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Correlation functions for one-dimensional interacting fermions with spin-orbit coupling
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We compute correlation functions for one-dimensional electron systems in which spin and charge degrees of
freedom are coupled through spin-orbit coupling. Charge density waves, spin density waves, and singlet- and
triplet-superconducting fluctuations are studied. We show that the spin-orbit interaction modifies the exponents
and the phase diagram of the system, changing the dominant fluctuations and making new susceptibilities
diverge for low temperature.
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In the past two decades there have been intense efforts in
studying quasi-one-dimensional electron systems
~Q1DES’s!. This interest has its origin in the simplicity of
the models which describe them and, at the same time, in the
possibility of making contact with experiments. Examples of
these Q1DES’s of recent construction are carbon nanotubes,1
conducting polymers,2 and semiconductor heterostructures.3
From the theoretical point of view the simplest formulation
of a Q1DES is given by the Tomonaga-Luttinger4,5 model
which describes the major qualitative features of interacting
Q1DES’s such as the spin-charge separation and the nonuni-
versal exponents in the decay law of correlation functions.

In realistic situations the electrons are moving in electric
fields inside the materials: microscopic and macroscopic
ones, the latter responsible for confining the electrons to a
reduced region of space. As a consequence it appears a mag-
netic field in the rest frame of the electron which couples
with its intrinsic magnetic moment and breaks spin-rotation
SU~2! symmetry. This is known as a spin-orbit ~SO! interac-
tion ~or spin-orbit coupling!. Despite its relativistic origin,
this interaction has an important effect on existing two-
dimensional electron gases ~2DEG’s! such as GaAs/AlGaAs
~Refs. 6 and 7! and InGaAs/InAlAs ~Refs. 8 and 9! hetero-
structures. It is responsible for the modification of their band
structure by lifting the spin degeneracy and for positive mag-
netoresistance effects, known as weak antilocalization.10

In Q1DES’s there exists an additional potential, respon-
sible for confining the electrons in a narrow channel pat-
terned in 2DEG heterostructures.11 Although as far as we
know there is no experimental evidence or measures of the
strength of the SO coupling resulting from such a potential,
theoretical work indicates that it affects quantitatively the
splitting energy behavior as a function of the wave vector k
and produces an asymmetric deformation of each spin
branch; i.e., the Fermi velocities take different values for
different directions of motion.12

In Ref. 13 the following Hamiltonian was proposed as a
model for a Q1DES with SO coupling:

H5H01H int , ~1!
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where the noninteracting Hamiltonian is

H05v1(
k

@~k1k1!ckR↑
† ckR↑2~k2k1!ckL↓

† ckL↓#

1v2(
k

@~k1k2!ckR↓
† ckR↓2~k2k2!ckL↑

† ckL↑# . ~2!

It consists of a modified Tomonaga-Luttinger model, which
takes into account the asymmetry in the spectrum for each
spin branch, making v1Þv2 ~and k1Þk2). ckrs

† creates a
right-going (r511) or left-going (r521) electron. The
interacting Hamiltonian describes forward-scattering
electron-electron interactions and has a standard form.5 Um-
klapp and backscattering terms are irrelevant if we are far
from half filling in the former case, and we restrict ourselves
to repulsive interactions in the latter.

In this article we compute correlation functions for
charge-density-wave ~CDW!, spin-density-wave ~SDW! 4kF
charge-density-wave (4kF), and singlet- and triplet-
superconductivity ~SS and TS! operators for the model pre-
sented above. The correlation functions for these operators
are well known in the case of zero spin-orbit coupling,5,14,15

including logarithmic correction factors16,17 and time and
temperature dependence.15 We extend these calculations to
the case in which SO interactions are present and study how
the exponents of their algebraic decay are modified. We find
interesting modifications of the phase diagram of the system
when SO interactions are present. For certain regions of pa-
rameter space, SO coupling changes the dominant fluctua-
tions and makes new susceptibilities diverge for low tem-
perature.

