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Numerical Jordan-Wigner approach for two-dimensional spin systems
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We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for
two-dimensional spin systems. We apply it to the study of the well-known quantum (S51/2) antiferromagnetic
XXZ system as a function of the easy-axis anisotropy D on a periodic square lattice. For the SU(2) case the
method converges to a Néel ordered ground state irrespective of the input density profile used and in accor-
dance with other studies. This shows the potential utility of the proposed method to investigate more compli-
cated situations such as frustrated or disordered systems.
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I. INTRODUCTION

Quantum spin systems in two-dimensional ~2D! lattices
have been the subject of intense research, mainly motivated
by their possible relevance in the study of high-temperature
superconductors.1 On the other hand, high-magnetic-field ex-
periments on materials with a 2D structure which can be
described by the Heisenberg antiferromagnetic model in
frustrated lattices have revealed novel phases as plateaux and
jumps in the magnetization curves.2 In spite of the huge ef-
forts made, a general understanding of the phase diagram of
such magnets is elusive and it is then worth trying to develop
new techniques to study these systems systematically.
Among the many different techniques that have been used to
study such systems, the generalization of the celebrated
Jordan-Wigner ~JW! transformation3 to two spatial
dimensions4 has some appealing features. It allows one to
write the spin Hamiltonian completely in terms of spinless
fermions in such a way that the S51/2 single-particle con-
straint is automatically satisfied due to the Pauli principle,
while the magnetic field enters as the chemical potential for
the JW fermions. The price one has to pay is the appearance
of complicated nonlocal interactions between fermions. This
method has been applied in Ref. 5 ~see also Ref. 6! to study
the XXZ Heisenberg antiferromagnet. These studies have
been reviewed in Ref. 7.

More recently this technique was used to obtain a theo-
retical magnetization curve for the Shastry-Sutherland
model, reproducing at the mean-field ~MF! level some of the
experimentally observed features for the material
SrCu2(BO3)2 which is assumed to be described by such
model.8 Also the J1-J2 model, in relation to Li2VOSiO4 and
Li2VOGeO4 compounds,9 and the XY model10 were ana-
lyzed with the same technique. All the studies performed
have been based on a mean-field decoupling scheme as the
starting point to deal with the nonlocal interactions intro-
duced by the JW transformation. In Ref. 5 the mean-field
procedure was further supplemented by the inclusion of fluc-
tuations in terms of an auxiliary gauge field with a leading
Chern-Simons dynamics coupled to the lattice fermions.
However, in spite of the partial success of the JW transfor-
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mation, many problems remain open, in particular in connec-
tion to the study of frustrated systems such as the triangular
lattice. In some cases, the results obtained via a direct mean-
field treatment lead to results that are believed to be incor-
rect, such as the appearance of a spin gap in the triangular
lattice case ~see the discussion in Ref. 8!. The main problem
associated with the JW approach is related to the implemen-
tation of the above-mentioned mean-field decoupling, which
renders the description approximate. Another highly non-
trivial problem is the construction of the lattice description of
the Chern-Simons theory, which has been carefully studied
for the square lattice case only.11

It is the purpose of the present paper to propose a system-
atic self-consistent mean-field method for exploring the
ground state ~g.s.! of 2D lattice spin-1

2 systems, in a way that
could be applied to arbitrary lattice topologies. The method
can also be used in the presence of an external magnetic
field, at finite temperature and even be applied to disordered
systems.

II. JORDAN-WIGNER TRANSFORMATION IN TWO
DIMENSIONS

The Jordan-Wigner transformation in two spatial dimen-
sions was originally proposed in Ref. 4 as a generalization of
the well-known transformation in 1D, and has been further
developed in Refs. 5, 6. It maps a set of spin-1

2 operators SW p
on lattice sites p into spinless fermion operators cp by

Sp
25cpexpF i (

qÞp
uqpcq

†cqG ,

Sp
15cp

†expF2i (
qÞp

uqpcq
†cqG ,

Sp
z 5cp

†cp21/2, ~1!

where S65Sx6iSy are the usual spin raising and lowering
operators and uqp is the argument of the vector drawn from
site p to site q. The transformation is nonlocal, and sets a
preferred quantization axis z. The spin operators ~1! satisfy
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bosonic SU(2) commutation relations, while the Pauli prin-
ciple ensures that they belong to the irreducible representa-
tion S51/2. Indeed, the only necessary ingredient that en-
sures the SU(2) commutation relations is the assignment of
the phase factors which satisfies, for each pair of sites p ,q ,

eiupqe2iuqp521. ~2!

