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We discuss a s1+1d-dimensional Galilean invariant model recently introduced in connection with ultracold
quantum gases. After showing its relation to a nonrelativistic s2+1d Chern-Simons matter system, we identify
the generators of the supersymmetry and its relation with the existence of self-dual equations.
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I. INTRODUCTION

The study of supersymmetry sSUSYd started more than
30 years ago in the context of relativistic field theories. They
play today a major role in the understanding of several prop-
erties of high energy physics, ranging from phenomenologi-
cal aspects of the standard model of electroweak interactions
to mathematical consistency of superstring theories f1g.

From a mathematical point of view, supersymmetry is re-
lated to a grading of the group of space-time symmetries of
the theory and as such, the concept of supersymmetry can be
extended to other groups beyond Poincaré.

The case where the space-time group is the Galilean
group is particularly relevant as many condensed matter
systems display explicitly this symmetry. The
s3+1d-dimensional case was first considered in Ref. f2g. In
Ref. f3g, the supersymmetric extension of the Galilean group
in s2+1d-dimensions was discussed and a field theoretical
model possessing this symmetry was explicitly built. The
model is interesting as it incorporates gauge fields. The dy-
namics of these gauge fields is dictated by a Chern-Simons
term, which due to its topological character has a larger sym-
metry than the usual Maxwell action governing electrom-
ganetism. It is also possible to write for the bosonic sector of
the model self-dual or Bogolnyi-Prassad-Sommerfeld sBPSd
equations f4g, indicating that the relation between BPS equa-
tions and supersymmetry, characteristic of relativistic theo-
ries f5g, also extends to the nonrelativistic domain. Galilean
supersymmetry in s2+1d-dimensions was further studied in
f6g. Notice that in the models considered in Refs. f3,6,7g, the
invariance group is indeed enlarged by the presence of dila-
tation and conformal symmetries leading to the study of
Schroedinger superalgebras.

Another area where Galilean symmetry can be relevant is
that concerned with the study of perfect fluids. Also in this
case fermionic degrees of freedom can be incorporated in the
theory and supersymetric models in s2+1d- and
s1+1d-dimensions can be built f8–10g.

Very recently, a Galilean model in s1+1d-dimension was
considered in Refs. f11,12g in the context of ultracold boson-

fermion mixture in one-dimensional optical lattices. This is
indeed a very interesting proposal since according to these
authors it is possible to tune experimentally the parameters
of the model in such a way that the effective Hamiltonian
describing the dynamics of the vortex is indeed a
s1+1d-dimensional Galilean supersymmetric theory.

In this paper we will study in more detail the structure of
the supersymmetry behind the model presented in f11,12g. In
particular, we will find the correct supersymmetry transfor-
mations that leave the action invariant. A basic feature of
supersymmetric theories is that the full Hamiltonian can be
written as an anticommutator of supersymmetry generators.
We will show that the charges generating these transforma-
tions in this nonrelativistic model also satisty this basic prop-
erty. This should be contrasted with the results in f12g where
the anticommutator of the charges equals just the free Hamil-
tonian.

In order to study the supersymmetric structure of the
theory, we will make use of a relation of the s1+1d model
presented in f11,12g with the s2+1d model studied in f3g.
This connection, which was already known for the bosonic
sector of the theory f13g, is not necessary for establishing the
main result of this paper sthe correct supersymmetry alge-
brad, but in our opinion, the existence of such a connection
makes the model even more interesting. On the other hand, it
will lead us in a natural way to the discussion of the relation
between supersymmetry and self-dual equations.

II. THE MODEL

Let us then start by considering the s2+1d-dimensional
Chern-Simons model coupled to nonrelativistic bosonic sfd
and fermionic sdown-spinor cd matter governed by the ac-
tion

S = Scs +E d3xSif†Dtf + ic†Dtc −
1

2m
sDifd†Dif

−
1

2m
sDicd†Dic −

e

2m
c†F12c + l1sf†ff†fd

+ l2sf†fc†cdD , s1d

where the Chern-Simons action is given by
*Associated with CONICET.
†Associated with CICBA.
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Scs =
k

4
E d3xemnlAmFnl = kE d3xsA0F12 + A2]tA1d , s2d

Fmn = ]mAn − ]nAm, Dm = ]m + ieAm. s3d

The metric tensor is gmn= s1,−1,−1d and emnl is the totally
antisymmetric tensor such that e012=1. We are choosing
units such that "=1. We are including a Pauli term for the
fermion corresponding to a down-spinor.