The Hamiltonian ~1! can be studied by the use of
bosonization technique5,18 as in Ref. 13. For convenience we
shall define an average velocity v05(v11v2)/2 and the dif-
ference dv5v22v1, and the same for the Fermi momentum
k05(k11k2)/2 and dk5k22k1. If we introduce the usual
phase fields fr (fs) for charge ~spin! degrees of freedom
and the dual field Pr (Ps), the Hamiltonian can be repre-
sented as
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H5
vr

2 E dxF 1
Kr

~]xfr!21KrPr
2G

1
vs

2 E dxF 1
Ks

~]xfs!21KsPs
2 G

1dvE dx@~]xfr!Ps1~]xfs!Pr# . ~3!

vr ,s are the propagation velocities of the spin and charge
collective modes of the decoupled model (dv50), and Kr ,s
are the stiffness constants. The spin-orbit interaction appears
as an effect that breaks the spin-charge separation, which is
revealed as the presence of a third term in the last equation.
Nevertheless, the Hamiltonian ~3! can still be diagonalized in
terms of two new phase fields which contain a mixture of
spin and charge degrees of freedom. The propagation veloci-
ties of these collective modes are

v6
2 5

vs
2 1vr

2

2
1dv2

6AS vr
22vs

2

2 D 2

1dv2Fvs
2 1vr

21vrvsS Kr

Ks

1
Ks

Kr
D G .

~4!

As dv→0, v1→max(vr ,vs) and v2→min(vr ,vs). As dv
increases, v2 decreases until it vanishes at the points

dvr
25vrvs

Ks

Kr
, ~5!

dvs
2 5vrvs

Kr

Ks
. ~6!

At these points, the freezing of the lower bosonic mode is
accompanied by a divergence in the charge and spin response
functions. The static charge compressibility k diverges at
dv5dvr and at dv5dvs occurs a divergence of the static
spin susceptibility x . They behave as

k5k0F12
dv
dvr

G21

, k05
2Kr

pvr
, ~7!

x5x0F12
dv
dvs

G21

, x05
2Ks

pvs
, ~8!

where k0 and x0 are the values of k and x in the absence of
SO coupling. Beyond these points the susceptibilities be-
come negatives. This behavior of the static response func-
tions together with the vanishing of the collective-mode ve-
locity indicates that the system becomes unstable5,19 and
undergoes a first-order phase transition.17 For Kr.Ks , dvr

turns out to be lower than dvs , and as dv grows from the
zero, a physical divergence takes place in the charge com-
pressibility. This instability is known as phase separation and
has been shown to occur in the extended Hubbard model20

and in the t-J model.21 In the case that Kr,Ks , the insta-
bility takes place in the spin subsystem and is related to the
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so-called metamagnetic transition, observed, for instance, in
the quasi-one-dimensional compound Ba3Cu2O4Cl2.22 It
also arises in the phase diagram of the XXZ model with
next-to-nearest neighbors.23 In the presence of a chemical
potential ~magnetic field!, the region where k (x) is negative
is associated with the coexistence of two phases with differ-
ent hole concentration ~magnetization!. The divergence of k
was found in other models with asymmetric dispersion.24

Let us now focus our attention on the correlation func-
tions. Our interest in this work is to obtain their space-time
and temperature T51/b behavior. The operators for CDW,
SDW, 4kF , SS, and TS fluctuations in their bosonized form
are

OCDW5
2

pacos~2k0x1A2pfr!cosA2pfs , ~9!

O4kF
5

1

~pa !2cos~4k0x1A8pfr!, ~10!

OSDW,x5
2

pacos~2k0x1A2pfr!cos~dkx1A2pus!,

~11!

OSDW,y5
2

pacos~2k0x1A2pfr!sin~dkx1A2pus!,

~12!

OSDW,z5
2

pasin~2k0x1A2pfr!sinA2pfs , ~13!

OSS5
2i

A2pa
e2iA2pursinA2pfs , ~14!

OTS,05
1

A2pa
e2iA2purcosA2pfs , ~15!

OTS,615
1

2pa e6idkxe2iA2p(ur6us), ~16!

where a is a short distance cutoff and un is related to the
conjugated field Pn by the relation Pl5]xul .

