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Abstract

We revisit the gravitational lensing phenomenon using a new visualization technique. It
consists in projecting the observers sky into the source plane, what gives rise to a folded and
stretched surface. This provides a clear graphical tool to visualize some interesting well-known
effects, such as the development of multiple images of a source, the structure of the caustic
curves, the parity of the images and their magnification as a function of the source position.

1 Introduction

The gravitational bending of light gives rise to many exciting observable effects such as the multiple
images of distant quasars, the distortion of faint background galaxies by foreground clusters or
the microlensing of stars in the Milky Way and nearby galaxies. The different phenomena that
gravitational lensing can produce have been widely studied and the field has developed to become
a major tool to investigate several astrophysical problems, such as the determination of the Hubble
constant, of the amount of dark matter in the Universe, of the amount of compact objects in the
Milky Way, the search of planetary systems, etc. [1, 2, 3, 4, 5, 6].

When the lensing mass distribution is concentrated at some distance from the observer, e.g. if
it belongs to a cluster along the line of sight to a quasar or if it is a compact astrophysical object
(possibly a binary) along the line of sight to a star, one can talk about the thin lens approximation,
in which the ‘lens plane’ is well defined. A vector lens equation describes the position of the images
of a point source that is viewed through a distribution of matter acting as lens. When this mapping
is not single valued, multiple images of the source arise, this is the so called strong lensing regime.
For non-singular lenses, images appear and disappear in pairs [7] as the source crosses lines in the
source plane called caustics. These caustics hence divide regions in the sky with different number of
images. The images that appear or disappear as the source crosses a caustic have opposite parities.

Here we describe a method that allows to visualize these properties in a simple way and graph-
ically determine the position of the caustics as well as the number of images for a given lens
configuration. This consists in projecting the observer’s sky into the source plane using the lens
equation. The surface describing the sky seen at Earth (the ‘sky sheet’) appears folded (if strong
lensing occurs) and stretched in the source plane. The location of the foldings corresponds to the
position of the caustics, along which the magnification of the images diverges. Every fold produces
a pair of new images of the source with opposite parities. Foldings can be closed lines or they can
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end in a point called a cusp, where two foldings merge so that the sky sheet unfolds. If the lenses
are singular, e. g. in the limit of point-like masses relevant for microlensing, a tear appears in the
sky sheet and one of the new images is lost. This will be described in section 2 which is devoted
to lensing by a single lens. For single lenses the circular symmetry produces a point like caustic
when the lens is perfectly aligned with the source. We also describe in section 2 how this caustic is
transformed when an external shear is added. Some binary lens cases are then analyzed in section
3.

2 The single lens

2.1 The lens equation

As a first example we consider a single lens, corresponding to a mass distribution located at a
distance Dol from the observer, acting as lens for a source located at a larger distance Dos (for
cosmological distances the angular diameter distance has to be used). According to general rela-
tivity, light rays traversing the lens plane are deflected by an angle ~̂α that depends in general on
the distance to the mass distribution. Thus, the images of a source located at an angular position
~β will appear at angular position(s) ~θ satisfying the lens equation

~β = ~θ − ~α(~θ), (1)

where ~α ≡ ~̂αDls/Dos and Dls is the distance from the deflector to the source.
For a point mass lens, which is a good approximation for star lenses, the deflection angle is

given by

α̂ =
4GM

c2ξ
, (2)

with ξ being the distance to the lens from the point at which the light ray intersects the lens plane.
The deflection angle points in the direction from that point to the lens. In terms of the Einstein
angle, θE ≡ (4GMDls/c

2DolDos)
1/2, the lens equation reduces in this case to

~β = ~θ

(

1− θ2E
θ2

)

, (3)

where the angles are measured with respect to the direction towards the lens. This equation has
two solutions for every value of ~β, except for ~β = 0 (perfect source–lens alignment) where all the
points along the circle |~θ| = θE (Einstein’s ring) are images.

