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ABSTRACT
We study the influence of strong magnetic fields in hybrid stars, composed by hadrons and
a pure quark matter core, and analyse their structure and stability as well as some possible
evolution channels due to the magnetic field decay. Using an ad hoc parametrization of
the magnetic field strength and taking into account Landau-quantization effects in matter,
we calculate hybrid magnetized equations of state and some associated quantities, such as
particle abundances and matter magnetization, for different sets of parameters and different
magnetic field strengths. Moreover, we compute the magnetized stable stellar configurations,
the mass versus radius and the gravitational mass versus central energy density relationships,
the gravitational mass versus baryon mass diagram, and the tidal deformability. Our results are
in agreement with both, the ∼ 2 M¯ pulsars and the data obtained from GW170817. In addition,
we study the stability of stellar configurations assuming that slow and rapid phase transitions
occur at the sharp hadron–quark interface. We find that, unlike in the rapid transition scenario,
where ∂M/∂²c < 0 is a sufficient condition for instability, in the slow transition scenario
there exists a connected extended stable branch beyond the maximum mass star, for which
∂M/∂²c < 0. Finally, analysing the gravitational mass versus baryon mass relationship, we
have calculated the energy released in transitions between stable stellar configurations. We
find that the inclusion of the magnetic field and the existence of new stable branches allows
the possibility of new channels of transitions that fulfil the energy requirements to explain
gamma-ray bursts.

Key words: dense matter – equation of state – stars: magnetars – stars: neutron – stars: oscil-
lations.

1 IN T RO D U C T I O N

The theoretical study of neutron stars (NSs) considering the role
of their intrinsic magnetic fields (MFs) has become highly relevant
since the discover of magnetars. Magnetars are apparently isolated
NSs whose main properties can be explained by the presence of
extremely strong MFs, up to 1015 G, at their surfaces (Kaspi &
Beloborodov 2017). In general, it is believed that at least 10 per cent
of the young NS population experience a magnetar phase during a
short period of their evolution (∼104 yr). During their lives they
have intense activity, including persistent X-ray emissions, short
bursts, large outbursts, and giant flares that are believed to be

? E-mail: mmariani@fcaglp.unlp.edu.ar

powered by the decay of huge MFs that drive changes in the crust
and the magnetosphere (Duncan & Thompson 1992). Historically,
magnetars have been associated with soft gamma repeaters (SGRs)
and anomalous X-ray pulsars (AXPs), but some low MF SGRs have
also been found (Rea et al. 2013, 2014), as well as high surface B-
field objects that behave as rotation powered pulsars with some
occasional magnetar-like outbursts (see Archibald et al. 2016 and
references therein).

From a model-theoretical point of view, magnetars are mag-
netized NSs [M ∼ 2 M¯, R ∼ 15 km (Glendenning 1997)] with
an external solid crust and an internal extremely dense core. The
composition of the core is not yet fully understood, since the matter
density may be as large as several times the nuclear saturation
density, n0 ≈ 0.16 fm−3, making NSs the most dense objects in the
universe. In this context, several works have analysed the role of
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exotic matter in the inner core of these objects, such as hyperons
or deconfined quark matter. In any case, the equation of state (EoS)
of matter should be stiff enough to allow for 2 M¯ NSs in order to
agree with the detection of the pulsars PSR J1614−2230 and PSR
J0348+0432, whose masses have been very accurately determined
(Demorest et al. 2010; Antoniadis et al. 2013; Arzoumanian et al.
2018).

Moreover, the recent direct detection of gravitational waves from
the NS merger GW170817 (Abbott et al. 2017a) and its electro-
magnetic counterparts GRB170817A and AT2017gfo (Abbott et al.
2017b), imposed a new set of constrains not only on the masses
but also on the radii of the coalescing objects. The upper limit on
the tidal deformability of the binary system, 3̃ < 800 (Abbott et al.
2017a), has restricted the radius of an NS with a mass of 1.4 M¯
to R1.4 . 13.76 km (Annala et al. 2018; Fattoyev, Piekarewicz &
Horowitz 2018; Malik et al. 2018; Most et al. 2018; Raithel, Özel &
Psaltis 2018). In summary, although the EoS of extremely dense
matter is still uncertain, new multimessenger observations provide
tight constraints for current models.

Among the possible internal compositions of compact objects,
the so-called hybrid stars (HS) composed by a quark matter core
and external hadronic layers have attracted much attention recently.
In this work, we will analyse several properties of HSs with strong
MFs at their interiors. In this context, it is necessary to model the
boundary between the hadron and the quark phases. However, the
very nature of such interface is still uncertain. It has been speculated
that HSs may contain a mixed hadron–quark phase in their interiors
(see Orsaria et al. 2014 and references therein). In such a phase, it is
assumed that the electric charge is zero globally but not locally, and
therefore charged hadron and quark matter may share a common
lepton background, leading to a quark–hadron mixture extending
over a wide density region of the star (Glendenning 2001). The
mixed phase entails a smooth variation of the energy density, leading
in turn to a continuous density profile along the star. On the other
hand, the quark matter core could be separated from the external
hadronic layers of the star by a sharp interface with a density
jump across which thermal, mechanical, and chemical equilibrium
is maintained. Whether the quark–hadron interface is actually a
sharp discontinuity or a wide mixed region depends crucially on the
amount of electrostatic and surface energy needed for the formation
of diverse geometric structures of one phase embedded in the other
all along the mixed phase (Voskresensky, Yasuhira & Tatsumi 2003;
Endo 2011; Yasutake et al. 2014). If the energy cost of Coulomb
and surface effects exceed the gain in bulk energy, the scenario
involving a sharp interface turns out to be favourable. However,
there are still many points to be elucidated before arriving to a
conclusive description of quark–hadron coexistence. In particular,
model calculations of the surface tension span a wide range of
values (see Lugones, Grunfeld & Ajmi 2013; Lugones & Grunfeld
2017; and references therein), with results both above and below
the critical value that favours a sharp interface. In this work, we
assume that the interface between hadrons and quarks is a sharp
discontinuity.

In order to understand the structure of MFs in the interior of
compact stars, it would be necessary to solve the general relativistic
magnetohydrodynamic equations to determine the MF direction
and strength at any point of the star. However, finding magnetized
equilibrium NSs models in General Relativity is a very complex
theoretical problem, which has not been fully solved yet. One of
the difficulties is the non-linear nature of Einstein’s equations for
the metric. For realistic MF configurations including poloidal and
toroidal components and if rotation is included, many metric terms

must be retained and a large set of coupled elliptic partial differential
equations has to be solved by means of numerical methods (see
e.g. Pili, Bucciantini & Del Zanna 2014 and references therein).
Another important aspect is related to the way the MF evolves and
dissipates in the internal layers of the NS; not only in the crust
but also in the core, which has an uncertain composition. Since
the ionic lattice of the crust is static, the MF evolves exclusively
through Ohmic decay and Hall drift. However, the MF evolution
of the core is much more complex and uncertain because of the
possible presence of several particle species, the effect of weak
interactions (β-equilibrium) and particle diffusion, the possible ex-
istence of superfluidity/superconductivity, etc. (see a thorough list of
references in Gusakov, Kantor & Ofengeim 2017). Additionally, it is
still under debate to what extent magnetohydrodynamic equilibrium
in NSs are arbitrary for given EOSs, with or without axisymmetry
(Glampedakis & Lasky 2016; Gusakov et al. 2017).

In this work, we would like to avoid the complexities associated
with the multidimensional nature of the MF geometry and focus on
another relevant aspect of strong MFs: its influence on the hadron–
quark EoSs and its role on the dynamic stability of HSs, assuming
that phase conversions at the quark–hadron interface are either slow
or rapid. To this end, we will assume, as a working hypothesis,
that the structure of a strongly magnetized NS can be reason-
ably described by means of the standard spherically symmetric
Tolman–Oppenheimer–Volkoff (TOV) stellar structure equations.
This hypothesis is based on the following qualitative assumptions.
First, during the hot proto-NS phase, differential rotation would
create strong toroidal MFs inside the NS (Bonanno, Rezzolla &
Urpin 2003; Naso et al. 2008; Frieben & Rezzolla 2012). As a
result, realistic models of magnetized NSs require the simultaneous
presence of both poloidal and toroidal MF components (Ciolfi &
Rezzolla 2013). Secondly, it is known that purely toroidal MFs
make the NS prolate, while purely poloidal MFs tend to make it
oblate. If both the toroidal and poloidal components are of the same
order, we may expect that oblateness and prolateness cancel out
approximately, leading to stars close to the spherical symmetry.
Thirdly, the inclusion of the MF in the EoS is usually done by
assuming that B is locally uniform, which leads to different values
of the pressure parallel and transverse to the local direction of B
(P⊥ and Pq). Since on macroscopic scales the MF is supposed to
be a geometrically complex combination of poloidal and toroidal
fields, with the MF direction changing disorderly from one point to
the other, we will average P⊥ and Pq in order to obtain a locally
effective isotropic pressure [see Bednarek et al. (2003) and Flores,
Castro & Lugones (2016) for a similar procedure]. Finally, we
will assume that the MF strength is a monotonically decreasing
function of the distance to the NS centre. Such behaviour will be
incorporated through an ad hoc monotonic function connecting the
MF strength with the baryon chemical potential. This is clearly a
strong assumption about the MF behaviour inside NSs, but it has
been widely used in the literature in order to assess the consequences
that could be expected if ultrahigh MFs were present at magnetar
cores (Bandyopadhyay, Chakrabarty & Pal 1997; Mao, Iwamoto &
Li 2003; Rabhi et al. 2009; Dexheimer, Negreiros & Schramm
2012).

