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Lopez-Pamies and Idiart (2010, “Fiber-Reinforced Hyperelastic Solids: A Realizable
Homogenization Constitutive Theory,” J. Eng. Math., 68(1), pp. 57–83) have recently put
forward a homogenization theory with the capability to generate exact results not only for
the macroscopic response and stability but also for the evolution of the microstructure in
fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we
make use of this new theory to construct exact, closed-form solutions for the change in
size, shape, and orientation undergone by the underlying fibers in a model class of
fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of
these results, we then establish connections between the evolution of the microstructure
and the overall stress-strain relation and macroscopic stability in fiber-reinforced elas-
tomers. In particular, we show that the rotation of the fibers may lead to the softening of
the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Fur-
thermore, we show that this geometric mechanism is intimately related to the develop-
ment of long-wavelength instabilities. These findings are discussed in light of compari-
sons with recent results for related material systems. �DOI: 10.1115/1.4002642�

Keywords: finite strain, microstructures, instabilities, homogenization, Hamilton–Jacobi
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Introduction
Elastomeric materials reinforced by a single family of aligned

ylindrical fibers constitute an important class of technological
nd natural material systems. A classical example is that of tires
nd prominent examples of more recent interest include nano-
tructured thermoplastic elastomers �1,2�, as well as biological
issues �3,4�. It is by now well recognized that at finite deforma-
ions, the mechanical response and stability of these materials
epend critically on the underlying evolution of microstructure.
owever, the strong material and geometric nonlinearities inher-

nt to finite deformations have thus far hampered a rigorous and
horough analysis of this phenomenon.

In this paper, our main objective is to construct exact results for
he change in �relative� size, shape, and orientation of the under-
ying fibers in fiber-reinforced elastomers that are subjected to
rbitrary 3D finite deformations. Furthermore, we aim at under-
tanding the effect that such an evolution of microstructure has on
he mechanical response and stability of these material systems.
o this end, we will make use of the iterative homogenization

heory recently put forward by Lopez-Pamies and Idiart �5�. A key
eature of this theory is that in addition to its principal capability
f providing the exact homogenized �or macroscopic� response for
arge classes of fiber-reinforced hyperelastic solids, it does also
rant access to information on the local fields within each con-
tituent �i.e., the matrix and the fibers�. It is precisely this feature
hat will allow us to establish exact relations for the change in
ize, shape, and orientation of the fibers along arbitrary loading
aths.

While the theory proposed in Ref. �5� applies to fairly general
lasses of materials, in this work, we will focus on the case of
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fiber-reinforced elastomers made up of a neo-Hookean matrix re-
inforced by a transversely isotropic distribution of stiffer neo-
Hookean fibers. As it will become apparent further below, this
case is general enough to illustrate the fundamental connections
between the evolution of microstructure and the macroscopic be-
havior of fiber-reinforced elastomers while permitting, at the same
time, explicit mathematical treatment.

The outline of the paper is as follows. Section 2 lays out the
basic equations that characterize the mechanical response, macro-
scopic stability, and microstructure evolution in fiber-reinforced
elastomers. Section 3 summarizes the main results of the iterative
homogenization theory of Lopez-Pamies and Idiart �5�. In Sec. 4,
we make use of the results of Sec. 3 to solve the equations pre-
sented in Sec. 2. In particular, we work out closed-form solutions
for the macroscopic response, stability, and the change in size,
shape, and orientation of the fibers in fiber-reinforced elastomers
made up of a neo-Hookean matrix reinforced by a transversely
isotropic distribution of stiffer neo-Hookean fibers. The analytical
solutions put forward in Sec. 4 are then examined in detail in Sec.
5 for various loading conditions, fiber-to-matrix heterogeneity
contrasts, and initial volume fractions of fibers in order to illus-
trate the main geometric mechanisms by which the evolution of
the microstructure affects the macroscopic mechanical behavior of
fiber-reinforced elastomers. Finally, in Sec. 6, some concluding
remarks are presented.

2 Problem Formulation
Consider a fiber-reinforced solid made up of a continuous ma-

trix phase reinforced by a random distribution of aligned cylindri-
cal fibers that are perfectly bonded to the matrix. The characteris-
tic size of the cross section of the fibers is assumed to be much
smaller than the size of the solid and the scale of variation of the
applied loads. It is further assumed that the random microstructure
is statistically uniform, ergodic, and transversely isotropic. We

denote by �0 the volume occupied by a representative specimen
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n the undeformed �reference� configuration and by the unit vector
the orientation of the fibers in the undeformed configuration.

pon deformation, the volume occupied by the specimen is de-
oted by �. A material point is identified by its initial position
ector X in �0 and by its current position vector x in � �see Fig.
�.

