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We study monopole and dyon solutions to the equations of motion of the bosonic sector of N54 gauged
supergravity in four dimensional space-time. A static, spherically symmetric ansatz for the metric, gauge fields,
dilaton, and axion leads to soliton solutions which, in the electrically charged case, have compact spatial
sections. Both analytical and numerical results for the solutions are presented.
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I. INTRODUCTION

The interest in gravitating monopole and other soliton so-
lutions to the equations of motion of non-Abelian gauge
theories coupled to gravity has recently increased in view of
the role that these solutions may play as backgrounds of
gauged supergravity models in the context of the anti–de
Sitter ~AdS! conformal field theory CFT correspondence.

Most of the known solutions are available only numeri-
cally. An exception is the self-gravitating monopole solution
constructed by Chamseddine and Volkov ~ChV! by solving
the first order Bogomol’nyi-Prasad-Sommerfield ~BPS!
equations for an N54 gauged supergravity model in four
dimensional space @1,2#. Different BPS solutions of the same
model were also found in @3#. The ChV solution corresponds
to a regular magnetic monopole and a geometry which is not
asymptotically flat, the dilaton potential providing a position
dependent negative cosmological term L@f#,0. This solu-
tion is purely magnetic and the axion field is set to zero. A
one-parameter family of non-BPS monopole-like solutions to
the equations of motion of this model was numerically con-
structed in @4#. In some finite range of the parameter w (2),
which is related to the gauge field behavior at the origin,
solutions are globally regular. Remarkably, when the param-
eter takes values in one of the regions outside this range, the
corresponding solutions have compact spatial sections; i.e.,
the metric exhibits a singularity of the ‘‘bag of gold’’ type.

Among other related self-gravitating Yang-Mills solu-
tions, particularly interesting are those found in @5–7# for the
Einstein-Yang-Mills theory in asymptotically anti–de Sitter
(L,0) space. In this case, monopole and dyon solutions are
shown to exist ~while for L>0 electrically charged solutions
are forbidden @5–8#!. Interestingly enough, these dyon solu-
tions, which have been shown to be stable in some cases,
exhibit a noninteger magnetic charge, which shows their
nontopological character.

It is the purpose of this work to construct dyon solutions
to the equations of motion in the bosonic sector of N54
gauged supergravity in four dimensional space ~the
Freedman-Schwarz model @9#!. We investigate static, spheri-
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cally symmetric field configurations which, in view of the
fact that they should carry electric charge, necessarily in-
clude a nontrivial axion field ~which for simplicity was set to
zero in the purely magnetic solutions of @1–4#!. As we shall
see, electrically charged BPS solutions which are regular at
the origin do not exist. Then, one has to study the second
order equations of motion which after the static, spherically
symmetric ansatz reduce to a system of six coupled nonlinear
radial equations that has to be solved numerically. Again, one
finds a family of solutions now labeled by three parameters:
the one already present for purely magnetic solutions and
two new ones related to the axion and the electric field. The
properties of these electrically charged solutions radically
differ from those of the BPS monopole solution. First, the
solutions exhibit a bag of gold behavior ~singular geometry!
in the whole range of parameters. After the study of geode-
sics for such configurations, one confirms that the geometry
has a real singularity at some finite value r* of the ‘‘radial’’
coordinate r . Moreover, in contrast with the BPS monopole
solution and related to the singular geometry, the charges
have a distinctive behavior and in particular the magnetic
charge is finite but noninteger. Now, in the context of the
AdS/CFT correspondence one should investigate whether the
four dimensional singularity is acceptable or not, following
either the criterion proposed in @10# or uplifting the solution
to ten dimensions and making an analysis similar to that in
@11#. This requires a thoughtful study on how the peculiar
properties of dyon solutions manifest in d510, an issue that
is left for future investigations.

The paper is organized as follows. In Sec. II we introduce
the model and derive the equations of motion with the
spherically symmetric ansatz. We also define the conserved
electric and magnetic charges. Purely magnetic and dyon so-
lutions are discussed in Secs. III and IV, respectively. The
analysis of the asymptotic behavior of the solutions leads to
a precise characterization of bag of gold singularities and
how they affect the resulting values of magnetic and electric
charges. Finally, in Sec. V we give a summary of our results.