On the other hand, we will analyse the dynamic stability of HS
configurations using the formalism of small radial perturbations
(Chandrasekhar 1964). Such formalism has been adapted by Pereira,
Flores & Lugones (2018) to take into account the role of phase
conversions in the vicinity of a sharp hadron–quark interface.
Hadron–quark phase transition may give rise to density fluctuations
at the interface that may have certain influence on the dynamical
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evolution of the system. For example, local fluctuations give rise to
microscopic quark clusters formation involving a large free energy
barrier between the two-phases structure, so that the process can
be very slow, as in the nucleation process. Alternatively, the phase
transition could be analysed through a spinodal decomposition if
the formation of a sudden two-phases structure occurs by a diffusion
process in which the fluctuations are long range, the system becomes
thermodynamically unstable and so the transition process occurs
rapidly (see Malfatti et al. 2019 and references therein). One of the
main results found by Pereira et al. (2018) is that the usual static
stability condition ∂M/∂²c ≥ 0, where ²c is the central density
of a star whose total mass is M, always remains true if phase
conversions are rapid but breaks down in general if they are slow.
As a consequence, an additional branch of stable HS configurations
is possible in the case of slow phase conversions. In this work, we
will analyse in detail the structure and stability of low-B HSs and
magnetars under rapid and slow phase conversions. Besides, we
will analyse the gravitational mass versus baryon mass diagram to
estimate the energy released when a magnetar evolves to become a
low-B object, based on the ideas developed in Bombaci (1996) and
already presented in Mariani, Orsaria & Vucetich (2017).

In order to automate the calculations and integrate the whole
process, we use the multilanguage NESTOR code introduced in
Mariani et al. (2017). Originally developed to construct EoS at finite
temperature and calculate the structure of proto-NS, we adapted the
code to run the magnetized EoS codes and implemented a procedure
to detect the change of stability of radial oscillation modes.

The paper is organized as follows. In Section 2, we describe the
adopted ansatz for the MF strength and give the thermodynamic
expressions for the hadronic and quark phases of the EoS. We
also present the conditions for the construction of an HS with a
sharp transition and discuss our approach to the anisotropy of the
MF. In Section 3, we present the stellar structure equations and
the formalism employed to analyse the dynamic stability of stellar
configurations when slow and rapid phase conversions are present at
the quark–hadron interface. We also show our results for magnetized
HSs, considering the observational constrains. A summary of the
work, discussion about the astrophysical implications of our results
and conclusions are provided in Section 4. In the Appendix,
some issues related to the electromagnetic units are discussed and
clarified.

2 H YBR ID MAG NETIZED EOS

2.1 Ansatz for the MF strength

In order to include the effect of the variation of the MF strength in
a magnetized NS from its centre to its surface, we consider an MF
in the z-direction depending on the chemical potential, μb, in the
following form:

B(μb) = Bmin + Bmax

·
1 − eβ

(μb−mn)α

mn

¸
, (1)

where α = 2.5 and β = −4.08 × 10−4 are fixed parameters and mn

is the nucleon mass (Dexheimer et al. 2012).
The functional form and the values of the parameters were chosen

to reproduce the values of an MF parametrized in terms of the
density from Dexheimer et al. (2012), Rabhi et al. (2009), and Mao
et al. (2003). Notice that this parametrization is independent of the
EoS and generates no discontinuity at the quark–hadron interface
of the HS. As it will be seen in following sections, one of the
consequences of this ansatz is that only stars with very high central

density reach values close to Bmax for its central MF, as it has been
suggested in Dexheimer et al. (2012). In this work, we consider two
representative cases for this parametrization: the low-B HS case,
with Bmin = 1.0 × 1013 G and Bmax = 1.0 × 1015 G, and the
magnetar case, with Bmin = 1.0 × 1015 G and Bmax = 3.0 × 1018 G.

It should be noted that we use the natural units system, in which
the value of fundamental constants, c = ~ = 1. More details about
the electromagnetic and MF units are given in the Appendix.

2.2 Landau levels

In the presence of an MF, the motion of electrically charged particles
is quantized into Landau levels in the direction perpendicular to the
local direction of B. We assume that the MF points in the z-direction,
locally, and particles have electric charge, q, and spin, s. As a result
of Landau quantization, a quantum number ν arises, which depends
on the angular quantum number, n, and the spin projection of the
particle, σ = −s, ..., +s (Landau & Lifshitz 1981)

ν = n + 1

2
− g

2
sgn(q) σ, (2)

where sgn(x) is the sign function. The g-factor is g = 2 for spin 1/2
particles and g = 2/3 for spin 3/2 particles (Belinfante 1953; Torres
del Castillo & Velázquez Castro 2004). The transverse momentum
of a particle is given by

k2
⊥ = 2ν|q|B, (3)

and the energy spectrum by

E =
q

k2
z + m̄2(ν), (4)

where m̄2(ν) = m2 + 2ν|q|B. As a consequence, the z-component
of the Fermi momentum reads,

kF,z(ν) =
p

μ2 − 2ν|q|B(μ) − m2. (5)

In order to keep kF,z real valued, we must impose ν ≤ νmax, with

νmax =
¹

μ2 − m2

2|q|B
º

, (6)

where bxc is the largest integer less than or equal to x.
To implement the effect of Landau quantization in the thermo-

dynamic quantities, the following replacement must be done in all
thermodynamic integrals:

1

(2π)3

Z
· · · d3k −→ |qB|

2π2

+sX
−s

ν≤vmaxX
n=0

Z kF,z(ν)

0
· · · dkz. (7)

2.3 Average of the pressure anisotropy

The energy–momentum tensor of matter in the presence of an MF
can be split in two components:

Tμν = T matter
μν + T MF

μν , (8)

where the first term represents the contribution of matter and the
second term is the purely electromagnetic part.

As it has been mentioned before, from a microscopic point of
view the MF can be seen as being locally uniform and pointing in
the z-direction. As a consequence, an asymmetry emerges between
the pressure Pq along the local direction of B, and the pressure P⊥
in the transverse direction. Thus, T matter

μν can be written as

T matter
μν = diag(², P⊥, P⊥, Pk), (9)
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where ² is the energy density and P⊥, Pq are given by

Pk = −Ä,

P⊥ = −Ä − MB, (10)

which are related via the total matter magnetization (Blandford &
Hernquist 1982; González Felipe et al. 2008),

M = −∂Ä/∂B|μB
. (11)

In equations (10) and (11), Ä represents the grand canonical
potential of the system. In addition, there is another contribution
to the anisotropy of the system coming from the pure MF terms,

T MF
μν = diag(B2/2, B2/2, B2/2, −B2/2). (12)

Thus, the total energy-momentum tensor reads,

Tμν = T matter
μν + T MF

μν

= diag(² + B2/2, P⊥ + B2/2, P⊥ + B2/2, Pk − B2/2). (13)

It will be shown in Section 2.5 that the anisotropy coming from
the magnetization in equation (11) does not contribute significantly
to the EoS and can be neglected since it does not affect the global
properties of the star. However, we will see that the anisotropies
of Tμν coming from the pure MF terms may be non-negligible
in some high-density layers of the NSs permeated by extremely
large MFs (see e.g. Fig. 3). To ensure the results obtained from the
TOV equations are still valid when such anisotropies are present,
we assume that in the NS core the MF is a complex combination
of poloidal and toroidal fields, with the MF direction changing
disorderly from one point to the other. In such circumstances, we
will average the spatial components of Tμν in order to obtain a
locally effective isotropic pressure (Bednarek et al. 2003; Flores
et al. 2016):

P = T11 + T22 + T33

3
= 2P⊥ + Pk

3
+ B2

6
= Pmatter + PMF. (14)

With this prescription, we are able to construct the EoS of the
system, P = P(²), which will allow us to obtain families of
magnetized HSs using the TOV equations.

The specific expressions for the thermodynamic quantities of
matter depend on the particular model of each phase, which will be
described in the next subsection.