The bosonic sector of the sc=0d model was first consid-
ered in Refs. f14,4g. It is an explicit example of a gauge
theory possessing Galilean invariance and it provides a field
theoretical formulation of the Aharonov Bohm problem. No-
tice that there is no massless particle associated to the vector
field. For the particular relation of coupling constants

l1 =
e2

2mk
s4d

the model has self-dual equations and many of the properties
of its soliton solutions can be established in detail f4g. The
fermionic generalization of this model has been analyzed in
f3g where it was shown that for a particular choice of cou-
pling constants,

l1 =
e2

2mk
, l2 = 3l1, s5d

it exhibits an extended Galilean symmetry. Thus the usual
connection between the existence of BPS equations and ex-
tended supersymmetry f5g also holds in this nonrelativistic
example.

In Ref. f13g a reduction of the purely bosonic model to
s1+1d-dimensions was considered by assuming that the
fields do not depend on one of the spatial coordinates, say x2.
One of the main purposes in that work was to explore if the
peculiar static properties of the parent s2+1d-dimensional
model were inherited by the s1+1d reduction. The answer for
this is negative and, as it was discussed in detail in f13g, the
gauge fields can be eliminated from the theory without
changing the physical structure of the model.

Renaming A2 as B, and extending this procedure to the
full model leads to an action that can be written as

S = Srcs +E dxdtHif†Dtf + ic†Dtc

−
1

2m
sDxfd†Dxf −

1

2m
sDxcd†Dxc

−
e

2m
]xBr f −

e2

2m
B2r + l1rb

2 + l2rbr fJ , s6d

where Srcs is the reduced Chern-Simons action, or “BF” term

Srcs = kE dxdtsB]tA1 + A0]1Bd = kE dxdtBF01, s7d

and we have introduced the matter densities,

rb = f†f, r f = c†c, r = rb + r f . s8d

Notice that the Gauss law constraint

]xB =
e

k
r s9d

can be solved as

Bsxd =
e

2k
E dzesx − zdrszd , s10d

where esxd=usxd−us−xd is the odd step function
When A1, A0, and B are set to zero the system has a

“trivial” supersymmetry where bosons and fermions are in-
terchanged according to

d1f = Î2mh1
†c, d1c = − Î2mh1f , s11d

if l2=2l1. Here, h1 is an infinitesimal Grassmann parameter.
This supersymmetry survives the incorporation of the ad-

ditional interactions if

d1A1 = d1B = 0, d1A0 =
e

Î2mk
sh1fc† − h1

†cf†d s12d

and

e2

2mk
+ 2l1 − l2 = 0. s13d

The model is also invariant under a second, less obvious,
supersymmetry transformation given by

d2f =
i

Î2m
h2

†sDxc − eBcd, d2c = −
i

Î2m
h2sDxf + eBfd ,

d2A1 = −
e

Î2mk
sh2fc† − h2

†cf†d ,

d2B =
ie

Î2mk
sh2fc† + h2

†cf†d ,

d2A0 =
ie

s2md3/2k
fh2fsDxc − eBcd† + h2

†sDxc − eBcdf†g

s14d

provided that the coupling constants satisfy

l1 =
e2

2mk
. s15d

These transformations can be obtained via the dimen-
sional reduction of the supersymmetry of the parent
s2+1d-dimensional model f3g which in turn can be obtained
via the nonrelativistic limit scontractiond of the associated
relativistic s2+1d model f15g.