The correlation functions are defined as

Ri~x ,t;b!5^TtOi~x ,t!O i
†~0,0!& , ~17!

where Tt is the ~imaginary! time-ordering operator. These
objects were calculated in the path-integral framework
within the Matsubara imaginary-time formalism and the
results are
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RCDW~x ,t;b!5RSDW,z~x ,t;b!5
cos 2k0x

2~pa !2 ~z1z̄1!2(Krn1
r

1Ksn1
s )/2~z2z̄2!2(Krn2

r
1Ksn2

s )/2F S z̄1z2

z1z̄2
D Hsgn(xt)

1H.c.G , ~18!

RSDW,xy~x ,t;b!5
cos 2k1x

2~pa !2 ~z1z̄1!2(Krn1
r

1m1
s /Ks)/22u1

s
~z2z̄2!2(Krn2

r
1m2

s /Ks)/22u2
s

1
cos 2k2x

2~pa !2 ~z1z̄1!2(Krn1
r

1m1
s /Ks)/21u1

s
~z2z̄2!2(Krn2

r
1m2

s /Ks)/21u2
s

, ~19!

R4kF
~x ,t;b!5

cos 4k0x

2~pa !4 ~z1z̄1!22Krn1
r
~z2z̄2!22Krn2

r
, ~20!

RSS~x ,t;b!5RTS,0~x ,t;b!5
1

2~2pa !2 ~z1z̄1!2(m1
r /Kr1Ksn1

s )/21u1
r
~z2z̄2!2(m2

r /Kr1Ksn2
s )/21u2

r
1~u6

r →2u6
r !, ~21!

RTS,61~x ,t;b!5
e6idkx

~2pa !2 ~z1z̄1!2(m1
r /Kr1m1

s /Ks)/2~z2z̄2!2(m2
r /Kr1m2

s /Ks)/2S z̄1z2

z1z̄2
D 6Gsgn(xt)

, ~22!
where

z65

sin
p

v6b
~v6utu1e1ix !

sin
pe

v6b

, ~23!

z̄65

sin
p

v6b
~v6utu1e2ix !

sin
pe

v6b

, ~24!

and the exponents depend on the the stiffness constants mul-
tiplied by the factors that include mode velocity depen-
dences. They are given by

n6
l 56

vl

v6

v6
2 2v2l

2 ~12dv2/dv2l
2 !

v1
2 2v2

2 , ~25!

m6
l 56

vl

v6

v6
2 2v2l

2 ~12dv2/dvl
2 !

v1
2 2v2

2 , ~26!

u6
l 56

dv
v6

v6
2 2~dvl

22dv2!

v1
2 2v2

2 , ~27!

with l5r ,s and

H5dv
Krvr1Ksvs

v1
2 2v2

2 , ~28!

G5dv
vr /Kr1vs /Ks

v1
2 2v2

2 . ~29!
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Here n6
l and m6

l are positive, and u6
l , G, and H have the

same sign as dv .
In the model with zero SO coupling SU~2! symmetry can

be restored by imposing the constraint Ks51, which
emerges naturally if the model under study is the continuum
limit of a lattice model with only charge density interactions.
In this case this is not possible; the SU~2! symmetry stays
broken even for Ks51 as revealed by the differences in the
decays between SDW operator correlation functions in the z
direction and in the x ,y directions. As in the zero SO case,
correlation functions for SDW operators in the z direction
and CDW operators are equal, and the same happens with
TS, 0, and SS operators. This degeneracy is broken by loga-
rithmic corrections that arise if irrelevant backscattering or
umklapp terms are included.16

An interesting point to observe is the appearance of two
terms in the SDW,xy correlation functions @Eq. ~19!# where
the modulations have different frequencies and decay with
different exponents. As u6

l has the same sign as dv @see Eq.
~27! and the comment below Eq. ~29!# for v2.v1 (v2
,v1) the dominant term is the one with frequency k2 (k1).
In other words the biggest frequency dominates. Also RTS,61
becomes oscillating.