2.4 Magnetized EoS phases

2.4.1 Subnuclear matter

To model the magnetized matter at subnuclear densities in the crust
of the HS, we use an EoS based on the BPS (Baym, Bethe &
Pethick 1971b) model with an MF of 1015 G (Lai & Shapiro 1991).
In such work, the authors conclude that, for densities typically
found in the outer core of NSs, the results for magnetized crust EoS
differs from the non-magnetic crust EoS only at densities below
² = 0.2124 MeV fm−3 ≈ 4 × 1012 g cm−3. Thus, we consider
this magnetized crust EoS up to ∼4 × 1012 g cm−3 and the non-
magnetic BPS-BBP EoS for higher density values of the crust up to
∼1014 g cm−3 (Baym, Bethe & Pethick 1971a; Baym et al. 1971b).

2.4.2 Hadron matter

To model magnetized hadron matter in the outer core of the HS,
we use the GM1L density-dependent relativistic mean-field (RMF)
parametrization in which the interactions between baryons are

Table 1. Properties of nuclear matter at
saturation density computed for the GM1L
parametrization (Spinella 2017).

Saturation property GM1L

n0 (fm−3) 0.153
E0 (MeV) −16.30
K0 (MeV) 300.0
m∗/mN 0.70
J (MeV) 32.5
L0 (MeV) 55.0
−UN (MeV) 65.5

Table 2. Parameters of the GM1L parametriza-
tion that lead to the properties of symmetric
nuclear matter at saturation density given in
Table 1.

Parameter GM1L

mσ (GeV) 0.5500
mω (GeV) 0.7830
mρ (GeV) 0.7700
gσN 9.5722
gωN 10.6180
gρN 8.9830
bσ 0.0029
cσ − 0.0011
aρ 0.3898

described by the exchange of scalar (σ ), vector (ω), and isovector
(ρ) mesons. We consider the presence of the baryon octet (neutron,
proton, 6−, 60, 6+, 3, 4−, and 40) and the four 1-resonances
(1−, 10, 1+, 1++). Although this model has been used before
to describe NS matter (Spinella 2017; Malfatti et al. 2019; Ranea-
Sandoval et al. 2019), we extend it including MF effects.

The functional form of the density-dependent coupling constants
related with the ρ meson are given by Typel (2018):

gρb(nB) = gρb(n0) exp

·
−aρ

µ
nB

n0
− 1

¶¸
, (15)

where gρb(nB) is the density-dependent meson–baryon coupling
constant and nB = P

bnb is the total baryon number density. The
parameter aρ is fixed by the binding energies, charge and diffraction
radii, spin-orbit splittings, and the neutron skin thickness of finite
nuclei (Typel 2005).

The meson–hyperon coupling constants have been determined
following the Nijmegen extended soft core (ESC08) model (Rijken,
Nagels & Yamamoto 2010). The relative isovector meson–hyperon
coupling constants were scaled with the hyperon isospin and, for
1-resonances, xσ1 = xω1 = 1.1 and xρ1 = 1.0, where xiH = giH/giN

was used (see Spinella 2017 for details).
The saturation properties including the nuclear saturation density

(n0), energy per nucleon (E0), nuclear incompressibility (K0),
effective nucleon mass (m∗/mN), asymmetry energy (J), asymmetry
energy slope (L0) and nucleon potential (UN) and the parameters of
the GM1L model used here are listed in Tables 1 and 2. The values
for baryon masses and 1-resonances are taken from Spinella (2017).
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The meson mean-field equations are given by

m2
σ σ̄ =

X
b

gσbn
s
b − bσ mNgσN(gσNσ̄ )2

−cσ gσN(gσNσ̄ )3,

m2
ωω̄ =

X
b

gωbn
v
b,

m2
ρρ̄ =

X
b

gρb(nB )I3bn
v
b, (16)

where I3b is the three-component of isospin; ns
b and nb are the scalar

and particle number densities for each baryon b; σ̄ , ω̄, and ρ̄ are
the meson mean fields in the RMF approximation; and mN is the
neutron mass.

For charged baryons in an external MF, B, the scalar, and vector
densities are given by

ns
c,b = |qb|B m∗

b

2π2

+sX
−s

ν≤νmaxX
n=0

ln

¯̄̄̄
kb

z,F + Eb
F

m̄b

¯̄̄̄
, (17)

nv
c,b = |qb|B

2π2

+sX
−s

ν≤νmaxX
n=0

kb
z,F, (18)

where the double sum goes over the discrete angular momentum
quantum number, n, and over the spin projection, σ = −s, ..., +s,
and qb is the electric charge of the baryon b. The effective masses,
the z-component of the Fermi momentum, and the Fermi energy
are, respectively, given by

m∗
b = mb − gσbσ̄ ,

m̄b =
q

m∗2
b + 2ν|qb|B,

kb
z,F =

q
Eb

F − m̄2
b,

Eb
F = μb − gωb(n)ω̄ − gρb(n)ρ̄I3b − eR, (19)

where eR is the rearrangement term given by

eR =
X

b

∂gρb(n)

∂n
I3bn

v
bρ̄, (20)

which is important for achieving thermodynamic consistency (Hof-
mann, Keil & Lenske 2001). The energy density for charged baryons
can be expressed by

²c,b = |qb|B
4π2

+sX
−s

ν≤νmaxX
n=0

Ã
kb

z,FE
b
F + m̄2

bln

¯̄̄̄
kb

z,F + Eb
F

m̄b

¯̄̄̄!
. (21)

For neutral baryons, the scalar and vector densities are given by

ns
n,b = γs m∗

b

4π2

µ
Eb

Fk
b
F − m∗2

b ln

¯̄̄̄
kb

F + Eb
F

m∗
b

¯̄̄̄¶
, (22)

nv
n,b = γs

2π2

(kb
F)3

3
, (23)

where the spin degeneracy factor γ s = 2 for spin 1/2 particles and
γ s = 4 for spin 3/2 particles. Equations (19) are also valid for neutral
baryons, but with m̄b = m∗

b and using the total Fermi momentum,
kb

F =
p

Eb
F − m∗2

b , instead of its z-component. The energy density
for neutral baryons is given by

²n,b = γs

4π2

·
1

2
(Eb

F)3kb
F − 1

4
m∗2

b

×
µ

Eb
Fk

b
F + m∗2

b ln

¯̄̄̄
kb

F + Eb
F

m∗
b

¯̄̄̄¶¸
. (24)

The total baryon energy density is given by

²B =
X

b

²b + 1

2

¡
m2

σ σ̄ 2 + m2
ωω̄2 + m2

ρ ρ̄
2
¢

+ 1

3
bσ mNgσNσ̄ 3 + 1

4
cσ mNgσNσ̄ 4. (25)

The expression for the anisotropic pressures are determined by
the density energy given in equation (25), being

Pk =
X

b

μbn
v
b − ², (26)

P⊥ =
X

b

μbn
v
b − ² − MB, (27)

where the sum goes over both, neutral, and charged baryons. Taking
into account equations (26) and (27) and following the prescription
given in equation (14), we obtain the EoS for magnetized hadronic
matter, Phadron = Phadron(²).

As we have already established, besides the baryon octet, we
include the four 1-resonances in the hadronic phase. Unlike all the
other particles, we consider in this work, 1 particles have spin s =
3/2. This property modifies the values taken by the quantum number
ν and, consequently, the way to sum over the Landau levels, which
has been considered in equation (2).

2.4.3 Quark matter

For the inner core of the HS, we consider the presence of magnetized
deconfined u, d, and s quark matter at zero temperature described
through the Field Correlator Method (FCM). The FCM considers
that single quark and gluon lines interact in non-perturbative
way, known as single line approximation, using strength field
correlators, with vacuum fields (gluon and quark condensates)
(Simonov & Trusov 2007a). In this approximation, the partition
function factorizes into a product of one-gluon and one-quark (an-
tiquark) contributions, and then the corresponding thermodynamic
potential can be calculated at finite temperature (Simonov & Trusov
2007b).

The FCM quark model is characterized by two quantities: the
gluon condensate, G2, and the large distance static q̄q potential,
V1. As we discuss in a previous work, the values of V1 and G2

could depend a priori on the temperature and baryon density (see
Mariani et al. 2017 and references therein). At zero baryon density
and finite temperature, the phenomenological values of V1 and G2

are constrained by lattice calculations, but these values could be
very different at low temperatures and large baryon densities, as
occurs in the core of magnetized HSs (Burgio & Zappalà 2016).
In our case, as we work under the zero temperature-high densities
regime, we consider V1 and G2 as free constant parameters. Thus,
the effects of such parameters in our model will lead to a shifted
chemical potential, μ̃ = μ − V1/2, and an extra vacuum pressure
term, proportional to G2.