We will discuss next the relation of the model described
by the action Eq. s6d with the model discussed in Ref. f12g
where no fields A0, A1, or B appear. The action of the model
of Ref. f12g without the chemical potential terms is
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S =E d2xHif†]tf + ic†]tc −
1

2m
s]xfd†]xf

−
1

2m
s]xcd†]xc + l1r2J . s16d

It was shown in f13,16g, for the bosonic sector of the
s1+1d-dimensional model given by Eq. s6d, that the field A1

can be eliminated via a gauge transformation. This property
is also valid after the incorporation of fermions. Indeed, after
transforming the matter fields as

fsxd → e−iasxdfsxd, csxd → e−iasxdcsxd s17d

with

asxd =
e

2
E dzesx − zdA1szd s18d

and using the Gauss law, i.e, using the explicit form of B
given by Eq. s10d, the action can be written simply as

S =E dxdtHif†]tf + ic†]tc −
1

2m
s]xfd†]xf −

1

2m
s]xcd†]xc

−
e2

2mk
rr f + l1rb

2 + l2rbr f −
e2

2m
B2rJ . s19d

After elimination of the gauge field A1 and use of the Gauss
law, the SUSY transformations can be written as

d2f =
i

Î2m
h2

†s]xc − eBcd + id2af ,

d2c = −
i

Î2m
h2s]xf + eBfd + id2ac . s20d

The quantities B and a should be considered a functional
of the matter fields, see Eqs. s10d and s18d.

Notice that the last term in the action is a constant of
motion. Indeed

e2

2m
E dx1B2sx1drsx1d

=
e4

8mk2 E dx1dx2dx3esx1 − x2desx1 − x3drsx1drsx2drsx3d

=
e4

24mk2 E dx1dx2dx3rsx1drsx2drsx3d =
e4N3

24mk2 , s21d

where N=edxrsxd, and use has been made of the identity

esx1 − x2desx1 − x3d + esx2 − x3desx2 − x1d

+ esx3 − x1desx3 − x2d = 1. s22d

Thus dropping this term, the action at the supersymmetric
point fgiven by Eqs. s13d and s15dg, can be written as

S =E d2xHif†]tf + ic†]tc −
1

2m
s]xfd†]xf

−
1

2m
s]xcd†]xc + l1r2J . s23d

The model written in this way is the one considered recently
in f12g in the context of the dynamics of vortices in boson-
fermion mixtures. In fact, this model was originally consid-
ered by Lai and Yang f17g ssee also f18gd.

III. THE SUPERSYMMETRY ALGEBRA

In discussing the supersymmetry algebra behind this
model, the following generators were given in Ref. f12g sup
to normalizationd

Q1 = − iÎ2mE dxc†f, R = −
1

Î2m
E dxc†]xf . s24d

The Q1 generator is related to the first of the supersymme-
tries s12d, and can be obtained via the Noether theorem.
Poisson brackets can be defined as

hF,GjPB = iE drS dF

df†srd
dG

dfsrd
−

dF

dfsrd
dG

df†srd

−
drF

dc†srd
dlG

dcsrd
−

drF

dcsrd
dlG

dc†srd
D , s25d

where the subscripts r and l refer to right and left derivatives.
In particular,

hfsx1,td,f*sx2,tdj = − idsx1 − x2d ,

hcsx1,td,c*sx2,tdj = − idsx1 − x2d . s26d

It is easy to show that

hQ1,Q1
†j = − 2imE dxr ; − 2iM . s27d

Nevertheless, the second generator R defined in f12g does not
give transformations s14d. This R charge is related to a sym-
metry of the free part of the theory sno interactionsd and its
anticommutator gives only the free Hamiltonian,

hR,R†j = − iHfree =
i

2m
E dxsf†]x

2f + c†]x
2cd . s28d

The expression for the charge generating the second set of
transformations s14d, which correspond to a supersymmetry
of the full hamiltonian, can be easily obtained by considering
the dimensional reduction of the corresponding charge in the
s2+1d model. This leads to
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Q2 = −
1

Î2m
E dxc†s]x + eBdf

= −
1

Î2m
E dxc†sxdS]x +

e2

2k
E dzesx − zdrszdDfsxd .

s29d

Using the definition of Poisson brackets, we can now calcu-
late

hQ2,Q2
†j = −

i

2m
E dxs]x − eBdc†s]x − eBdc

+ s]x + eBdf†s]x + eBdf −
2e2

k
f†fc†c s30d

or

hQ2,Q2
†j = −

i

2m
E dxS]xc

†]xc + e2B2r f + ]xf
†]xf

+ e2B2rb −
2e2

k
r frb − e]xBrb + e]xBr fD , s31d

which, after using the Gauss law fEq. s10dg becomes

hQ2,Q2
†j = − iH . s32d

Thus the anticommutator of the charges is related to the full
Hamiltonian.