When the object acting as lens is a galaxy or a cluster, an extended mass distribution has
to be considered1. Different models have been proposed for this extended distribution [10]. A
simple and widely used one, that reproduces the observed flat rotation curves of galaxies, is the
singular isothermal sphere, which has a mass distribution given by ρ(r) = σ2/2πGr2. Here σ is the
one-dimensional velocity dispersion, which is related to the rotational velocity by vr =

√
2σ. This

model leads to a deflection angle

α̂ = 4π
σ2

c2
, (4)

1Non-compact star-like lenses have also been considered as possible responsible for microlensing events [8, 9].
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which is independent of the distance to the lens and points towards the center of the mass distri-
bution. The Einstein angle in this case is given by

θE = 4π
σ2

c2
Dls

Dos
, (5)

and hence the lens equation can now be written as

~β = ~θ

(

1− θE
θ

)

. (6)

A source located inside the Einstein ring will have two images, one at an angle larger than θE and
the other one at a smaller angle. If the source lies outside the Einstein ring it has just one image,
while if it is aligned with the center of the distribution the image will be the Einstein ring.

The singularity in the center of the mass distribution can be smoothed by a core region with
finite density given by

ρ(r) =
σ2

2πGr2c

3 + (r/rc)
2

[1 + (r/rc)2]2
, (7)

the deflection angle becomes

~̂α = 4π
σ2

c2

~θ
√

θ2 + θ2c
, (8)

where θc ≡ rc/Dol. The lens equation can be written in this case as

~β = ~θ



1−
√

θ2E + θ2c
θ2 + θ2c



 , (9)

where the Einstein angle is

θE =

√

16π2
σ4

c4
D2

ls

D2
os

− θ2c . (10)

This softened isothermal sphere has smoother behavior than the singular models and hence we
will often adopt it as a reference model. In particular, it will be useful to discuss the formation of
image pairs. The analytical solutions of the lens equation giving the position of the image(s) for a
given source is trivial in the singular cases (eqns. (3) and (6)), but to obtain θi(β) (where i labels
the images) in the non–singular case requires to find the solution of the fourth order equation

θ4 − 2βθ3 + (β2 − θ2E)θ
2 − 2θ2cβθ + β2θ2c = 0, (11)

with the constraint sign(θ − β) = sign(θ). This last constraint eliminates one spurious solution
of eq. (11), leaving only one or three physical solutions which correspond to the location of the
images of the source.

2.2 The sky sheet

We turn now to the construction of the sky sheet corresponding to a given lens configuration. This
is done by considering light rays which arrive to the observer along directions forming a regular
grid (in ~θ) and following them back to the source plane according to the lens equation (1). The
image of this grid will define a new surface in the source plane, which will be stretched and folded.
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This problem is two dimensional, i.e. it involves only the observers coordinates (θx, θy) or the
source coordinates (βx, βy). However, to visualize the folds in the sky sheet we have assigned also
a vertical coordinate z to the mapping from the observer to the source skies. We have conveniently
chosen this vertical coordinate as being proportional to the time delay between the actual path of
the light of each image of a source located at (βx, βy) and the straight path from a source located

at ~β = 0 in the absence of lenses.
The time delay for light rays coming from a given source due to the presence of a lens has a

geometrical contribution coming from the extra path length of the deflected ray, plus a gravitational
contribution due to the time stretching in the gravitational potential

t(θ) =
(1 + zl)

c

DolDos

Dls

(

1

2
α2(~θ)−Ψ(~θ)

)

, (12)

where we allowed for a finite redshift zl of the lens and Ψ(~θ) is proportional to the projected
gravitational potential of the lens on the lens plane,

Ψ(~θ) =
Dls

DolDos

2

c2

∫

Φ(Dol
~θ, z)dz, (13)

with Φ the three-dimensional gravitational potential. Ψ is scaled in such a way that the deflection
angle is given by ~α(~θ) = ~∇θΨ.2 This time delay is measured with respect to the arrival time from
the same source in the absence of lenses. To better visualize the sky sheets we have found more
convenient to use the time delay with respect to a source located at ~β = 0 as the z coordinate3.
Taking the z coordinate proportional to the time delay allows to display the arrival time ordering
of the flux variations of the source for the different images, so that flux changes will first appear
for the image with smaller z.