Following Strickland, Dexheimer & Menezes (2012), where
the magnetized EoS of a Fermi gas subject to a constant MF is
calculated, we include the Landau levels into the FCM, obtaining
the number density,

nq = γc|qq|B
2π2

+sX
−s

ν≤νmaxX
n=0

k
q
z,F, (28)
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the energy density,

²q = γc|qq|B
4π2

+sX
−s

ν≤νmaxX
n=0

·
E

q
F k

q
z,F + m̄2 ln

Ã
E

q
F + k

q
z,F

m̄

!¸
, (29)

and the parallel and transverse pressure components,

Pk,q = γc|qq|B
4π2

+sX
−s

ν≤νmaxX
n=0

·
E

q
F k

q
z,F − m̄2 ln

Ã
E

q
F + k

q
z,F

m̄

!¸
,

P⊥,q = γc|qq|2B2

2π2

+sX
−s

ν≤νmaxX
n=0

ν ln

Ã
E

q
F + k

q
z,F

m̄

!
. (30)

The double sum goes over the discrete angular momentum quantum
number, n, and over the spin projection, σ = −s, ..., +s, and
qq is the electric charge of the considered quark and γ c is the
degeneracy colour factor, γ c = 3. At zero temperature, the gluons
do not contribute to the pressure so we do not consider them. The
effective mass, the z-component of the Fermi momentum and the
Fermi energy are, respectively, given by

m̄2 = m2 + 2ν|q|B, (31)

k
q
z,F =

q
μ̃2

q − 2ν|q|B − m2, (32)

E
q
F = μ̃q. (33)

As specified in Section 2.1, the restriction ν ≤ νmax comes from the
fact that kz,F(ν) has to remain real.

Equations (28)–(30) satisfy the thermodynamic relationship for
the grand canonical potential, Ä = ² − μn = −Pq, and the canonical
relationship between the pressure components, P⊥ = Pk − MB,
being M the matter magnetization. Hence, following the prescrip-
tion given in equation (14), the total quark matter pressure Pmatter

reads

Pmatter =
X

q=u,d,s

(2P⊥,q + Pk,q)/3 + Pvac , (34)

where Pvac is the vacuum pressure given by Simonov & Trusov
(2007a, b) and Nefediev, Simonov & Trusov (2009)

Pvac = − 9

64
G2. (35)

Therefore, using equation (34) and following the prescription
given in the previous subsection, we obtain the quark magnetized
EoS, Pquark = Pquark(²).

2.4.4 Leptons

Since we work at zero temperature, we only consider electrons and
muons for the leptonic contribution present in both, the hadron and
quark phases. Leptons are treated as free Fermi gases with the MF
distribution given by equation (1) and the corresponding quantized
Landau levels. The expressions for the thermodynamic quantities
are the same as in the case of quark matter, taking into account
the corresponding values for the lepton masses and lepton electric
charges, setting the degeneracy factor γ c = 1 instead of γ c = 3 and
the parameters V1 = G2 = 0.

2.5 Hybrid EoS and phase transition

Once the EoS for each phase is computed, it is possible to construct
the hybrid magnetized EoS. We work under the formalism known

as Maxwell construction that considers a sharp transition without
a mixed phase region between hadron and quark matter. As it has
been mentioned before, this would be the case in NSs if surface and
Coulomb effects in the quark–hadron interface are large enough. In
this situation, the crossing of the hadron and quark EoS in the μ–P
plane defines the phase transition.

Local conservation of baryon and electric charges are given byX
i

qb,ini = nB,

X
i

qe,ini +
X

l

qe,lnl = 0, (36)

respectively, where the sum of the first equation and the first sum of
the second equation go over the baryons or quarks, depending on
the phase, and the second sum of the second equation goes over the
leptons, ni are the respective number densities, qb,i and qe,i are the
baryon and electric charges of the respective baryon, and nB is the
total baryon number density.

In β-equilibrium, the relationships among the chemical potentials
is given by

μi = qb,i μB − qe,i μe, (37)

where μi is the chemical potential of each particle (baryons, quarks,
or leptons), μB is the baryon chemical potential, and μe is the
electronic chemical potential. Under these chemical equilibrium
conditions, the thermodynamic quantities of each phase can be
calculated and the hybrid EoS constructed.

The first aspect we shall discuss about the EoS results is the
contribution of the magnetization, M, and the magnetization
pressure, −MB. Fig. 1 shows the magnetization pressure for both
phases, hadron (panel a) and quark (panel b), as a function of the
baryon chemical potential and the MF. We remark that, for this
particular calculation, we are not considering the parametrization of
equation (1), but we take the MF and the baryon chemical potential
as independent variables. In addition, it is important to point out
that for these results we are not considering the FCM parameters of
Table 3. To show and analyse the effects of the magnetization, we
take V1 = 20 MeV and G2 = 0.006 GeV4, which are representative
of the general behaviour of the quark model.

Let us analyse the magnetization of both, the hadron and the quark
phases separately. Fig. 1(a) shows that the hadron magnetization
pressure is significant only for extremely high values of the MF, in
a density regime where hadrons are no longer present because of
the occurrence of the phase transition to pure quark matter. Because
of this behaviour and to avoid an unnecessary complication of the
hadron EoS, we only consider the magnetization pressure term in
the quark phase. It is worth to mention that for the quark phase
in Fig. 1(b), the magnetization and the magnetization pressure can
be calculated analytically from the pressure expressions, MB =
Pk − P⊥. However, to obtain the same quantity for the hadron phase,
we have to numerically derive the magnetization from equation (26).

The results shown in Fig. 2 deepen our study of magnetized
matter. There, it can be seen the magnetization and the particle
populations as a function of the baryon chemical potential for a
given constant MF for hadron matter in panel (a) and quark matter
in panel (b). It is noticeable how the magnetization reacts to the
changes in the particle populations. In the hadron phase, the peaks
and the valleys of the magnetization occur due to the appearance
or the vanishing of each type of particle. In the quark phase,
the magnetization has an oscillatory behaviour correlated to the
oscillations of the particle populations, more evident for electrons,
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Magnetized hybrid stars 4267

Figure 1. (Colour online) Magnetization pressure, PMag = −MB, as a
function of the MF and the baryon chemical potential. The colour bars
also indicate the value of PMag. The top (bottom) panel shows the hadronic
(quark) matter case. For the hadron phase, it can be seen that only for the
highest MF values the magnetization pressure is non-negligible. At this MF
order values, the phase transition has already occur so we do not consider
the magnetic pressure in the hadron EoS. For the quark phase, it can be
noticed the oscillatory effects of the Landau levels and that, only when the
MF is extremely high, the magnetization takes considerable values.

Table 3. Sets of FCM parameters chosen to calculate the
stellar models.

Set V1 G2

(MeV) (GeV4)

1 20 0.014
2 90 0.007

indicating the occupation of new Landau levels with the increase of
the chemical potential.

In Fig. 3, we show the different components of the pressure for
hybrid matter as a function of the MF for the magnetar EoSs and
two sets of the FCM parameters given in Table 3. It can be seen
that both pressure contributions differ from each other as the MF
increases. The pure magnetic pressure becomes relevant only for
high MF. The low-B HS case is not shown because there are no
anisotropies in the pressure components and the pure MF pressure
term is negligible for the whole MF domain.

Finally, we present results for magnetized hybrid matter. In Fig. 4,
we present the magnetized hybrid EoS for low-B HSs and magnetars

Figure 2. (Colour online) Particle population for the hadron (a) and quark
(b) phases, and the corresponding matter magnetization, as a function
of the baryon chemical potential for a constant MF, ∼ 5 × 1018 G. In
panel (a), it can be seen how the peaks and the valleys of the magnetization
(grey curve) are related to the appearance or disappearance of hadron
particles. In panel (b), the magnetization responds to the oscillation of
electron population that follows the Landau level occupation. To improve
the view of the magnetization effect, we have painted a cyan area below the
magnetization grey curve.

and for the two sets of FCM parameters. It can be seen how the
variation of the MF or the FCM parameters affects the transition
pressure and the energy gap between the hadron and quark phases.
Comparing panels (a) and (b), it can also be noted that the jump in
the energy density at the hadron–quark phase transition for Set 1 is
bigger than for Set 2. For both sets of FCM parameters, when the
MF is stronger, as in the case of magnetars, the transition pressure
is higher and occurs at higher densities.

In Figs 5 and 6, we show the resulting hybrid particle populations
as a function of the baryon number density for low-B HSs and
magnetars and for the two sets of FCM parameters. As can be seen,
the jump in the number density at the transition (the grey area) is also
very dependent of the FCM parameters values but the MF strength
effect is not as noticeable as in Fig. 4. Although the variation of the
MF strength or the FCM parameters affect the amount of particle
abundances, they do not modify the kind of particles appearing in the
hadron phase before the phase transition. Also, the 1− resonances
have a strong presence in all the cases, appearing before most of the
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4268 M. Mariani et al.