II. THE MODEL

Let us start by writing bosonic part of the d54
Freedman-Schwarz @9# supergravity model with Lagrangian
©2003 The American Physical Society08-1
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We have chosen the signature of the space-time metric as
(21,1,1,1) and the convention for the Riemann and Ricci
tensors are R bmn

a 5]mGbn
a 2••• and Rmn5Rman

a . The gauge
group is the direct product SU(2)3SU(2) and we call Am
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the corresponding gauge connections @(s)51,2# . The field
strength is defined as
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As usual, we denote by f the dilaton field and by a the
axion.

We now consider Lagrangian ~1! when the model is trun-
cated so that Am

(2)a50 ~and g (2)50) and write the corre-
sponding equations of motion @omitting the (s)51 index#
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As mentioned in the Introduction, Chamseddine and
Volkov found exact static solutions for the bosonic sector of
the truncated Freedman-Schwarz model for purely magnetic
gauge fields, A0

a and a50 @1,2#. In fact, first order
Bogomol’nyi equations @12# were obtained by analyzing the
equations for Killing spinors and then an exact globally regu-
lar solution @also solving the second order equations ~4!# was
found. Contrary to the expectation that a neutral solution was
10500
to be obtained since the model has no Higgs field, the behav-
ior of the gauge field solution corresponds to a regular mag-
netic monopole. The nontrivial dilaton field provides a po-
tential supporting such a solution, implying that the resulting
geometry is not asymptotically flat. Although the absence of
the Higgs scalar prevents the definition of a gauge invariant
magnetic field, one can define a magnetic flux which for the
Chamseddine-Volkov exact solution takes the unit value.

Finding dyon solutions ~i.e., both magnetically and elec-
trically charged! to Eqs. ~4! is considerably more compli-
cated, since the existence of nontrivial electric field strength
components prevents to set the axion field to zero. Even the
search of more tractable first order Bogomol’nyi equations
becomes more involved since the compatibility condition for
the Killing spinor equations, now including an axion field is
highly nontrivial.

Let us start by proposing a static spherically symmetric
ansatz for the space-time metric and the dilaton, axion, and
gauge fields,

ds252N~r !s2~r !dt21
1

N~r !
dr21r2~du21sin2udw2!,

~5!

A5Am
a tadxm

5u~r !t3dt1w~r !~2t2du1t1sin udw!1t3cos udw

~6!

f5f~r !, a5a~r !, ~7!

where we have set g51 without loss of generality. Let us
note that the static, spherically symmetric ansatz ~6! for the
gauge field can be obtained from the general one introduced
in @13,14# by a singular gauge transformation ~see @6# for
details! so that w(r) can be associated with that introduced
in the case of the ’t Hooft-Polyakov monopole @15,16#
through the ansatz Ai

a5(12w)«ai jx j/r2 and u with the sca-
lar potential for the Julia-Zee dyon @17,18#, A0

a5u(r)xa/r .
Inserting ansatz ~5!–~7! into Eq. ~4! one can write six

independent radial equations of motion in the form

r2 exp~24f!s2N2a821r2s2N2f822rsN2s8

12 exp~2f!u2w212 exp~2f!s2N2w8250, ~8!

4r3sNs814r2s2~211N1rN8!14exp~2f!s2~w221 !2

14exp~2f!r4u822r4s2 exp~22f!50, ~9!
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Defining magnetic and electric charges

As already noted in @1,2#, defining a magnetic charge in
the Freedman-Schwarz model is problematic since there is
10500
no Higgs field breaking the gauge symmetry, thus providing
a natural isospin direction to project the SU(2) field strength
on the direction of the residual Abelian symmetry @as one
does for the original flat space ’t Hooft-Polyakov ~tHP!
monopole configuration#. Note however that ansatz ~6! is
nothing but the gauge transformation of the original tHP an-
satz ~we call Ā the gauge field ansatz in its original tHP
form! entangling space and isospace indices,

Ai→Ā i5S21AiS1
i
e S21] iS5

i
e ~12w !@V ,] iV# ,

A05S21A0S5u~r !V ,

V5ta xa

r . ~14!