Notice that when the time delay is plotted as a function of (θx, θy) for a fixed source position β,
a surface of time delays is obtained whose extrema (maxima, minima and saddle points) give the
position of the images of the source according to Fermat’s principle [11]. This surface should not
be mistaken with our sky sheet, which is plotted as a function of (βx, βy), i.e. for different source
locations, and the height z is associated with the time delay of the actual images.

Figure 1a shows this sky sheet for the case of the softened isothermal sphere. In this case a
circularly symmetric fold develops, which looks like a blob in the surface. The horizontal coordinates
are (βx, βy), so that the number of intersections of the vertical lines with the surface give the number
of images in the observer’s sky. Clearly for point sources located in the region covered by the blob,
three images will be seen at three different positions in the sky, while for sources located outside
the blob just one image will be seen. Figure 1b shows the projection of the sky sheet in the (βx, βy)
plane, i.e. as seen from above. The amplification of a given image is related to how much this
surface is stretched at the point corresponding to the image (here we started with a rectangular
grid so that the stretching can be visualized, while in Figure 1a and 1c we used a polar grid to
respect the symmetry of the lens). If the surface is very stretched, the magnification is very low,
while if it is contracted, the magnification is high. The circle corresponding to the border of the
blob has then divergent magnification and corresponds to a caustic. When a source crosses it, a

2For the point-like mass Ψ(~θ) = θ2E ln(|~θ|/θE), for the singular isothermal sphere, Ψ(~θ) = |~θ|θE , and for the

softened isothermal sphere, Ψ(~θ) =
√

(θ2 + θ2c )(θ2E + θ2c )
3Since the additional delay is independent of the lens distance while the usual time delay depends on it, for the

plots we took for definiteness Dol = Dls.
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Figure 1: The sky sheet for the isothermal sphere. Panel a) displays the case of a softened isothermal
sphere with a core radius θc = 0.2 θE. The horizontal axes are the coordinates in the source plane
(βx, βy). The vertical axis is taken proportional to the time delay associated to each image. The
number of images of a source is given by the times that a vertical line in the source location
intersects the sky sheet. The order of arrival of a light pulse from the source is proportional to
the z coordinate and hence the image with smaller z will show the pulse first. Panel b) shows a
projection of case a) into the (βx, βy) plane. The thick solid line displays the points observed in
the source plane when we move the observation direction along a straight line. Panels c) and d)
are similar to a) and b) but for the case of a singular isothermal sphere. Notice that the upper cap
has disappeared in the singular case and the sky sheet is opened
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Figure 2: Sky sheet for the point-like lens

pair of new images appears in a different region of the sky, corresponding to the intersection of
the vertical from the source position (βx, βy) with the blob. This is a fold caustic according to
the catastrophe theory classification [12, 13], and we see that it actually corresponds to a fold in
the sky sheet. The other singular point is the central one, corresponding to the place where the
blob formed. A source located there (i.e. perfectly aligned with the lens) will have as images all
the points of the circle (i.e. the Einstein ring) that contracted to that point. This is a point-like
caustic, which can appear exclusively for circularly symmetric lens configurations.

It is interesting to note that if we for instance point a telescope at a fixed latitude and move it
from left to right along a meridian through a region of the sky where an isothermal lens is located,
we are first seeing points in the source plane from left to right. When we arrive to the fold caustic,
we start moving in the source plane from right to left as we move the telescope to the right, and the
direction reverses again when we arrive to the other fold caustic. Thus, we cross the blob region
three times, first to the right, then to the left and again to the right, as it is clear following the
thick line in Figure 1b.

Figure 1c and 1d show the sky sheet for the case of the singular isothermal sphere. Here, the
sky sheet develops a cut in the blob, transforming the blob into a cone, and the most demagnified
central image disappears. Thus, a source can have just one or two images in this case. The second
image appears or disappears as the source crosses the cut in the sky sheet and has its parity inverted
(for instance, it is easy to see from the blob picture 1c which was drawn with polar coordinates,
that the θ̂ unit vector will reverse orientation when projected into the source plane if it is inside
the cone, while the unit vector in the radial direction will not be reversed, and hence the parity
has to change).