Figure 3. (Colour online) Pressure components for hybrid matter as a
function of the MF for Set 1 (a) and Set 2 (b) of the FCM parameters
and for the magnetar case. The dot in each curve marks the phase transition
from hadron to quarks, so that for low densities there is hadron matter
and for high densities, quark matter. It can be seen that the parallel and
transverse pressures are equal for low MF and they split increasingly as
the MF increases. It also can be seen that the pure magnetic pressure
dominates only in the extremely high MF regime. The low-B HS case is not
shown because it has no anisotropies in the pressure and it has a negligible
contribution of the MF pressure term for the whole MF domain.

particles of the baryon octet. On the other hand, as usual, there is a
strong drop of the lepton abundances from the hadron phase to the
quark phase. However, for magnetars, this drop is smaller than for
low-B HSs.

3 STELLA R STRUCTURE AND STABILITY

3.1 Hydrostatic equilibrium configurations

Once we construct the hybrid magnetized EoS, we can obtain several
results for our model solving the equilibrium structure equations
for the HS. As we have already stated and in order to obtain
representative, suitable and distinguishable star configurations, we
select two cases for the MF parametrization, a low-B HS, with

Figure 4. (Colour online) Hybrid EoSs for the two cases, low-B HS and
magnetar, and for Set 1 (a) and Set 2 (b) of the FCM parameters. In the
curves, the constant pressure regions correspond to the phase transition.

Bmin = 1013 G and Bmax = 1015 G, and a magnetar, with Bmin =
1015 G and Bmax = 3 × 1018 G. Besides, the chosen FCM parameters
sets of Table 3 fulfil the 2 M¯ constraint.

According to the explanation in Section 2.3, to construct stable
hydrostatic stellar configurations, we can use the TOV equations as
a valid approximation, which are given by

dP

dr
= −Gm(r)²(r)

r2

[1 + P (r)/²(r)][1 + 4πr3P (r)/m(r)]

1 − 2Gm(r)/r
, (38)

dm

dr
= 4πr2 ²(r), (39)

where r is the radius, P(r) and ²(r) are the pressure and energy
density at a radius r, m(r) is the mass bounded by the radius r, and
G is the universal gravitational constant. The conditions required to
solve the integrals are

P (r = R) = 0 , m(r = 0) = 0. (40)

Hence, using the magnetized hybrid EoS as an input, we can ob-
tain the mass–radius and mass-central energy density relationships
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Figure 5. (Colour online) Particle population, Yi, as a function of the baryon
number density in units of nuclear saturation density, n0, for low-B HSs (a)
and magnetars (b). The parameters considered for the quark phase of the
hybrid EoS are V1 = 20 MeV and G2 = 0.014 GeV4 (Set 1). The grey area
indicates the jump in the density due to the phase transition.

for a family of stars, each one possessing a different central energy
density for the integration procedure.

3.2 Dynamical stability of HSs with slow and rapid phase
transitions at the quark–hadron interface

The stability of a star in hydrostatic equilibrium can be assessed by
means of the analysis of its response to small radial perturbations
(Chandrasekhar 1964). When a stable star is perturbed, fluid ele-
ments all along the stellar interior oscillate around their equilibrium
positions, compressing and expanding periodically. On the contrary,
small perturbations grow without limit in the case of an unstable
star, leading to its collapse or disruption.

In the case of HSs, special care must be taken with fluid
elements in the neighbourhood of the quark–hadron interface,
because, as the fluid oscillates, their pressures become alternatively
higher and lower than the phase transition pressure Pt. The quark–
hadron transition is a quite complex mechanism involving strong
interactions, surface, and curvature effects, Coulomb screening, etc.
(see Lugones & Grunfeld 2017 and references therein); thus, a
fluid element oscillating around Pt will not necessarily undergo
a phase conversion. The probability that such conversion occurs
depends on the nucleation time-scale, which at present is a model-
dependent quantity with an uncertain value (see Bombaci et al. 2016;

Figure 6. (Colour online) Same as in the previous figure but for V1 =
90 MeV and G2 = 0.007 GeV4 (Set 2).

Lugones 2016; Lugones & Grunfeld 2017; and references therein).
In order to analyse the stability of HSs, we will focus here on two
limiting cases: slow and rapid phase transitions. Slow conversions
at the interface involve the stretch and squash of volume elements
near the quark–hadron interface without their change of nature
(nucleation time-scales much larger than those of perturbations).
Rapid conversions imply a practically immediate conversion of
volume elements from one phase to the other and vice versa in
the vicinity of the discontinuity upon any perturbation (Haensel,
Zdunik & Schaeffer 1989; Pereira et al. 2018).

In spite of being physically complex, the nature of the conversion
can be mathematically summarized into simple junction conditions
on the radial fluid displacement ξ and the corresponding Lagrangian
perturbation of the pressure 1P at the phase-splitting surface
(Pereira et al. 2018). For slow conversions, the jump of ξ and 1P
across the interface should always be null:

[ξs]
+
− ≡ ξ+

s − ξ−
s = 0 [1P ]+− ≡ 1P + − 1P − = 0. (41)

For rapid phase transitions, we have

[ξr ]+− = 1P

·
1

P 0
0

¸+

−
[1P ]+− = 0, (42)

where P 0
0 ≡ dP0/dr is the pressure gradient of the background

pressure at the interface.
An analysis of the radial oscillation spectrum of a spherically

symmetric star shows that, if the fundamental frequency is a real
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Figure 7. (Colour online) Schematic representation of the Gibbs free energy
per baryon of hadron and quark matter in chemical equilibrium under weak
interactions (Heq and Qeq, respectively), and just deconfined quark matter
out of chemical equilibrium (Q∗). The phase Q∗ has the same flavour
composition than Heq at the same pressure (see Olesen & Madsen 1994;
Lugones & Benvenuto 1998; Iida & Sato 1998; Bombaci et al. 2004;
Lugones & Grunfeld 2011). The conversion process is rapid if pressures
P

eq
tr and P ∗

tr are very close to each other. If not, the conversion would be
slow.

number (ω2
0 > 0), then any radial perturbation of the star will

produce oscillatory fluid displacements and the stellar configuration
is dynamically stable (Chandrasekhar 1964). Fortunately, in many
cases, a much simpler static condition can be derived from the latter
one. In fact, it is widely known that a hydrostatic configuration of a
spherically symmetric cold-catalysed one-phase star is unstable if
the condition

∂M/∂²c < 0 (43)

is verified, where ²c is the central density of a star whose total mass is
M (Harrison et al. 1965). Notwithstanding, this is not necessarily the
case if matter is non-catalysed (Gourgoulhon, Haensel & Gondek
1995) or if the system contains multiple phases separated by sharp
density discontinuities (Haensel et al. 1989; Pereira et al. 2018;
Pereira & Lugones 2019). In particular, it has been shown in Pereira
et al. (2018) that the standard stability criterion of equation (43)
remains always true for rapid phase transitions but breaks down
in general for slow phase transitions. In fact, for slow transitions
the frequency of the fundamental mode can be a real number
(indicating stability) even for some branches of stellar models that
verify ∂M/∂²c < 0. Thus, in the case of slow conversions, new
branches of stable stellar configurations could arise.

3.3 Microphysics of phase conversions

In the following, we analyse the hadron–quark conversion of per-
turbed fluid elements around the HS’s interface from a microscopic
point of view. The interface is at some pressure P

eq
tr at which the

Gibbs free energy per baryon of hadron matter (Heq) and quark
matter (Qeq) are equal (see Fig. 7). Both phases (Heq and Qeq) are
individually in chemical equilibrium under weak interactions. For
pressures below P

eq
tr the Heq phase is favoured because of its lower

free energy and for pressures above P
eq
tr the Qeq phase is preferred.