Up to here we have obtained very general formulas for
space-time and temperature-dependent correlation functions
for the model under analysis. We can gain physical insight by
observing the algebraic decay of the instantaneous correla-
tion functions at zero temperature and studying how the ex-
ponents get modified from the zero SO case. The functions
behave as

Ri~x !;uxu221a i. ~30!

The exponents a i8s determine the divergence of the corre-
sponding Fourier space susceptibility as T→0, x i(T)
7-3
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;T2ai.5 This makes these instabilities of a completely differ-
ent nature than the ones described in Eqs. ~7! and ~8!. The
expressions obtained for the a i are

aCDW5aSDW,z522Krnr2Ksns, ~31!

aSDW,x5aSDW,y52~11uusu!2Krnr2ms/Ks , ~32!

aSS5aTS,052~11uuru!2mr/Kr2Ksns, ~33!

aTS,61522mr/Kr2ms/Ks . ~34!

These are the new exponents, which retain the same structure
as in the zero SO coupling, but modified by the factors

ml5m1
l 1m2

l , ~35!

nl5n1
l 1n2

l , ~36!

ul5u1
l 1u2

l . ~37!

When dv→0, ul→0 and ml,nl→1, so we reproduce the
right results for the zero SO case.

For finite SO coupling, dv appears as a parameter which
plays a role in determining the slowest decaying correlation
function and which are the divergent susceptibilities. In Fig.
1 we observe, as an example, the behavior of the exponents

FIG. 2. Phase diagram in Kr-Ks space. The phase in brackets is
the subdominant one, which becomes dominant for strong enough
SO coupling.

FIG. 1. Behavior of the exponents a i8s as a function of dv ~in
units of v0). For vr51.2v0 , vs50.8v0 , Kr50.6, and Ks50.85.
For dv*0.16, SDW,xy fluctuations become dominant, and for
dv*0.25, aSS becomes positive and xSS divergent for T→0.
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as a function of dv for vr51.2v0 , vs50.8v0 , Kr50.6, and
Ks50.85. For dv small, CDW fluctuations are dominant,
but for dv*0.16v0 the SDW,xy correlations decay slower.
For small dv , CDW and SDW fluctuations are the only di-
verging susceptibilities for T→0, but for dv*0.25v0 , aSS
becomes positive and xSS divergent for T→0. Calculations
of the electron band structure modified by SO coupling show
that these values of dv should correspond to typical
Q1DES’s.12

A careful analysis of the exponents allows us to construct
a phase diagram in Kr-Ks space ~Fig. 2!. In each region we
indicate the dominant fluctuation for small dv and in brack-
ets the dominant one for stronger dv . Other subdominant
fluctuations are not indicated. Cross sections of the phase
diagram are shown in Fig. 3. In this plot the Kr-dv space can
be observed for Kr,1 and different values of Ks . For small
dv , CDW fluctuations dominate and for stronger dv the sys-
tem can be either in the SDW or in the SS phase depending
on the values of Kr and Ks . In the region below the dotted
line, dv.dvs , the static spin susceptibility becomes nega-
tive and metamagnetism takes place

In conclusion, we have computed correlation functions for
a model of one-dimensional correlated electrons with SO
coupling. This coupling destroys the spin-charge separation
as was shown in Ref. 13 and modifies the exponents of cor-
relation decay. As a consequence the phase diagram gets
modified. For strong enough SO coupling, it changes the
dominant fluctuation and makes new susceptibilities diverge
for T→0. How logarithmic corrections originated in irrel-
evant backscattering and/or umklapp terms modify these re-
sults is an interesting problem, the subject of future work.

This work was partially supported by the Consejo Nacio-
nal de Investigaciones Cientı́ficas y Técnicas ~CONICET!
and Universidad Nacional de La Plata ~UNLP!, Argentina. I
am grateful to Carlos Naón for useful comments and discus-
sions and for encouraging me to write this article.

FIG. 3. Phase diagram in Kr-dv space for vr51.2v0 , vs

50.8v0, and different values of Ks . dv.dvs below the dotted
line and metamagnetism occurs.
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