For the point-like mass the deflection angle formally diverges as we approach the lens direction,
thus in this case there is also a cut in the sky sheet, but the border is stretched to infinity4, as shown
in Figure 2. Hence, in this case there are always two images for any source position (except for
perfect alignment, where the Einstein ring is the image). The principal image is always magnified,
while the other one can become very demagnified, what is reflected here in that the conical surface
becomes very stretched as we move out from the lens position.

4Clearly it has no meaning to consider impact parameters smaller than the radius of the lens. If the lens is a
Schwarzschild black hole, a sequence of images is expected to appear on both sides of the optical axis, corresponding
to light rays that go around the lens several times [14].
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Figure 3: Left panels: position of the images for a source moving along a straight line (dotted)
with impact parameter 0.2 θE for the softened isothermal sphere (top), the singular isothermal
sphere (middle) and the point-like lens (bottom). The circles and squares identify the positions
of the source and images for two different times. Right panels: amplification of the individual
images (thin lines) as the source crosses the lens. The thick lines correspond to the sum of the
amplifications.
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The magnification of the images is given, in the case of circular symmetry considered, by

Ai =
∣

∣

∣

θi
β

∂θi
∂β

∣

∣

∣. The resulting expressions for the singular cases are well known, and for the non–

singular case we have found the amplifications using the solutions θi(β) of eq. (11).
In Figure 3 we display illustrative examples for each of the three models. In the left panels we

show the image locations (the axes are (θx, θy), measured in units of the corresponding Einstein
radii) for a source located at βy = 0.2 θE and with varying βx, i.e. moving it along the dotted
horizontal line. Two particular source positions and their images are identified with an asterisk
and a square. From top to bottom the Figures correspond to the softened isothermal sphere, the
singular isothermal sphere and the point-like mass. This corresponds to a source crossing the source
plane along the dashed line in Figures 1b and 1d.

In the right panels of Figure 3 we show for the same systems the corresponding magnifications
Ai as a function of βx (measured in units of θE). The thin lines correspond to the individual
images, while the thick lines indicate the sum of the amplifications, which is the relevant quantity
when the images are unresolved. Notice that in the non singular case, the fainter image (dashed
line in the first panel in Figure 3) is the one closest to the optical axis. Its magnification would
decrease with decreasing core size θc, becoming zero in the singular limit θc → 0 (this explains
why only two images are seen in the singular cases, the two lower panels in Figure 3). Due to
its significant demagnification, this third image is usually missed in the observations of multiple
images of quasars. We also see that besides the high magnifications of the images for small β, there
are now also peaks of high magnification associated to the formation or disappearance of the image
pairs at caustic crossing, something that is not observed in the singular cases.

2.3 Distorting the point-like singularity

In the three examples illustrated the lens is circularly symmetric and hence they all have the point-
like caustic in the center, whose image is the Einstein ring. Any departure from this lens symmetry
will make the point-like caustic to distort to several fold caustics merging in pairs at cusps. For
example, we could add to the smooth isothermal sphere an external shear γ and convergence κ to
model the local effect of the environment around a lensing galaxy or an elliptical lens [15, 16]). This
effect can be described by the first terms of the Taylor expansion of the projected gravitational
potential, which in the principal axes system of the shear is

Ψ(θx, θy) =
κ

2
(θ2x + θ2y) +

γ

2
(θ2x − θ2y), (14)

A non-vanishing shear then clearly breaks the circular symmetry of the lens. For this case the lens
equation can be written as

βx = θx

(

1− κ− γ − Dls

Dos

4πσ2

c2
1

√

θ2 + θ2c

)

, (15)

βy = θy

(

1− κ+ γ − Dls

Dos

4πσ2

c2
1

√

θ2 + θ2c

)

. (16)

We show in Figure 4 the sky sheet for a set of values of γ and κ = 0. For small values of |γ|,
such that |κ ± γ| < 1, the central point-like caustic is deformed to four fold caustics ending in
four cusps. This can be understood as follows. In the circularly symmetric case, the Einstein ring
was contracted to a point in the sky sheet, the point of contact of the blob with the rest of the
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Figure 4: The sky sheet for a singular isothermal sphere with θc = 0.2 θE in the presence of an
external shear corresponding to different values of γ.
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Figure 5: Close view of a cusp: two caustics
merge and the sky sheet unfolds.