Here S is given by
S5S exp~ i~f1h!/2!cos~u/2! exp~2i~f2h!/2!sin~u/2!

2exp~ i~f2h!/2!sin~u/2! exp~2i~f1h!/2!cos~u/2!
D , ~15!
where h is some function of (r ,t) to be appropriately chosen
@6#.

Then, as for the pure Yang-Mills pioneering monopole
ansatz of Yang and Wu @19#, one can define a projected field
strength in the form

Fmn5Tr~ F̄mnV! ~16!

which, written in terms of fields in the original gauge, be-
comes

Fmn5Tr~FmnSVS21!, ~17!

leading to a magnetic field B i5(1/2A2g)« i jkFi j which
takes the form

B r5
1

A2g
~12w2!. ~18!

and an electric field E i5F 0i of the form

E r5
u8~r !

s2 . ~19!

Now, we define the electric and magnetic charges in the form

QM5
1

4pE dSkA2gB k,
QE5
1

4pE dSkA2gE k, ~20!

so that for ansatz ~5!, ~6! one has

QM512w~`!2, ~21!

QE5
u8r2

s U
`

. ~22!

As stated in the Introduction, exact solutions of the first
order Bogomol’nyi equations also solving the second order
equations of motion of the truncated Freedman-Schwarz
model are known @1,2#. They correspond to monopole-like
gauge field configurations ~with magnetic charge 1 and zero
electric charge! and a globally hyperbolic regular geometry.
Apart from these exact solutions, other magnetically charged
non-BPS solutions were found in @4#. Let us then analyze,
for completeness, this well-studied purely magnetic case and
then discuss dyon solutions.

III. NON-BPS MONOPOLE SOLUTIONS

We then start from Eqs. ~8!–~13! with u5a50, thus re-
ducing the system to the one with four coupled nonlinear
equations. Now, as pointed in @1,2#, the bosonic action ad-
mits a global symmetry which in our notation corresponds to
8-3
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f→f2e , N→exp~2e!N . ~23!

Following the Noether theorem, there is a conserved current
which leads to the following relation between N, s , and f:

Ns25exp@2~f2f0!# , ~24!

where f0 is an integration constant. Using this relation, one
can reduce the coupled system of four equations of motion to
three independent equations for three unknown functions,

r→r ,

~w ,f ,N ,s!→~w ,f ,R !, ~25!

where we have chosen R as the third unknown function,
implicitly defined while introducing a new variable r replac-
ing the original radial variable r through

r25exp@2~f2f0!#R2~r!. ~26!

This change, inspired in the one that yields to the exact ChV
solution @1,2#, leads to a metric of the form

ds25exp~2f22f0!@2dt21dr21R2~r!dV2# . ~27!

After some algebra, the resulting system can be written as
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R8

R f82150,

R91
1
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where w85dw/dr .
These equations together with the regularity condition at

the origin imply

w512w (2)r21O~r4!,

f5f (0)1f (2)r21O~r4!,

R5r2R (3)r31O~r5!. ~29!

Here w (2) and f (0) are free parameters. Note that the equa-
tions of motion are invariant under the transformation

r→lr , R→lR ,

w→w , f→f1log l , ~30!

and hence the value of f (0) can be arbitrarily fixed. In order
to compare with the BPS solution in @1,2#, we choose f (0)

52log 2/2. Then Eqs. ~28! imply the following relation be-
tween coefficients f (2), R (3) and w (2),

f (2)5w (2)21
1
12 ,
10500
R (3)5w (2)21
1
36 . ~31!

We are then left with just one shooting parameter w (2).
Concerning spatial infinity, we seek for solutions having

the following asymptotic behavior

w;w1
(`) 1

r1/2 1w2
(`) 1

r3/2 1•••1Crexp~2r!1••• ,

f;f1
(`)1

r

2 2
1
4log r1f2

(`) 1

r2 1•••1DAxexp~2r!

1••• ,

R;A2r2R1
(`) 1

r3/2 1•••1Frexp~2r!1••• .

~32!

With this behavior the magnetic charge, as given by Eq. ~21!,
is QM51.