Let us consider a small lump of hadron matter in the neighbourhood
of the interface, resting in equilibrium at the ‘hadronic side’ of the
discontinuity. If the star is unperturbed, this lump is in thermal,
mechanical and chemical equilibrium, as any other fluid element

inside the star. In particular, chemical equilibrium under weak
interactions determines univocally the particle abundances of all
baryon and lepton species at that place (see Figs 5 and 6). When
this small hadronic lump is perturbed radially, it moves to the ‘quark
side’ of the interface, which is at a pressure slightly above P

eq
tr (see

Fig. 7). At this new position, it is submitted to an overpressure that
could convert hadrons into quarks if the deconfined quark-matter
state had a lower Gibbs free energy per baryon. However, since
deconfinement is driven by strong interactions, the quark and lepton
abundances Yi of just deconfined quark matter are determined by
the composition of the hadronic phase from which the new state
emerges; more specifically, by the flavour conservation conditions
given in e.g. Olesen & Madsen (1994) and Lugones & Benvenuto
(1998). As a consequence, just deconfined matter would be out of
chemical equilibrium and cannot be located along the Qeq curve in
Fig. 7. Model calculations (Olesen & Madsen 1994; Iida & Sato
1998; Lugones & Benvenuto 1998; Bombaci, Parenti & Vidana
2004; Lugones & Grunfeld 2011) show that, if quark matter is to be
formed under flavour conservation conditions around the pressure
P

eq
tr , then its state would be represented by a point 1∗ on the curve

Q∗, which is always above the point 1eq of phase coexistence in
chemical equilibrium (see Fig. 7). Since the transition to the point
1∗ is energetically suppressed, the perturbed hadronic lump will
move to the right along the solid blue line of Fig. 7. A phase
conversion would be possible if the lump is able to reach the point
2∗ where the free energy of Heq and Q∗ are equal. Therefore, the
phase conversion would be rapid if the pressures P

eq
tr and P ∗

tr are
close enough to each other and slow if they are sufficiently different.
Since first principle calculations of the high-density EoS are still
unavailable, a conclusive answer to this issue is missing. However,
numerical results using different phenomenological models (Iida &
Sato 1998; Bombaci et al. 2004; Lugones & Grunfeld 2011) show
that the relevant nucleation times are huge, strongly suggesting that
the hadron–quark conversion near the interface is slow. A reasoning
similar to the one given before holds for the conversion of a quark
lump into hadron matter at the HS interface.

3.4 Slow phase conversions: terminal configuration and
determination of new stable stellar branches

In order to determine the existence of new stable stellar branches in
the case of slow conversions, it would be necessary to calculate the
fundamental radial oscillation mode for each equilibrium configu-
ration. However, since unstable stars are characterized by purely
imaginary frequencies (ω2

0 < 0), what is important for stability
purposes is to focus on the case ω2

0 = 0. To this end, we set ω = 0
in the radial oscillation equations. The result (adopting G = c = 1)
is

dξ

dr
= V (r)ξ + W (r)1P, (44)

d1P

dr
= X(r)ξ + Y (r)1P, (45)

where the coefficients are given by

V (r) = −3

r
− dP

dr

1

(P + ²)
, (46)

W (r) = −1

r

1

0P
, (47)
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Figure 8. (Colour online) Maximum mass for each family of stars as a
function of V1 and G2. This result is obtained for low-B HSs in order to
determine the FCM parameters values that fulfil the pulsar observations
constrain. The curve marks the contour line for Mmax = 2 M¯.

X(r) = −4
dP

dr
+

µ
dP

dr

¶2
r

(P + ²)
− 8πeλ(P + ²)Pr, (48)

Y (r) = dP

dr

1

(P + ²)
− 4π(P + ²)reλ. (49)

From the previous equations, we can determine the properties
(mass, radius, central energy density, etc.) of the star for which the
frequency of the radial fundamental mode is null. Since now such
stellar configuration is not necessarily the one with the maximum
mass, we shall call it terminal configuration, and its mass will
be denominated terminal mass, MT ≡ M(ω2

0 = 0). To determine
MT, we solve equations (44)–(45) simultaneously with the TOV
equations (38)–(39) for a given central energy density and use the
initial conditions ξ (0) = constant and 1P(0) = −30(0)P(0)ξ (0)
for the (now auxiliary variables) ξ and 1P. In this procedure, one
has not to worry about the conditions [ξs]+− = 0 and [1P ]+− = 0 at
the phase-splitting surface because they are automatically fulfilled
along the numerical integration (with a piecewise EoS satisfying
Gibbs criteria for phases in equilibrium). When arriving at the
stellar surface, 1P will not be zero in general, because we are
not solving now a Sturm–Liouville problem. Spanning the value
of the central density, one will arrive at a stellar configuration for
which the condition 1P = 0 is verified at the star’s surface. Such
configuration is a terminal one if and only if the corresponding
function ξ (r) has no nodes inside the star. If ξ (r) has any node, it
means that the stability of an excited mode is changing (stabilizing
or destabilizing) for that configuration.

3.5 Results: equilibrium configurations and dynamical
stability

In Fig. 8, we show results of solving the TOV equations for a wide
range of the V1 and G2 FCM parameters and we plot the maximum
mass in the V1–G2 plane for the low-B HS model. The black line
represents the set of parameters for which the maximum mass is
2 M¯. In the left-bottom corner of Fig. 8, we see that the maximum
mass increases with both parameters, but then it tends to a constant
value as one approaches the top-right corner of Fig. 8.

Figure 9. (Colour online) M–R relationship for low-B HSs and magnetars
for Set 1 (a) and Set 2 (b) of the FCM parameters. The round dot indicates the
place where the quark matter core appears. In the case of rapid transitions,
all models to the left of the maximum mass are unstable. In the case of
slow transitions, the dashed branch to the left of the asterisk (terminal
configuration) represents the unstable models because ω2

0 < 0 there. The
triangle dot marks where the first radial mode becomes unstable and the
square dot marks where the second radial mode becomes unstable. The
horizontal bars are the measured masses of the 2 M¯ pulsars with their
corresponding errors (Antoniadis et al. 2013; Arzoumanian et al. 2018).
The black horizontal arrow marks the constrain calculated by Fattoyev et al.
(2018) for GW170817, R1.4 < 13.76 km.

The M–R relationship for magnetized HS families is presented in
Fig. 9. In both panels, the maximum mass increases with the central
MF. Although the difference is of ∼ 1 per cent, this monotonous
increment of the maximum mass, as the MF increases up to Bmax ∼
3.0 × 1018 G, is a general result, independent of the FCM parameters
values. The round dot in the curves indicates the appearance of a
quark matter core inside the star; which for the presented EoSs
occurs close but before the maximum mass configurations. Stable
configurations from this dot to smaller radii have an increasingly
large quark matter core. Moving beyond the maximum mass in the
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Figure 10. (Colour online) Gravitational mass M versus central energy
density ²c relationship for low-B HSs and magnetars, for Set 1 (a) and Set
2 (b) of the FCM parameters. The colour scale indicates the value of the
MF at the stellar centre, Bc. The round, triangle, and square dots have the
same meaning as in Fig. 9. In the case of rapid transitions at the interface,
stellar configurations located to the left of the maximum mass configuration
are stable and those to the right are unstable. In this case, ∂M/∂²c < 0 is a
sufficient condition for dynamic instability (as in the case of cold-catalysed
one-phase stars). Configurations between the triangle dot and the square
dot are also unstable. In the case of slow transitions, the continuous curve
represents the stable stars and the dashed curve the unstable ones. Notice
that to the right of the maximum mass configuration there is a stable branch
that verifies ∂M/∂²c < 0. Clearly, ∂M/∂²c < 0 is no longer a sufficient
criterion for dynamic instability in the case of slow conversions.

direction of smaller radii, hybrid stellar configurations verify the
condition ∂M/∂²c < 0 (see Fig. 10), and as explained in Section 3.2,
they are dynamically unstable if the quark–hadron phase transition
at the interface is rapid.

Therefore, for the presented EoSs, only a few stable stellar
configurations are HSs if the phase conversion is rapid.

However, if the phase conversion is slow, the branch to the left
of the maximum mass, represented with a continuous curve, is also
stable because the fundamental oscillation mode verifies ω2

0 > 0
along it. The stability of the fundamental mode is lost at the terminal
configuration, which is indicated with an asterisk in Fig. 9 (at that

point, ω2
0 = 0). Beyond the terminal configuration, an unstable

branch arises (represented with a dashed line) in which ω2
0 < 0.

The triangle dot indicates the stellar configuration where the first
radial mode becomes unstable (i.e. ω2

0 < ω2
1 < 0 beyond it), while

the square dot indicates where the second radial mode becomes
unstable (i.e. ω2

0 < ω2
1 < ω2

2 < 0 beyond it). Notice that, unlike the
case of cold-catalysed one-phase stars, changes of stability of the
radial modes do not occur at maxima or minima in the M–R diagram
in the case of slow conversions.

A general result we have obtained is that the length of the extended
hybrid stable branch starting at the maximum mass configuration
and ending at the terminal one, shortens if the transition pressure
increases. This last quantity increases both, if any of the two FCM
parameters increases or if the MF strength at the transition increases.
Regarding the existence of this extended stable branch, we find that
it appears only if the maximum mass star has already a quark core.
Otherwise, and if the maximum mass star is purely hadronic, the
stability of the fundamental mode is not preserved. For sufficiently
large values of one of the two FCM parameters, the extended
branch disappears and the last stable star is the maximum mass
one, coinciding with the rapid transition criterion.

In Fig. 10, we present our results for the relationship among the
mass, the central energy density and the central MF. As in the M–R
figures, stable stellar configurations in the slow transition scenario
are represented by continuous curves, the rounded dots indicate
the appearance of the quark phase and the triangle and square dots
indicate the destabilization of the first and second excited oscillatory
radial modes. From these figures, it is clear that in the slow transition
scenario ∂M/∂²c < 0 is no longer a sufficient criterion for dynamic
instability.