surface. When we add a shear, there are for instance two different circles that will become shrinked
to segments, one in the βx direction (with radius equal to the value of θ giving βy = 0 in eq. (15)),
and the other in the βy direction (with radius equal to the value of θ giving βx = 0 in eq. (16)).
When identifying a circle with a segment, the interior of the circle will give rise to a blob, whose
border will be a fold caustic. The endpoints of the above mentioned segments will correspond to
the merging of two folds into a cusp. Depending on its location, a source can have one, three or
five images. We have to count how many times the point at which the source is located is covered
by the sky sheet. Points that are inside the oblate caustic (in the first two panels in Figure 4)
get a pair of additional images and those that are inside the diamond shaped caustic get another
additional pair.

If the value of the shear is increased, the structure of the caustics changes. The oblate caustic
(pure fold) shrinks inside the diamond caustic, taking with it the pair of cusps which were in the
horizontal direction (third panel of Figure 4). In this process the diamond shaped caustic has lost
a pair of cusps and hence also appears as two folds merging into two cusps (this pair of cusps are
far away in the vertical direction and thus are not displayed in the figure)5.

When |γ| > 1, the vertical fold disappears (it is stretched to infinity) and only the horizontal
fold shown in the last panel of Figure 4 remains. In this case there are just two folds merging into
two cusps (lips singularity). A source inside the folds has three images, while one outside has one

5Let us notice that the folds and cusps that appeared in the sky sheet figures are the two types of catastrophes of
two dimensional systems. One may also identify some higher order catastrophes by considering in Figure 4 the shear
as the third parameter. The transition discussed between the second and third panels corresponds to an hyperbolic
umbilic.
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image. When a source crosses this lens in a direction transverse to the folds, a pair of new images
adds to the original one in a different place of the sky when the source crosses the first folding.
One of the new images is inverted, while the other is not. As the source continues moving, the
inverted image approaches the original image, merges with it when the source crosses the second
caustic and they disappear, leaving as single image of the source the one which was created in the
crossing of the first fold. When the source enters the folded region through the cusp, the new pair
of images appears in the same position as the original image, and then they separate from each
other. We show in Figure 5 a close view of a cusp. It is clear how the two caustics, corresponding
to the folds in the sky sheet, end in the cusp and the sky sheet surface unfolds there.

To better appreciate the folds in Figure 4 and the time delay structure of the images, we present
in Figure 6 different vertical cuts of the second panel in Figure 4. The boxes show the sky sheet
profiles along the indicated cuts which allow the visualization of the folds. We have also indicated
the nature of the different images along each sheet, i.e. whether they are minima (m), saddle
points (s) or maxima (M) of the time delay function. These properties change at each fold of the
sheet. The pair of images created in a fold can be a saddle point and a maximum or a saddle point
and a minimum. The saddle points correspond to the images with inverted parities. The vertical
coordinate we have chosen clearly allows a simple characterization of the extrema just by inspection
of these cuts and knowing that far from the lens the single images are minima of the time delay6.
If the lens were to become singular, the sky sheet would be qualitatively similar except that the
upper surface (the maximum) would be absent, leaving a hole in the sky sheet.

3 Binary lenses

Another configuration in which the circular symmetry is broken is when a second lens is present in
the proximity of the original one. This configuration is of relevance for the study of microlensing by
binary stars or planetary systems. When the lens is formed by a binary system, the deflection angle
of a given light ray is given by the superposition of the deflections produced by the two individual
lenses. If the lenses, that we take as softened isothermal spheres with dispersion velocities σ1 and
σ2, are located in the lens plane forming angles ~θ1 and ~θ2 with the chosen optical axis, then the
lens equation can be written as

~β = ~θ − µ1(~θ − ~θ1)

√

√

√

√

θ2E + θ2c

|~θ − ~θ1|2 + θ2c
− µ2(~θ − ~θ2)

√

√

√

√

θ2E + θ2c

|~θ − ~θ2|2 + θ2c
(17)

where µ1 ≡ σ2
1/σ

2, µ2 ≡ σ2
2/σ

2, with σ2 = σ2
1 + σ2

2 , and θE refers to the Einstein angle of a single
lens with velocity dispersion σ (eq. 10)

The caustics for the case of two equal point-like lenses have been studied in detail by Schneider
and Weiss [17]. An extension to more general geometries can be found in Refs. [18] and [19]. A
numerical study of the extension to an ensemble of compact objects can be found in ref. [20].