One should notice that there is a large freedom in choosing
phase factors satisfying condition ~2!. For instance, one
could arbitrarily shift upq→upq12kp with different integers
k for each pair of lattice points p ,q , or even perform an
arbitrary simultaneous rotation for upq and uqp . Standard
plane angles 2p,u<p measured from the x axis is just the
simplest translation invariant choice on the flat infinite plane.
It should be stressed that this large freedom does not alter the
physical results, as long as all degrees of freedom are treated
exactly. However, in any approximate treatment, this may
introduce ambiguities that should be handled carefully, as we
discuss below.

One salient feature of the JW transformation is that no
constraint is needed on the new variables ~cf., for instance,
the Holstein-Primakoff or Schwinger bosons!, but nonlocal-
ity is the main stumbling block in the approach.

The success of the JW transformation in one spatial di-
mension, in spite of being nonlocal, resides on the fact that
XY nearest-neighbor ~NN! interactions become local in fer-
mion variables; this is not the case in two dimensions. In-
deed, consider the XY Hamiltonian on a given 2D lattice,

HXY5J (
^p ,q&

~Sp
x Sq

x1Sp
ySq

y !, ~3!

where J is the exchange constant and the sum runs over all
nearest neighbors ^p ,q& on the lattice. In terms of fermion
variables the Hamiltonian reads

HXY5J (
^p ,q&

S 1
2 cp

†eiâ(p ,q)cq1H.c.D , ~4!

where

â~p ,q !5(
r

8
~urq2urp!cr

†cr ~5!

~the prime on the summation indicates that urr terms are
absent!. This phase is highly nonlocal; in the 1D case, the
same expression becomes local due to the fact that the only
two actual values for the angles are 0 and p . The nonlocality
in 2D is usually overtaken by the introduction of an auxiliary
gauge field Am , which on the one hand represents the phases
in Eq. ~4! as the usual minimal coupling on the lattice, and
on the other hand is governed by a Chern-Simons action. The
Gauss law associated to the first-order Chern-Simons action
imposes a constraint which in anyon language attaches half a
quantum flux to each fermion, providing the statistical trans-
mutation of fermions into bosons. Then, a mean-field treat-
ment ~known as average field approximation! of the gauge
field can be done, leading in general to a quadratic NN in-
teraction between fermions.5 However, the Chern-Simons
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approach has serious difficulties when one deals with arbi-
trary lattice topologies ~for example, the triangular lattice!,
and the associated mathematical problems are not yet solved.

We do not introduce such an auxiliary gauge field, but
keep working with fermion variables. In order to perform
numeric computations, one has to set a finite-size lattice and
impose suitable boundary conditions. We use periodic
boundary conditions, thus leading to a lattice on the torus.
Moreover, the lattice size should be compatible with possible
periodic configurations; in the case of a square lattice, size
must be even in order not to interfere with the possible Néel
order.

Now, it is not straightforward to define the JW transfor-
mation on the torus,12 as the vector joining two different
points is not unique. As one has to take care of condition ~2!,
the vectors joining p with r and r with p must have argu-
ments differing in p . We have to choose a unique segment
joining each pair of points p ,r , and then draw both vectors
along it. One can choose this segment by a criterion of mini-
mal distance. However, there exist pairs of points on the
torus that can be joined by two or more different segments
with minimal distance and hence an ad hoc criterion must be
added. Any such criterion unavoidably breaks translation in-
variance, by preferring one segment over the rest. Naturally,
we propose a criterion trying to minimize the violation of
translation symmetry as follows: we set a principal finite-size
lattice and extend it on a plane by periodicity; for each point
on the principal lattice we consider also its periodic copies.
Now, given a pair of sites, we look for the shortest segment
joining either the points or their copies; when such a segment
is unique, the procedure is translationally invariant. For those
pair of points where one can find more than one minimal
distance segment, we choose the one with both ends belong-
ing to the principal lattice, thus breaking translation invari-
ance. Finally, the angles upr and urp are computed as the
arguments of the vectors joining p and r along the chosen
segment. For convenience we also define that upp50, in
order to handle the restriction on the sums in Eqs. ~1! and
~5!.