3.6 Baryon mass

So far, and every time it has not been specified, we have used the
term mass, M, to refer to the NS gravitational mass, given by

M = MG =
Z R

0
4πr2 ²(r) dr. (50)

From this subsection and onwards, we will use MG for the grav-
itational mass, to distinguish it from the baryon mass, MB, given
by

MB = mN

Z R

0

4πr2 nB(r)

[1 − 2Gm(r)/r]1/2
dr, (51)

where mN is the nucleon mass and nB(r) is the baryon number
density.

According to Bombaci (1996), when there is a dynamical evo-
lution of stars, the concept of maximum mass arising from TOV
equations for NSs is partially inadequate. For an isolated compact
object, it is reasonable to consider that MB remains constant along
the evolution process, while MG not necessarily does. In this sense,
the MG–MB plane provides an adequate way to study the evolution
and stability of NSs. This method has already been applied in
Mariani et al. (2017) for the study of the fast cooling evolution of
proto-HSs. In this work, we will use it instead to study the evolution
of magnetized HSs due to MF decay. It will be also employed to
analyse the evolution of the magnetized HSs as a consequence of
the transition between two equal-baryon mass stable configurations,
due to the existence of an extended stable branch.

In Fig. 11, we present the gravitational mass, MG, as a function
of the baryon mass, MB, for low-B HSs and magnetars, and, for
both sets of the FCM parameters. As the MF decays, we can
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Magnetized hybrid stars 4273

Figure 11. (Colour online) MG–MB plane for the two cases, low-B HSs and
magnetars, for Set 1 of the FCM parameters. In each panel, only stable stellar
configurations are shown and the rounded dots indicate the appearance of
the quark matter core. Considering the MF decay, from a magnetar to a
low-B HS, the star evolves along a constant baryon mass vertical line from
the highest to the lowest central MF.

expect a transition from the magnetar curve to the low-B HS curve,
downwards along a vertical line, which represents the conservation
of the baryon mass through the isolated evolution of the star. In
Figs 11(a) and (b), we show a vertical arrow crossing the stability
curves as an example of a possible evolution, where we have
labelled the involved stable configurations to analyse this process in
a qualitative way. Notice that the label c indicates an almost double
degenerated configuration: the stable branch before the maximum
mass as well as the connected extended stable branch after the
maximum are nearly overlapped in the MG–MB plane. Thus, the
label c indicates two different configurations with almost the same
gravitational and baryon mass, one purely hadronic and the other
one hybrid.

Regarding the MF decay, from the first stable branch of the
magnetar (configurations a and b in Fig. 11a or d in Fig. 11b),
it can be seen that a possible transition might occur from an hybrid

magnetar (configuration a) to a purely hadronic (configurations c or
e) or to a hybrid low-B NS (configuration f); and it is also possible to
occur a transition from a purely hadronic magnetar (configurations
b or d) to a purely hadronic low-B NS (configurations c or e) or
to a hybrid low-B NS (configuration f). This means that a phase
transition could happen throughout these processes in the core of the
NS, from quarks to hadrons or from hadrons to quarks, depending on
the case. It is important to remark at this point that the appearance
of deconfined quark matter to form the initial hybrid magnetar
(configuration a) could occur during the proto-NS phase (Mariani
et al. 2017).

However, not only the slow MF decay could produce transitions
between stable configurations. The existence of stable extended
branches would allow transitions between stellar configurations of
equal MB in the same MF-parametrization curve. These transitions
(from configuration a to b or from configuration e to f in Fig. 11)
could occur due to a large perturbation that destabilizes the star and
produces a fast catastrophic collapse event, allowing the compact
object to partially expel its gravitational mass trough different forms
of energy.

It is important to notice that in Fig. 11, for the low-B HS and
after the maximum gravitational mass peak in the curves, the stable
configurations of the extended branch have lower gravitational
mass compared to the traditionally stable configuration before the
maximum mass for the same baryon mass. In other words, in
panel (b), the configuration f has a lower gravitational mass than
the configuration e. In panel (a), this phenomenon is not noticeable
due to the superposition of the curves, but it is also present. This
would mean that the purely hadronic low-B star could collapse into
a more compact HS with the occurrence of a hadron–quark phase
transition if some large perturbation destabilizes it.

In summary, on one hand, the study of the MG–MB plane allows to
consider the possibility of different channels for the MF decay and
for the occurrence of phase transitions. On the other hand, beyond
this qualitatively analysis and the mechanisms triggering such
processes, it is important to point out that if these transitions between
stable configurations occur, a considerable amount of energy would
be released due to the difference between the initial and final
gravitational mass of the configurations involved. An estimate of
such energy gives Erel = 1MG c2 ∼ 0.05 M¯ c2 = 5 × 1052 erg,
which is enough to explain the energetics involved in a typical GRB
(Nakar 2007; Rezzolla et al. 2011).

3.7 Tidal deformability

The NS tidal deformability, λ, is an important parameter for NS-
gravitational wave astronomy, since it determines the pre-merger
gravitational wave signal in binary NS merger events.

Keeping only linear terms, λ is related to the dimensionless tidal
Love number, k2, associated with quadrupolar ` = 2 perturbations,

λ = 2

3
k2R

5. (52)

The dimensionless tidal deformability, 3, is defined as

3 = λ/M5. (53)

For details regarding the calculations involved in obtaining 3

for stellar models with sharp discontinuities in their energy density
profiles see Han & Steiner (2019).

Data analysis from GW170817 put strong constrains on the
dimensionless tidal deformation parameter of a 1.4 M¯ NS, 31.4

≤ 800 (Abbott et al. 2017a; Annala et al. 2018; Most et al. 2018;
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Figure 12. (Colour online) Dimensionless tidal deformability, 3–MG plane
for low-B HSs and magnetars, for Set 1 (a) and Set 2 (b) of the FCM
parameters. Only stable configurations are presented and the black vertical
arrow marks the constrain obtained in Abbott et al. (2017a) for GW170817,
31.4 < 800.

Raithel et al. 2018). In Fig. 12, we present the theoretical curves
obtained for a low-B HS and a magnetar, using both sets of the FCM
parameters for 3 as a function of the gravitational mass. We see that
this relationship ceases to be of functional nature as there appears a
degeneracy. Such degeneracies are a consequence of the appearance
of extended stable branches in the case of slow conversions. In
panels (a) and (b), it can be seen that the observational constrain
from GW170817, indicated by an arrow, is fulfilled.

4 SUM M A RY, D ISCUSSION AND
C O N C L U S I O N S

In this work, we have studied the effect of strong MFs in the structure
and stability of HSs and the astrophysical consequences of possible
transitions between different branches of stable HS configurations.
We carried out this study for two paradigmatic cases: low-B HSs and

magnetars. The hybrid magnetized EoS was obtained by combining
the GM1L parametrization of the RMF model for the hadron phase
and the FCM model for the quark phase. Although it has been
already shown that the hybrid EoS GM1L+FCM without MF
satisfies the observational mass constraint of 2 M¯ (see e.g. Ranea-
Sandoval et al. 2018; Orsaria et al. 2019), we have extended the
study of HSs considering the effect of the MF on the EoS describing
their matter composition. Our results show that both the 2 M¯
limit and the tidal deformability constraint are verified both when
magnetized GM1L hadronic EoS or magnetized GM1L+FCM
hybrid EoS are used.

In order to obtain representative general results that satisfy the
2 M¯ constraint, we considered two sets of the FCM parameters.
To include the MF contribution, we used an ansatz for the MF,
parametrized via the baryon chemical potential, and taking into
account Landau quantization. Assuming the occurrence of a sharp
hadron–quark phase transition, we used the Maxwell construction
in which electric and baryonic charges are conserved locally.
Using the NESTOR code to automate the whole process, stellar
structures were calculated. Moreover, we analysed the stability of
stellar configurations considering rapid and slow phase transition
scenarios.

In addition, we studied the matter magnetization and particle
population contributions for the hadron and quark phases. In both
phases, we obtained that the magnetization is extremely sensitive
to changes in the particle population. Moreover, the pressure due to
the magnetization (and so the anisotropies in the matter pressure)
is non-negligible only for extremely high MF. As a consequence,
according to the ansatz considered for the MF profile, for extremely
strong MFs we include only the contribution of the magnetization
pressure coming from the quark phase, since there are no more
hadrons at such high densities.

On the other hand, the pure magnetic contribution to the EoS
becomes highly relevant as the MF increases, leading to an in-
creased difference between the pressure components parallel and
perpendicular to the local direction of the MF. As discussed in
Sections 1 and 2, assuming that the MF in the core is a complex and
disordered combination of poloidal and toroidal fields of the same
order, this anisotropy can be suitable treated via an average of the
pressure components and considering that a spherical symmetric
stellar configuration is a valid approximation.