Using these conditions, solutions can be found numeri-
cally, varying the shooting parameter w (2) in a given range of
values and analyzing the resulting asymptotic behavior. We
have found a whole range Rm of values for w (2) for which
globally regular solutions exist, which coincides with that
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FIG. 1. Globally regular, purely magnetic ~non-BPS! solution
for w (2)50.2.
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FIG. 2. Bag of gold purely magnetic solution for w (2)50.7.
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found in @4#, Rm5(wa
(2)50,wb

(2)51/2). For the particular
value w (2)51/6, the solution coincides with the ChV exact
one. For wb

(2).1/2, as first shown in @4#, one finds that R
develops a second zero ~apart from that at r50) at some
finite value r* where the geometry is singular. These kind of
solutions are similar to those called bags of gold @20# and are
also related to the black hole solutions found in @4#. We shall
describe in more detail this behavior below.

Typical solutions are displayed in Figs. 1 and 2. The
shape of solutions for f ,w ,R as functions of r in the whole
range Rm is similar to that of the exact ChV solution. Con-
cerning the gauge field, one finds that certain solutions, those
corresponding to w (2).1/6 develop nodes ~as it also happens
for the Einstein-Yang-Mills monopole solutions in asymp-
totically AdS space, found in @6#!. The magnetic charge, in
view of the asymptotic behavior of w(r), has value 1 for
w (2),1/2 but becomes noninteger for w (2).1/2 so that the
configuration corresponds in this case to a kind of nontopo-
logical soliton ~we shall discuss more in detail this issue in
the next section!. Finally, note that, except for the solution
corresponding to w (2)51/6, all other solutions to the second
order equations of motion do not satisfy first order
Bogomol’nyi equations.

Let us now study more in detail the behavior of the bag of
gold solutions, which in the present purely magnetic configu-
rations correspond to w (2).1/2. We start by defining a ra-
dius Rc as the function multiplying the solid angle dV2 of
the spatial geometry @see Eq. ~27!#,

Rc
2~r!5exp~2f!R2~r!. ~33!

For bag of gold solutions Rc should vanish at some r
5r* , Rc(r*)50. To see this, one has to determine the
behavior of R(r) and exp(2f) when r;r* . This can be
done analytically by proposing an asymptotic behavior in
powers of x5r*2r , finding out that

w;const, exp~f!;Cx21/4, R;Dx1/2, ~34!

so that one has indeed

Rc
mon 2~r!;D2C2~r*2r!1/2, ~35!

which corresponds to the behavior of a bag of gold solution.

IV. DYON SOLUTIONS

Let us now extend our analysis to the electrically charged
case. Being aÞ0 and uÞ0, symmetry ~23! is lost and hence
no relation of kind ~24! can be established. We are then left
with six equations of motion for six unknown functions.

One could try to find BPS solutions by analyzing the su-
persymmetry variations of fermionic fields when a and u
fields are included. The conditions resulting from the vanish-
ing of these variations are highly more involved than those
arising in the purely magnetic case. However, by assuming a
regular behavior at the origin, we found that the only non-
trivial solution to the first order system corresponds to the
exact, purely magnetic solution discovered in @1,2#. We are
then forced to study the second order equations of motion to
10500
determine whether non-BPS dyon solutions exist.
In analogy with the purely magnetic case, we shall write

the system in terms of a new variable r and unknown func-
tions in the form

r→r ,

~w ,u ,f ,a ,N ,s!→~w ,u ,f ,a ,R ,V !, ~36!

with

exp~2V !5Ns2 ,

exp~2V !R2~r!5r2. ~37!

After change ~36!, metric ~5! becomes

ds25exp~2V !@2dt21dr21R2~r!dV2# . ~38!

Note finally that in the purely magnetic case, due to the
global symmetry ~23! one can identify V with f according to
the relation V5f1log2/2 and then Eq. ~38! becomes Eq.
~27!.

The system of equations can then be brought to the form

w912f8w82
1

R2 w~w221 !1u2w12 exp~22f!uwa850,

f912f8S V81
R8

R D1exp~2f22V !S u8222
w822u2w2

R2

2
~12w2!2

R4 D 2
1
4 exp~22f12V !

