrid star
configurations which fulfill the modern constraints on high
masses and radii of compact stars discussed in the Introduction.

FIG. 3. (Color online) Mass-radius relationships for neutron star
configurations (DBHF EoS, solid line) and hybrid star configurations
with hadronic shell (DBHF EoS) and color superconducting quark
matter core (nonlocal chiral quark model EoS) for two parameter sets
characterized by the coupling ratios h = H/GS and g = GV /GS .
Dashed line: h = 0.74, g = 0.07; dash-dotted line: h = 0.70, g =
0.05.

Moreover, the deconfinement transition for isospin symmetric
matter occurs at about threefold nuclear saturation density, and
results in a sufficient softening of the EoS thus circumventing
a violation of the flow constraint from heavy-ion collisions.

IV. CONCLUSIONS

We have generalized in this work a recently developed
covariant, nonlocal chiral quark model by including a vector-
vector four quark interaction which leads to a stiffening of the
corresponding quark matter EoS. This allows us to describe
compact stars possessing a quark matter core and being in
agreement with the modern compact star phenomenology,
which suggests stars with maximum masses of ∼2M¯ and
radii of 12–13 km.

We show that the traditional application of Gibbs conditions
for phase equilibrium to construct a phase transition between
deconfined quark matter—described in the new approach
developed here—and nuclear matter—described by the DBHF
approach—with the Bonn-A potential, is very sensitive to tiny
changes of parameter values: quark and hadronic matter EoS’s
behave rather similarly in the vicinity of the phase transition
and lead to a crossover-like behavior for the hybrid EoS. This
reconfirms an earlier discussed ‘masquerade’ effect [8,21,48]
for hybrid stars within the present approach. After exploring
the allowed range of model parameters, we find values for
which both the flow constraint from heavy-ion collisions and
the mass constraint for hybrid stars are satisfied.

We want to point out that the deconfinement phase transition
should be a rather robust phenomenon of the high-density
EoS. Therefore, the mentioned ‘masquerade’ effect may point
to a deficiency in the two phase approach for the description
of hybrid EoS’s. It is a demanding task to develop unified
approaches for quark/nuclear matter on the basis of chiral
quark models in which nucleons and mesons appear as
relativistic bound states of quarks and antiquarks (for first steps
in this direction, see Refs. [49,50]). Under conditions of high
density and/or temperature these bound states dissociate into
continuum correlations (resonances) in quark matter within
a Mott transition (see [51] for a model calculation within a
nonrelativistic Green functions approach, which has also lead
to an early prediction of stable quark matter cores in compact
stars [52]).

We believe that the covariant nonlocal chiral quark model
presented here could be developed to a more elaborate
approach unifying quark and hadronic matter descriptions on
the quark level. The realization of such a project is beyond the
scope of the present work.
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APPENDIX: DETAILS OF THE NONLOCAL MODEL
FOR QUARK MATTER

In this appendix we show some explicit expressions
corresponding to the nonlocal chiral quark model considered in
Sec. II B. The determinant of the 48 × 48 matrix S−1 appearing
in Eq. (7) can be analytically calculated. In this way one
obtains

ÄMFA = σ̄ 2

2GS

+ 1̄2

2H
− ω̄2

2GV

−
Z

d4p

(2π )4

X
c=r,g,b

ln |Ac|2,

(A1)

where

Ac = £
(p̃+

uc)2 + ¡
6p

uc

¢2¤£
(p̃−

dc)2 + ¡
6

p

dc

∗¢2¤
+ (1 − δbc)1p2£

1p2 + 2p̃+
uc · p̃−

dc + 26p
uc6

p

dc

∗¤
,

(A2)

with the following definitions:

p̃±
f c = ¡ Ep, p4 ∓ i

£
µf c − ω̄g

¡
p±2

f c

¢¤¢
,

p±
f c = ( Ep, p4 ∓ iµf c),

(A3)
6

p

f c = mf + σ̄ g
¡
p+2

f c

¢
,

1p = 1̄g

µ
[p+

ur + p−
dr ]2

4

¶
, (A4)

where f = u, d, and c = r, g, b. Notice that due to the
symmetry between red and green colors one has µf r =
µfg .

In general, for finite values of the current quark mass, ÄMFA

turns out to be divergent. We have used here a regularization
procedure in which we add and subtract the thermodynamical

potential for a free quark gas, namely,

ÄMFA
(reg) = ÄMFA − Äfree

(nonreg) +
X
f,c

Äfree
(reg)f c, (A5)

In the right hand side, Äfree
(nonreg) is obtained from Eq. (A1) just

by setting 1̄ = σ̄ = ω̄ = 0, while for each fermion species i

the regularized free thermodynamical potential Äfree
(reg)i is given

by

Äfree
(reg)i = − 1

24π2
m4

i F (µi/mi), (A6)

with

F (x) = 2x(x2 − 5/2)
p

x2 − 1 + 3 ln(x +
p

x2 − 1). (A7)

The sum in Eq. (A5) extends over all quark flavors and
colors. In the case of leptons, since they can be treated as
free particles, the corresponding contribution to the compact
star thermodynamical potential is simply given by

Äl =
X

l

Äfree
(reg)l , (A8)

with l = e, µ.
Finally, according to our regularization prescription, the

fermion densities appearing in Eq. (13) are given by

ρf c = −∂ÄMFA

∂µf c

− ∂Äfree
(nonreg)

∂µf c

+ ρfree
(reg)f c

,

(A9)
ρl = ρfree

(reg)l
,

where f = u, d, c = r, g, b, and l = e, µ. The fermion den-
sity ρfree

(reg)i
of a free particle gas can be easily obtained from the

regularized thermodynamical potential in Eq. (A6), yielding

ρfree
(reg)i

= 1

3π2

¡
µ2

i − m2
i

¢3/2
, (A10)

while explicit expressions for the partial derivatives in Eq. (A9)
can be obtained from the results quoted in Ref. [32], taking
the T = 0 limit.
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