Then, using the spherically symmetric TOV equations we ob-
tained several stellar properties such as the gravitational mass, the
radius, the baryon mass, the tidal deformability and the stable
branches of magnetized HSs. In Fig. 8, besides the dependence
of the maximum mass with the FCM parameters, we found a
monotonic increase of the maximum mass of about ∼ 1 per cent
when the MF increases. Furthermore, the stability of hybrid
configurations depends strongly on the kind of phase transition
at the sharp interface (rapid or slow). For rapid transitions, stellar
configurations remain stable (i.e. have real eigenfrequencies) only if
∂M/∂²c > 0, while an extended stable branch beyond the maximum
mass peak appears if the transition is slow. At the extended stable
branch, ∂M/∂²c < 0 is verified; however, in spite of this, all radial
eigenfrequencies are real indicating that radial perturbations do
not grow with time. For the set of EoSs adopted in this work,
a pure quark matter core arises for stellar configurations that are
close to that with the maximum mass star (but before it). Since,
in the scenario of rapid transitions, the terminal mass coincides
with the maximum mass, there is a very narrow range of central
densities that lead to stable HSs in this case. On the other hand, in
the scenario of slow transitions, the terminal configuration occurs

MNRAS 489, 4261–4277 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/3/4261/5558243 by guest on 16 M
arch 2021



Magnetized hybrid stars 4275

beyond the maximum mass one, meaning that a wider family of
HSs is possible. In fact, the central density in the slow case can
reach values considerably larger than in the rapid case. Finally, it is
worth noticing that within the slow transition hypothesis, the central
densities for stabilization/destabilization of the normal modes are
shifted with respect to the ones predicted in the rapid transition
scenario, ∂M/∂²c = 0. A more detailed analysis of this result is left
for a future work.

Not only the MF strength but also the FCM parameters affect
the length of the extended stable branch: the larger the parameter
values are, the shorter is the length of such branch. Furthermore,
we have explored other parameter combinations of the FCM. For
slow conversions, we have found that, if the parameters values are
such that quark matter appears only for configurations beyond the
maximum mass star, then the fundamental mode has zero frequency
at the maximum mass and the extended stable branch does not exist.
In these cases, the terminal mass coincides with the last stable star
for the rapid transition stability criterion. For the particular case of
the terminal mass configurations, a baryon number density up to
20 times the nuclear saturation density, n0 ≈ 0.16 fm−3, is reached
in their centre. This result should motivate the research of less
explored and more extreme regions of the QCD phase diagram.

On the other hand, an analysis of the MG–MB plane allowed us
to study possible evolutionary paths of the HS as the MF decays. In
this sense, we presented a qualitative analysis of different channels
through which magnetars can evolve, including the possibility of
phase transitions. It has been suggested that a phase transition from
hadron to quark matter could occur in the core of a recently born
NS (Benvenuto & Lugones 1999; Prakash et al. 2001; Mariani et al.
2017). However, the results in this work suggest that this phase
transition could also occur during the slow MF decay expected to
occur when a magnetar evolves to become a low-B object. Within
this scenario, quark matter would appear not at the proto-NS stage
but probably thousands of years after the NS birth. Additionally,
a transition between two stable configurations could occur if a
sufficiently strong external perturbation destabilizes a star located
along the upper branch of a given equilibrium sequence in Fig. 11,
triggering a fast collapse to the lower branch of the same sequence.

We have calculated the energy released in transitions between
stable stellar configurations with the same baryon mass and found
that it is Erel ∼ 5 × 1052 erg, which would be enough to power
a GRB event. In fact, the idea that the hadron–quark conversion
could work as the central engine of at least some GRBs has been
proposed several years ago (Olinto 1987; Cheng & Dai 1996;
Xu et al. 1999). Many subsequent works have shown that this
scenario is energetically feasible, involving an energy release of
about ∼1052–1053 erg (Bombaci & Datta 2000; Ouyed & Sannino
2002; Berezhiani et al. 2003; Marquez & Menezes 2017). The main
new ingredient of this study is that one of the configurations involved
in the transition (either the initial or the final one) pertains to the new
stable branch. In spite of this, the energy scale is roughly the same
in all the above scenarios. Additionally, some works have focused
on possible mechanisms that would convert the available energy
into pure gamma radiation. For example, Haensel, Paczynski &
Amsterdamski (1991), Cheng & Dai (1996), and Lugones et al.
(2002) argue that a small fraction of the neutrinos and antineutrinos,
produced in the stellar core during the phase conversion, may
annihilate into electrons and positrons above the compact star
surface, giving rise to an expanding fireball (mixture of photons,
electrons, and positrons) that could explain the observed gamma-
ray emission. Some clues for beaming the radiation in magnetized
compact stars have also been provided (Lugones et al. 2002). There

are also studies of the implications of quark deconfinement on the
phenomenology of long gamma-ray bursts focusing, in particular,
on the possibility to describe multiple prompt emission phases in
the context of the proto-magnetar model (Pili et al. 2016).

Last but not least, the recent new constrains arising from the
gravitational wave detections were considered. In the M–R plane,
we verified that the R1.4 . 13.76 km condition (Annala et al. 2018;
Fattoyev et al. 2018; Malik et al. 2018; Most et al. 2018; Raithel
et al. 2018) is satisfied together with the restriction of 3̃ < 800
(Abbott et al. 2017a) in the 3–M plane.

Regarding the degeneracy obtained in our theoretical curve, it is
important to point out that Advanced LIGO is expected to detect up
to 50 BNS mergers during O3 run (10 is a less optimistic number)
(Abbott et al. 2018). This amount of data would be extremely useful
to get more insight about the composition of NSs. If one of the
components of the binary system of such events had a sufficiently
large mass (in the range of ∼ 1.6–2.0 M¯ according to Fig. 12),
the existence of an extended branch of stable NSs could be tested.
However, it should be noted that optimism about detecting such
objects should not be overstated since observed NSs in binary
systems have a narrow mass distribution with a peak at 1.33 M¯
and a dispersion of 0.05 M¯ (Özel et al. 2012; similar results can
be found in Piro, Giacomazzo & Perna 2017).

The results presented in this work were obtained in a context
in which multimessenger astronomy promises new observations in
the short term, imposing more constraints and challenging both
the current micro- and macro-physical models. Regarding dense
matter models, the uncertainties about whether a phase transition
between hadron and quark matter could occur at high densities
and low temperatures, as well as its nature (sharp or soft, rapid
or slow), should be addressed with new perspectives. From the
astrophysical point of view, the gravitational wave asteroseismology
of NSs, through the calculation of non-radial oscillation modes, is
a new promising tool that, with future GW detector generations,
may open a new window to study these compact objects. We plan
to address the above issues in future works.
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APPENDI X: UNI TS

A1 Electromagnetic units

In this work, we use the Heaviside–Lorentz (HL) system of units.
This is a rationalized system within cgs that takes ²0 = μ0 =
1, where ²0 is the vacuum electric permittivity and μ0 is the
vacuum magnetic permeability. Within this system of units, it is
important to remark that each particular electromagnetic quantity
has a definite expression to keep the consistence of the system. In
order to clarify this we follow Heras & Báez (2009), where a method
for tranformations between different unit systems (SI, Gaussian, and
natural HL) is developed.

In the HL system of units, the electromagnetic Lagrangian is
given by

LEM = −1

4
FμνF

μν, (A1)
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where Fμν is the electromagnetic field tensor; and the electromag-
netic energy density is

uEM = 1

2
(E2 + B2). (A2)

Finally, considering also that we use a natural unit system where
c = ~ = 1, it is possible to obtain the unit of the elementary electric
charge via the fine-structure constant definition,

e =
√

4πα, with α ∼ 1/137. (A3)

A2 MF units

In this work, we use two different units of reference for the MF:
Gauss and MeV2. The Gauss unit is mostly related to astrophysical
references. On the other hand, the MeV unit is used in theoretical
models of nuclear physics.

Although it is not entirely clear in the literature how to transform
between Gauss and MeV2, it is possible to obtain a relation

following the definition of the MF critical value for the electron
(Broderick, Prakash & Lattimer 2000):

Be
c = ~c

e
λ̄−2

e , (A4)

where λ̄e = ~/mec is the Compton wavelength of the electron.
In the cgs system, Be

c = 4.414 × 1013 G. In the natural
Heaviside–Lorentz system we use, considering c = ~ = 1, me =
0.511 MeV, and e = √

4πα as we established in Section A1, the
critical field turns out to be Be

c = 0.862 MeV2.
Comparing these two results for the magnetic critical field, we

obtain that

1 G = 1.952 × 10−14 MeV2. (A5)
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