As mentioned in the Introduction, the JW transformation
is exact but the resulting Hamiltonian is highly nonlocal and
some kind of approximation is necessary to proceed.

We propose here a variational approach to deal with the
nonlocal phases in Eq. ~4! and the quartic terms that can arise
from Sz interactions. Working directly with fermion vari-
ables, we replace the local fermionic occupation numbers
n̂ p5cp

†cp by their expectation values in an arbitrarily chosen
variational state. This procedure leads to a multiparameter
mean-field approach, which will in turn be evaluated self-
consistently. This is the subject of the following section.

III. VARIATIONAL APPROACH, APPLIED TO THE XXZ
MODEL

To describe in full detail the method laid down above, we
apply it to a generalized quantum spin-1

2 Heisenberg antifer-
romagnet in a square 2D periodic lattice, defined by the
Hamiltonian
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HXXZ5J (
^p ,q&

~Sp
x Sq

x1Sp
ySq

y1DSp
z Sq

z !2h(
p

Sp
z , ~6!

where SW p5(Sp
x ,Sp

y ,Sp
z ) represents the S51/2 spin operator

at site p, J.0 is the exchange constant, and 0,D,` the
‘‘XXZ’’ anisotropy parameter. The first sum in Eq. ~6! runs
over all nearest neighbors in the given lattice, while the last
term represents the interaction with a transverse external
magnetic field h. We work on a periodic rectangular lattice of
size K5Nx3Ny .

Using the JW transformation defined in Eq. ~1!, the
Hamiltonian can be written in terms of spinless fermions as

HXXZ5J (
^p ,q&

F1
2 ~cp

†eiâ(p ,q)cq1H.c.!1DS cp
†cp2

1
2 D

3S cq
†cq2

1
2 D G2h(

p
S cp

†cp2
1
2 D , ~7!

where the phase â(p ,q) is defined in Eq. ~5!. Notice that the
magnetic field h plays the rôle of a chemical potential for the
JW fermions. In particular, we look for the ground state of
the system ~7! with fixed global magnetization M50 ~corre-
sponding to h50).

We implement a self-consistent mean-field solution by
starting with a given fermion distribution profile $np% ~which
can be random or guided by some ansatz! on the lattice,

^n̂ p&5np , ~8!

which has to satisfy a global constraint to provide the given
magnetization ~here (np5K/2 corresponds to M50). We
then replace the operator â(p ,q) by its expectation value

^â~p ,q !&5(
r

~urq2urp!nr , ~9!

where the angles upq are assigned following the criterion
presented in the preceding section. To be precise, the princi-
pal lattice can be defined by indexing each site by a position
pair (i , j), and setting the range i50•••Nx21, j50•••Ny
21. Periodic boundary conditions are then expressed by
(i , j)[(i1Nx , j)[(i , j1Ny).

Regarding the Ising term

Sp
z Sq

z 5cp
†cpcq

†cq2 1
2 cp

†cp2 1
2 cq

†cq1 1
4 ~10!

in Eq. ~7!, it is quartic in fermion operators, so it requires
some mean-field approximation. In order to estimate the first
term in Eq. ~10! with a quadratic expression we propose the
following:

cp
†cpcq

†cq→ 1
2 ~cp

†cp^cq
†cq&1cq

†cq^cp
†cp&!. ~11!