Finally, the only remaining nonvanishing bracket gives

hQ1,Q2
†j = −

1

2
E d2xhf†s]x − eBdf − fs]x − eBdfg†f

+ c†s]x − eBdc − fs]x − eBdcg†cj

= −
1

2
E d2xf†]xf − ]xf

†f + c†]xc − ]xc
†c = − iP1,

s33d

P1 being the momentum. We have used that

E dxBsxdr =
e

2k
E dxdzesx − zdrsxdrszd = 0. s34d

Then, with the use of the generators Q1 and Q2, the correct
algebra is obtained,

hQ1,Q1
†j = − 2imE dxr = − 2iM ,

hQ2,Q2
†j = − iH, hQ1,Q2

†j = − iP1. s35d

In deriving the algebra, we have used canonical variables
after the implementation of Gauss law. In this way, the
SUSY charge Q2 is a nonlocal function of the fields. We
could have arrived at the same algebra by keeping A1 and B
as conjugate variables,

hA1sx1,td,Bsx2,tdj =
1

k
dsx1 − x2d . s36d

IV. DISCUSSION

To summarize, the connection of the Yang-Lai model to
the s2+1d-dimensional Chern-Simons theory has helped us
in identifying the correct supersymmetry transformations and
charges of the model. If we consider the Yang-Lai model as
a gauge “BF” theory, then the SUSY transformations are
local in space time. If we instead eliminate the gauge fields
A0 and A1 together with the scalar field B, then the Hamil-
tonian of the theory becomes simpler, but the supersymmetry
charges become more complicated nonlocal functions of the
physical fields.

The introduction of chemical potentials can be achieved
by considering an effective potential

V = H − mbNb − m fNf . s37d

Then, as far as mb=m f, the transformations generated by Q1
and Q2 are still formally a symmetry hQi ,Vj=0

As discussed by f16g the B field plays also an important
role in the derivation of the self-dual equations. Indeed, writ-
ing the action S after the implementation of the Gauss law,

S =E d2xHif†]tf + ic†]tc −
1

2m
us]1 + egbBdfu2

−
1

2m
us]1 + eg fBdcu2 −

e

2m
]1Br f

+
e

2m
s− gb]1Brb − g f]1Br fd + l1rb

2 + l2rbr fJ , s38d

leads to a Hamiltonian of the form

H =E d2xH 1

2m
us]1 + egbBdfu2

+
1

2m
us]1 + eg fBdcu2 +

e2

2mk
rTr f

+
e2

2mk
sgbrTrb + g frTr fd − l1rb

2 − l2rbr fJ , s39d

H =E d2xH 1

2m
us]1 + egbBdfu2 +

1

2m
us]1 + eg fBdcu2

+ S e2gb

2mk
− l1Drb

2 + S e2

2mk
s1 + g f + gbd − l2Drbr fJ .

s40d

Thus for

l1 = gb
e2

2mk
, s41d

l2 = s1 + g f + gbd
e2

2mk
, s42d

the Hamiltonian is written as the sum of squares and mini-
mum energy configurations are such that they satisfy self-
dual or BPS equations,
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s]1 + egbBdf = 0, s43d

s]1 + eg fBdc = 0. s44d

The particular case gb=g f = +1 leads to the supersymmet-
ric case. Solitons solutions to this equations can be found
when l1ù0, i.e., attractive self-interactions, and they have
been considered in detail in f13,16g.

We have thus discussed how a simple nonrelativistic su-
persymmetric model in s1+1d-dimensions is related to a
model of matter interacting with gauge fields whose dynam-
ics is governed by a “BF” term. Although the gauge fields
can be eliminated in terms of the matter fields, their presence
helps in identifying the correct supersymmetry transforma-
tions which in this case became a nonlocal functional of
the matter fields. Working without gauge fields would
require one to guess nonlinear terms in the SUSY transfor-
mations. These terms were not considered in Ref. f12g and as

a result the supercharge anticommutator equals just the free
Hamiltonian.

Due to the low dimensionality, the model here discussed
might provide the simplest theoretical realization of Galilean
supersymmetry, and according to the authors of Refs.
f11,12g, the model could be accessible experimentally. From
the theoretical point of view, it can also provide an interest-
ing playground where to explore further the relation between
BPS states, supersymmetry, and integrability.
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