12 exp~24f!a8250,

V916
R8

R V815V8224exp~2f22V !S w82

R2 1
w2u2

R2 D 2
1

R2

2f822exp~24f!a821
R82

R2 2
1
2 exp~22f12V !50,

R926V8R82
R82

R 1
1
2 exp~22f12V !R12R~f8223V82!

16exp~2f22V !S w821u2w2

R D1
1
R

12 exp~24f!Ra8250,

2u922u8S f81
R8

R D1
2uw2

R2 1
2

R2 exp~22f!a8

3~w221 !50,
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a912a8S V81
R8

R 24f8D28af8S R8

R 1V822f8D
1

2

R2 exp~4f22V !@~w221 !u812ww8u#24af950.

~39!

It is useful to notice that, apart from the generalization of
invariance ~30! already present in the purely magnetic case,

r→lr ,

f→f1log l , u→l21u , w→w ,

a→l2a V→V , R→lR , ~40!

system ~39! exhibits now a second invariance

r→mr ,

f→f , u→m21u , w→w ,

a→a , V→V2log m , R→mR , ~41!

and this reduces the number of shooting parameters to fix
when seeking for a numerical solution.

For the case of dyon solutions, we have to supplement Eq.
~29! with conditions at the origin for u, a, and V,

u5u (0)r1u (3)r31O~r5!,

a5a (0)1a (2)r21O~r4!,

V5V (2)r21O~r4!. ~42!

Note that, in view of symmetry ~41! one can fix V(0)50.
Moreover, Eqs. ~39! now allow us to write a (2), V (2), u (3),
f (2), and R (3) in terms of w (2), u (0), and a (0):

a (2)5 1
6 ~2a (0)26a (0)u (0)223u (0)w (2)124a (0)w (2)2!,

V (2)5 1
12 ~113u (0)2112w (2)2!,

f (2)5 1
12 ~123u (0)2112w (2)2!,

R (3)5 1
36 ~119u (0)2136w (2)2!,

u (3)5 1
90 ~2u (0)127u (0)3148a (0)w (2)136u (0)w (2)

2144a (0)u (0)2w (2)236u (0)w (2)21576a (0)w (2)3!.

~43!

Using these conditions one can numerically integrate Eqs.
~39!, with w (2), u (0), and a (0) as shooting parameters. As we
shall describe in detail below, the space of dyon solutions is
radically different to the pure monopole case discussed
above. Indeed, all dyon solutions are bag of gold type: func-
tion R(r) always has two zeros: one at r50 and the second
one at some finite value r*(w (2),u (0),a (0)). One can see
10500
numerically that this happens for all positive w (2) values
~negative ones lead to an unbounded magnetic field at r
5r*).

To see this in more detail, let us start by considering the
region 0,w (2),1/2 ~where regular pure monopole solutions
were found!. For small values of u (0) and a (0) (u (0);a (0)

.0.1) all (w ,R ,V ,f) solutions are, at small r , very similar
to the monopole ones but, as one increases r , all except w
start deviating from such a behavior. Indeed, the behavior of
w for the dyon solution is much like that of the monopole
solution in the whole range 0<r<r* . In contrast, although
R starts growing as in the monopole solution, it reaches in
this case a maximum value and then decreases monotoni-
cally, until it vanishes at some fixed value r* . As we already
discussed in the case of the monopole solution ~for w (2)

.1/2), this behavior corresponds to a bag of gold. We have
found that the electric and axion fields, u(r) and a(r), have
no nodes for w (2),1/6 while in the region w (2).1/6 they
have a growing number of nodes. Typical behaviors are
shown in Figs. 3 and 4.

As one approaches w (2)51/2 ~the critical monopole solu-
tion value!, w, u, and a develop more and more nodes ~this
oscillatory behavior was already present for w in the mono-
pole case!. For w (2).1/2, where also the pure monopole
solution was bag of gold type, one finds that adjusting the
shooting parameters a (0) and u (0) one can make r*

dyon

0 5 10 15 20
ρ

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

w R

u

FIG. 3. Dyon solution for gauge field and R for w (2)50.3,
u (0)520.01, a (0)50.00414.
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ρ

2

4

6

8

10
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a V

φ

FIG. 4. Axion, dilaton, and V solutions for w (2)50.3,
u (0)520.01, a (0)50.00414.
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.r*
monopole . This behavior is shown in Fig. 5 for w (2)50.7.