This should be contrasted with a more standard proposal
in the literature, cp

†cpcq
†cq→cp

†cp^cq
†cq&1cq

†cq^cp
†cp&

2^cp
†cp&^cq

†cq& . While there is no first-principles reason to
distinguish both proposals, we wave chosen the one sup-
ported by best results in a posteriori evaluation of the g.s.
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energy ~see Sec. IV!. Some other possibilities for handling
the quartic term are discussed in Ref. 7.

At this step, the Hamiltonian can be written as

HXXZ
(MF)~$np%!5(

p ,q
cp

†Jpq~$np%!cq1C ~12!

where

Jpq

55
J
2 ei^a(p ,q)& if ^p ,q& nearest neighbors

JD

2 S (
neighbors r

^nr&24 D if p5q

0 otherwise

~13!

and C5KJD/2.
The main idea of the present paper is to provide a system-

atic way to compute an approximation to the true g.s. We
first find the g.s. for the quadratic HXXZ

(MF)($np%) by solving
the one-particle ~1P! spectrum and filling the system with the
lowest-energy 1P states, up to the proper filling fixed by the
total magnetization M. Then we compute from this approxi-
mate g.s. a new set of local densities np85^g.s.ucp

†cpug.s.&,
which we use as a new input in Eq. ~12! and iterate this
procedure looking for a fixed point configuration for the den-
sity profile, i.e., a set of local densities $np*% satisfying

np8~$nq*%!5np* . ~14!

The existence of a fixed-point solution for this mapping and
its eventual dependence on a given initial configuration is not
at all obvious and has to be studied numerically.

In order to proceed with the method, HXXZ
(MF)($np%) can be

written in diagonal form

HXXZ
(MF)~$np%!5 (

k51

K

e~k !dk
†dk1const, ~15!

where ek are the 1P eigenvalues of the quadratic part of
HXXZ

(MF) . Notice that k is just an integer index over the spec-
trum, not to be confused with the lattice momentum. More-
over, we order the eigenvalues ascendently.

The operators dk are related to cp by

dk5(
p

Qkp* cp , ~16!

where Qpk is the matrix of eigenvectors of Jpq . We compute
both ek and Qpk numerically. Q being unitary, the set of dk
operators satisfy fermion commutation relations $dk ,dk8

† %
5dkk8 . Moreover, the total fermion number operator satis-
fies

N5 (
p51

K

cp
†cp5 (

k51

K

dk
†dk , ~17!
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making it easy to control the filling in terms of the new
fermions.

We now construct the approximation to the quantum g.s.
as the half-filled state that minimizes the energy, namely,

ug.s.&5)
k51

K/2

dk
†u0&. ~18!

Notice that this is a well-defined quantum state of K/2 par-
ticles, except for casual degeneracy of the 1P spectrum at the
Fermi level. This is not the case for the XXZ model on the
square lattice ~see details below!.

From ug.s.& it is now easy to compute the approximate g.s.
energy, as

Eg.s.5^g.s.uHXXZ
(MF)ug.s.&5 (

k,K/2
ek1C . ~19!

Also the local occupation numbers can be computed in this
approximate g.s. as

np85^g.s.ucp
†cpug.s.&5 (

k,K/2
Qpk* Qpk . ~20!

With these occupation numbers we start again the procedure:
compute Jpq in MF, diagonalize the new HXXZ

(MF) , etc.
We have found after thorough numerical investigations

that a fixed-point solution for Eq. ~14! always exists, but
metastable solutions can also appear, depending on the initial
configuration one chooses. In any case, one can distinguish
metastable solutions from the best g.s. approximation simply
by comparing their energies. Moreover, we describe below
how this drawback can be naturally solved by introducing a
thermal bath to kick the system out from the vicinity of
metastable states.

Indeed, one can consider the effects of finite temperature
by replacing the proposed ground state ~18! by a thermal
state uCb&, compatible with the Fermi-Dirac 1P energy dis-
tribution at a given temperature,

n~e!5
1

11exp@b~e2 ē !#
, ~21!

where ē is the 1P Fermi energy at half filling and b51/kT is
the inverse temperature. In detail, this thermal state uCb& is
constructed as

uCb&5 )
kPs

dk
†u0& , ~22!

where s is a set of K/2 1P states chosen with probability
n„e(k)… from some random simulation.