We show in Figure 7 the sky sheet for the case of equal lenses (σ1 = σ2) and an ensemble of
values for the lens separation δ ≡ |~θ1 − ~θ2|/θE . We took for both lenses a core radius θc = 0.2 θE.
As the distribution of matter is smooth, there are no cuts in the sky sheet and the additional
images appear in pairs (there is an odd number of them for every source position). If the distance

6except for very large shear, e.g. in the last panel of Figure 4, for which the images outside the blob are saddle
points.
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Figure 7: The sky sheet for a binary lens composed of two identical softened isothermal spheres for
different values of separation between the lenses.
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between the lenses is large, the caustics associated to each lens are separated. Each one has a
pure fold caustic and a diamond shaped caustic with four cusps. A source can have one, three or
five images depending on whether it is located outside the caustics, inside either the fold or the
diamond caustic, or inside both of them (first panel). As the lenses get closer, the diamond shaped
caustics become more elongated, until they merge and form a six cusps caustic as shown in the
second panel 7. For even closer lenses, the two pure fold caustics (the blobs) intersect and a region
with seven images develops in the center (third panel). The fourth panel shows that as the lenses
continue to approach each other the six cusps caustic shrinks to a four cusps caustic (actually, in
an intermediate stage two small triangles are formed at the top and bottom of the diamond caustic
in beak-to-beak singularities, and they shrink and disappear in a higher order catastrophe, leading
to a single pure fold caustic containing a vertical lips singularity. This last shrinks and disappears
for decreasing δ, and the single lens caustics are recovered in the limit δ → 0).

It is straighforward to generalize this to an asymmetric case. As an example we show in Figure 8
the sky sheet for a binary lens system with different masses. We take two softened isothermal
spheres with core radius given by θc = 0.2 θE . The distance between the lenses is fixed at δ = 1.2,
and the sky sheet is shown for different values of the parameter µ1. If one of the masses largely
dominates the system, the sky sheet resembles the single lens case, but instead of the central point
like caustic there is diamond shaped caustic. As the second mass becomes more important a new
vertical fold starts to develop inside the diamond. This fold grows with the mass of the second lens
and eventually cross the border of the diamond, transforming the diamond in a six cusps caustic
and giving rise to a new pure fold caustic associated to the second lens (this transition is associated
with two hyperbolic umbilics).

4 Conclusions

Some basic properties of simple gravitational lensing systems have been displayed using a graphical
approach. This consists in projecting a regular grid in the image (observers) plane to the source
plane using the lens equation. In the strong lensing regime, the mapping is not one to one, thus
the regular grid becomes folded in the source plane.

This construction is straightforward and has several useful properties. In the first place, it gives
a clear picture of which regions of the sky are seen when we look along directions close to a lensing
system. The location of the caustics corresponds to the folds in the sky sheet. It is also easy to
determine the number of images of a given source by counting the number of times that the sky
sheet covers that position. The stretching of the sky sheet surface gives an idea of the magnification
of each image.

The sky sheet plots provide also a simple pictorial view of features like the formation of addi-
tional images in pairs when the source crosses a caustic, of the parity of the images, or the fact
that new images appear close to the original one when the source crosses a cusp.

Finally, the choice of the z coordinate as proportional to the time delay associated to each
image allows to display the ordering of arrival of any luminosity change of the source along the
different image directions, and also to characterize the kind of extrema of the time delay function
associated with each image.

Work partially supported by CONICET, Fundación Antorchas and Agencia Nacional de Pro-
7This merging corresponds to a beak-to-beak transition.
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Figure 8: The sky sheet for a binary lens composed of two softened isothermal spheres separated
by a distance δ = 1.2 for different values of the mass ratio µ1.
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