As mentioned, we see by comparing Figs. 2 and 5 that r*has grown from r*51.647 for the purely magnetic solution
to r*53.384 for the dyon solution.

Let us extend the analysis of purely magnetic bag of gold
solutions presented at the end of Sec. III to the case of dyons.
The analytic determination of asymptotic behaviors becomes
in this case more involved. One can however find bounds
which can be used to study crucial properties of the solutions
and can also be confronted with the results obtained numeri-
cally. We start by assuming the following asymptotic behav-
ior:

w;w0 , u;Bxb,

exp~2V !;Kxd, R;Axa. ~44!

Using these expressions in the equations for V and R, Eq.
~39!, and requiring the dominant terms to be of the of order
x22 ~the only consistent possibility!, one gets the following
conditions relating exponents a and d:

~d26ad15d21a2!x2224F2~r!2G2~r!2H2~r!50,

~2a16ad26d2!x2216F2~r!12G2~r!1H2~r!50,
~45!

where

F25
1

R2 exp~2f22V !~w821w2u2!,

G25f821exp~24f!a82,

H25
1
2 exp~22f12V ! ~46!

can at most be of the order of x22. Consistency of Eqs. ~45!,
together with reality of F, G, and H, imposes certain condi-
tions on exponents a and d . One of the possibilities that
results from Eqs. ~45! is

a>d , a1d<1, ~47!

0 0.5 1 1.5 2 2.5 3
ρ

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

R
w u

FIG. 5. Dyon solution for w (2)50.7, u (0)520.01,
a (0)50.233.
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a<2d , a2d< 1
2 , ~48!

from which one finds

0,a< 2
3 , 0,d< 1

2 . ~49!

There are other three possibilities which can be discarded by
comparison with the numerical solutions. Indeed two of them
lead to a<d while the third one implies d<1/4. Neither of
these conditions is verified by the numerical solutions. We
are then left with Eqs. ~47!–~49! as the sole possibility.

These bounds are very useful in analyzing some crucial
properties of the solutions. Indeed, from Eq. ~38! and the
analogous of formula ~33! for dyons,

Rc
dyon 2~r!5exp~2V !R2~r!. ~50!

one can write

Rc
dyon 2;

A2

K2 x2(a2d) ~51!

so that from Eq. ~47! one has

Rc
dyon~r*!50. ~52!

Then, the three parameter family of solutions corresponds to
a geometry characterized by compact spatial sections ~of ra-
dius r*). In order to have a better understanding of the
properties of such a geometry, let us evaluate the affine
length L associated to a massless particle, moving along a
null radial geodesic, from r50 to r5r* . To this end, we
start from the null geodesic condition ~we call v the affine
parameter!

2S dt
dv D 2

gtt1S dr

dv D 2

grr50. ~53!

‘‘Energy’’ conservation implies

dt
dv

5
E
gtt

, ~54!

so that, from Eq. ~53! one can write

dr

dv
5

E
Agttgrr

5
E

exp~2V !
~55!

and then the affine length takes the form

L5E
0

r*dv5
1
EE0

r*exp~2V !dr . ~56!

Since exp(2V) is regular in the interval 0<r,r* the only
possibility of having an infinite affine length ~so as to have a
geodesically complete space! should come from the singular-
ity at r5r* . Then, using the asymptotic expression ~44! for
V, one gets
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L5const2 lim
r→r*

C2

122d
~r*2r!122d. ~57!

Now, we have found analytically that 0,d<1/2 so that the
affine length is finite and then r5r* corresponds to a real
singularity of space-time ~incomplete geodesic!. Let us end
this discussion by analyzing the scalar curvature R at r
5r* . From the explicit form of metric ~38!, one has

R522 exp~22V !R22@211R8216RR8V8

13R2~V81V9!12RR9# . ~58!

Now, using the asymptotic behaviors ~44! one can see that, to
leading order,

R;@a226ad12a~a21 !13d#x2d22. ~59!