An exploration of the Hilbert space of the system by con-
structing a thermal state from a starting fermion distribution,
computing from it the new local fermion distribution and
again constructing a thermal state should be considered as a
thermalization at the given temperature. It provides a source
of thermal noise that has proven to help the system in finding
lower-energy fixed points.
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The thermalization can be done through several steps at a
given temperature, and then quenching to the pure quantum
regime (T50), or it can be implemented by gradually low-
ering T ~annealing!.

Besides, results at finite T can also be achieved by con-
structing a statistical ensemble of microscopic states compat-
ible with T. Observables should then be computed as aver-
ages over the statistical ensemble. We do not attempt to
complete this program in the present paper.

IV. RESULTS

We have tested the iterative approach described in the
preceding section with the well-known anisotropic XXZ
model on periodic 2D square lattices of size up to 20320
sites, at zero total magnetization. The sizes of the lattice that
we explored are by no means an upper limit, as our compu-
tations were made on a modest computer. The anisotropy
parameter D has been explored in a range from 0.05 to 1.5,
including the isotropic SU(2) case (D51, Heisenberg
model!. As starting configurations $np% we have used ran-
dom, uniform, and different amplitude staggered distribu-
tions. We performed several iterations and analyzed the evo-
lution of the local fermion profile and the approximate g.s.
energy. We report the results in terms of spin variables, not-
ing that the local fermion occupation represents the local
magnetization as mz(p)5np2 1

2 .
Working at T50, we have found that in general, from

different starting configurations, the system rapidly finds a
Néel order as stable ground-state approximation, after 15–20
iterations. The Néel order parameter, usually defined as the
staggered or sublattice magnetization mz , depends on the
anisotropy parameter D . Fluctuations around this staggered
magnetization are typically of order 1028. In Fig. 1 we plot
the Néel order parameter mz of the fixed-point solution for
different values of D , for several lattice sizes. Finite-size
effects are noticeable for lower values of D , so we also show
the results of a finite-size scaling mz(`) of our data, fitted
with a power law mz(K)5mz(`)1c/Ka. The corresponding

FIG. 1. Néel order parameter at fixed points as function of the
anisotropy D . Several lattice sizes and the scaling limit are shown.
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g.s. energies per site are shown in Fig. 2 where one observes
that scaling with the system size is clearly less important. We
have observed that the 1P spectrum of the mean-field Hamil-
tonian ~12! presents a gap 2mzJD for Néel ordered configu-
rations, at the half-filling Fermi level. This is in agree-
ment with Ref. 5 and makes the construction of ug.s.& in
Eq. ~18! unambiguous. Limiting cases for the anisotropy
have also been considered: the XY model (D50) presents
uniform filling (mz50), with ground-state energy per site
Eg.s.520.403J , while the Ising model (D→`) presents
full filling of one sublattice (mz50.5) and energy Eg.s.
520.5DJ . Had we used the more standard MF proposal for
the Ising term, commented on after Eq. ~11!, we would have
got higher g.s. energies for the whole range of D .

In the case of random initial distributions, metastable con-
figurations can show up; a detailed inspection of the local
magnetization in these cases reveals the formation of antifer-
romagnetic domains, that is, the presence of the two possible
Néel configurations in different regions. In Fig. 3 we show
an example of such domains, at two different stages of a
sample evolution. It is natural to expect that larger lattices
favor the formation of these domains, as it indeed is ob-
served. These configurations have higher energy than the
uniform Néel state and correspond then to metastable con-
figurations; correspondingly, they are not presented in Figs. 1
and 2.

When a thermal bath is simulated on random initial con-
figurations, we have observed that metastable configurations
are less likely to appear. After thermalization we let the sys-
tem to cool down by either quenching or annealing as de-
scribed in Sec. III, and complete the iterations at T50. In
fact, a few steps (;10) of thermalization with sufficiently
high T completely avoid domain formation and lead to a
unique fixed-point mean-field configuration; the required
temperature is higher for larger lattices, being of the order of
J for the lattice of 20320. We have checked that under gen-
eral circumstances, quenching provides the fastest conver-
gence method to the minimum-energy state. An example of
the evolution of the Néel order parameter from an initial

FIG. 2. g.s. energy as a function of the anisotropy D . Data
correspond to configurations plotted in Fig. 1.
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random configuration, under thermalization with different
temperatures, is shown in Fig. 4.