Using the allowed ranges ~49! for a and d as well as the
numerical results one can easily see that the coefficient of
x2d22 does not vanish, and hence the curvature diverges at
r5r* , so that r* corresponds to a scalar curvature singu-
larity. Concerning numerical results one can extract the fol-
lowing values for b , d and a ~for a typical case correspond-
ing to w (2)50.3, u (0)520.01, and a (0)50.00414):

b;0.39, d;0.34, a;0.65, ~60!

which, as we see, agree with the bounds that one can obtain
analytically. We show in Fig. 6 the function Rc(r) for this
solution.

The fact that R(r*)50 corresponds to compact spatial
sections and has important consequences on the magnetic
and electric charges. Indeed, in order to compute the electric
and magnetic charges, one should use formulas ~21! and ~22!
and integrate over r from r50 to r5r* . Then, one finds
for the magnetic charge

QM512w2~r*!,1, ~61!

which gives a noninteger value, showing that the solution is
nontopological in the sense discussed in @5,6# for Einstein-
Yang-Mills dyon solutions in asymptotically AdS space.

Concerning the electric charge, formula ~22! gives

19.5 19.6 19.7 19.8 19.9
ρ

5×108
1×109

1.5×109
2×109

2.5×109
3×109

3.5×109
Rc

FIG. 6. The radius Rc(r) for the dyon solution with w (2)

50.3, u (0)520.01, a (0)50.00414.
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QE5R2 du
dr U

r5r*

. ~62!

We represent QE( r̄), the charge enclosed in a sphere of ra-
dius r̄ , for 0<r̄,r* in Fig. 7. We see that as r̄ approaches
r* , the charge grows and finally diverges. From the numeri-
cally determined values for b and a , its behavior is given by

QE~ r̄ !;~r*2 r̄ !20.09. ~63!

It is important to stress that although we were not able to
fix the exponents a and d analytically, inequalities ~47! al-
low us to ensure that all dyon solutions correspond to bags of
gold. Moreover, there is no loss of generality in our results
because we have put g51 from the beginning: they are valid
for arbitrary g. Then, in a sense we can say that the bag of
gold singular behavior of dyon solutions is ‘‘universal.’’

V. SUMMARY

We have discussed in this work classical monopole and
dyon solutions to the equations of motion of d54, N54
Freedman-Schwarz supergravity. Purely magnetic solutions
were already found in @1–4#. Apart from the exact BPS so-
lution, the authors in Ref. @4# constructed, numerically, some
non-BPS magnetic monopole solutions noting the existence
of singular ~bag of gold! solutions in some range of the
shooting parameter. We have confirmed this result, showing
analytically a set of exponents characterizing the singularity.

We have then extended the analysis to allow for electri-
cally charged dyon solutions. The first important result is that
one can see that there is no possibility of finding dyon con-
figurations making the supersymmetry variations vanish.
Then, we conclude that BPS solutions cannot be electrically
charged. Concerning the second order equations of motion,
we have shown analytically that they all correspond to bag of
gold configurations ~in contrast with the purely magnetic
case where both regular and singular solutions were al-
lowed!. In fact, we have computed the affine length L along
radial null geodesics showing that L is finite and hence r
5r* corresponds to a real singularity, of the space-time. We
have studied the asymptotic behavior near the singularity
finding that the magnetic charge is not an integer; the solu-

0 5 10 15 20
-ρ

-0.08

-0.06

-0.04

-0.02

0

QE

FIG. 7. The electric charge enclosed in a sphere of radius r̄ for
the dyon solution with w (2)50.3u (0)520.01, a (0)50.00414.
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tion then corresponds to a nontopological soliton as those
discussed in the case of the Einstein-Yang-Mills theory in
asymptotically AdS space @5,6#. As stressed in the Introduc-
tion, soliton solutions in the bosonic sector of d54 super-
gravity models are of interest, after uplifting to d510 dimen-
sions, in the context of the AdS/CFT correspondence. An
interesting question in this context is whether the d54
space-time singularity in r5r* survives the uplifting proce-
dure and, in the affirmative, how it affects the physical out-
come of the d510 theory.
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