The results of the present MF computation show all the
features expected for the Heisenberg antiferromagnet on the
square lattice. They are of course not comparable to accurate
numerical techniques,13 but are in qualitative agreement with
results from previous studies. In particular, in the scaling
limit we obtain no Néel order for small anisotropy D , where
the system presumably has XY order. We can estimate a
critical value D*'0.2, above which Néel order develops.
For the isotropic Heisenberg point D51 we obtain a sublat-
tice magnetization mz50.3453, with ground-state energy per
site Eg.s. /K520.5683J , to be compared, for instance, with
corresponding quantum Monte Carlo values of 0.307 and
20.6694J .14 One can compare also with MF descriptions of
the usual statistical gauge field, which depending on the
symmetry ansatz give magnetizations ranging from 0.39 to
0.44 and ground-state energies ranging from 20.48J to
20.648J .5,6

We must stress that our MF results are obtained with no a
priori assumption on any kind of order. They thus provide at
least an educated ansatz that could be refined by analytical
adjustment of the relevant parameters and by the inclusion of
fluctuations.

FIG. 3. Occupation patterns for a metastable configuration,
where antiferromagnetic domains appear. The size of the points is
proportional to the local fermion occupation number. These con-
figurations occurred on a 20320 lattice, with D51.1, after ten
steps of thermalization at T50.2J , and 10 ~upper panel! or 20
~lower panel! more steps of g.s. search at T50. The smaller do-
main is seen to decrease in size under the simulated evolution.
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V. CONCLUSIONS

We have presented a self-consistent MF procedure for ex-
ploring the quantum ground state of any S51/2 spin system
on a 2D lattice. When tested on the XXZ model on a square
lattice, the method provides the correct qualitative descrip-
tion of the system, with no a priori ansatz for any kind of
order. We computed the values for the sublattice magnetiza-
tion and g.s. energy for a wide range of values of the anisot-
ropy parameter, which compare qualitatively well with the
available numerical data, at least for D51 where most accu-

FIG. 4. Example of the evolution of the Néel order parameter
from a sample initial random configuration. Data corresponds to the
system depicted in Fig. 3, with a vertical line separating the thermal
evolution and the T50 evolution. Error bars indicate the standard
deviation of local magnetization from Néel order ~reduced by a
factor of 5 for clarity!. Insufficient thermalization can lead to meta-
stable configurations or to very slow convergence, while higher
temperature dramatically improves convergence towards an ordered
configuration.
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rate data are available. Moreover, we have found that the
sublattice magnetization as a function of the XXZ anisotropy
shows the correct qualitative behavior, expected from a spin-
wave analysis.5

The present approach has a more general scope than pre-
vious MF computations, in the sense that it can be applied to
any lattice topology, irrespective of the appearance of frus-
trating units, a fact that prevents the applicability of one of
the most powerful numerical techniques such as quantum
Monte Carlo. A magnetic field can be trivially added as a
chemical potential for the JW fermions and hence magneti-
zation curves could be obtained. Since the method is not
based on any periodicity of couplings, it can be well suited to
study disordered quantum spin systems, at the only price of
increasing the CPU time. Last but not the least, the approach
is naturally well suited for the study of the thermodynamics
of these systems, since temperature can be added in a simple
way.

Among other situations, it would be interesting to apply
this technique to the Heisenberg quantum antiferromagnetic
on the triangular lattice, where there is disagreement between
Chern-Simons MF predictions8 and numerical data about a
magnetization plateaux at zero magnetization. Another case
of interest is the kagomé lattice, where a quantum spin liquid
is believed to be realized15 ~see also Ref. 16!. This issue will
be investigated elsewhere.
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