The constitutive response of the matrix �r=1� and fiber �r=2�
aterials is described in terms of stored-energy functions W�r� that

re objective, nonconvex functions of the deformation gradient F.
he local constitutive relation can then be conveniently written as

S =
�W

�F
�X,F�, W�X,F� = �1 − �0�X��W�1��F� + �0�X�W�2��F�

�1�

here S is the first Piola–Kirchhoff stress tensor and the charac-
eristic function �0 describes the initial microstructure �i.e., the
ize, shape, orientation, and location of the fibers in �0�, taking
he value 1 if X is in a fiber and 0 otherwise. Because of the
ssumed random distribution of the fibers, the dependence of �0
n X is not known precisely and the microstructure can only be
artially defined in terms of the n-point statistics of the system
6,7�. Here, use will be made of information up to two-point sta-
istics in order to be able to take advantage of the theory devel-
ped in Ref. �5�.

Under the above-stated hypotheses, we follow Hill �8� to define
he effective stored-energy function1 of the fiber-reinforced elas-
omer as

W̄�F̄� = min
F�K��F̄�

1

�0
�

�0

W�X,F�dX �2�

here K� is a suitably defined set of admissible deformation gra-

ients F �see Sec. 2 of Ref. �5��. Physically, W̄ represents the total
lastic energy stored in the entire solid when subjected to an affine
isplacement boundary condition that is consistent with the aver-

ge deformation condition �0
−1��0

FdX= F̄.

Having formally defined W̄, the macroscopic �or homogenized�
onstitutive relation for the fiber-reinforced elastomer can be writ-
en as

S̄ =
�W̄

�F̄
�F̄� �3�

here S̄ denotes the average stress over �0 �i.e., S̄=�0
−1��0

SdX�.
he effective stored-energy function Eq. �2� also contains infor-
ation about the macroscopic stability of the material. In particu-

ar, it follows from the work of Geymonat et al. �10� that the loss

f strong ellipticity of W̄ denotes the possible development of

1Here, it is relevant to mention that other definitions of macroscopic behavior for
yperelastic composites have been proposed in the literature, including the notion of

e

N

0�

Matrix (phase 1)

Fibers (phase 2)

Undeformed

X

Fig. 1 Schematic illustrating a fib
formed „Ω0… and deformed „Ω… c
nience, the initial orientation of th
coordinate basis vector e3
“globally equivalent homogeneous” material �9�.
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long-wavelength instabilities. That is, geometric instabilities with
wavelengths that are much larger than the average fiber diameter
may develop whenever the condition

B�F̄� = min
�a�=�b�=1

�aibjL̄ijkl�F̄�akbl	 � 0 �4�

ceases to hold true for some applied deformation F̄. In this ex-

pression, L̄�F̄�=�2W̄�F̄� /�F̄2 is the effective incremental modulus
characterizing the overall incremental response of the material.

The above analysis makes use of a Lagrangian description of
the kinematics. The evolution of the microstructure resulting from
the finite changes in geometry is thus already accounted for in the

homogenized stored-energy function W̄. However, even if not nec-
essary to determine the macroscopic constitutive behavior Eq. �3�
and stability Eq. �4�, it is still of interest to have direct access to
variables characterizing the microstructure evolution as they pro-
vide deeper insight into the homogenized behavior. For “particu-
late” material systems like the ones considered here, the micro-
structural variables of most interest are the volume fraction,
average shape, and average orientation of the fibers, all of them in
the deformed configuration �11,12�. Within the context of the ho-
mogenization theory to be utilized in this work, it is possible to
write down explicit expressions for such variables �see Sec. 4 of
Ref. �5� and Sec. 5 of Ref. �12��. Indeed, the volume fraction of
fibers in the deformed configuration is simply given by

c =
det F̄�2�

det F̄
c0 �5�

where c0 is the volume fraction of fibers in the undeformed con-

figuration and F̄�2�= ��0
�2��−1��

0
�2�FdX—with F and �0

�2� denoting,
respectively, the minimizing field in Eq. �2� and the volume oc-
cupied by the fibers in the undeformed configuration—stands for
the average deformation gradient in the fibers. On the other hand,
the average shape and average orientation of the fibers are char-
acterized by the principal semiaxes and the principal directions of
the Eulerian ellipsoid

E = �x
x · �ZTZ�x � 1	 �6�

where the second-order tensor Z is defined by

Z = Z0�F̄�2��−1 with Z0 = I − N � N �7�

and it is recalled that the unit vector N indicates the orientation of
the cylindrical axis of the fibers in the undeformed configuration.
More specifically, the symmetric second-order tensor ZTZ has two
nonzero eigenvalues z1 and z2 that serve to define the average
elliptical shape of the cross section of the fibers in the deformed
configuration. The third eigenvalue z3 is zero, indicating that the
fibers remain cylindrical �i.e., infinitely long� along any loading
path. The eigenvectors v1, v2, and v3 of ZTZ associated with the
eigenvalues z1, z2, and z3 characterize the transverse and cylindri-
cal principal directions of the fibers in the deformed configuration

2
e

1
e �

Deformed

x

reinforced elastomer in the unde-
figurations; note that for conve-
bers N has been aligned with the
3

er-
on

e fi
�see Fig. 2�. From a computational point of view, it is also worth
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emarking that the evolution of the volume fraction, average
hape, and average orientation of the fibers as characterized by
elations �5�–�7� require only knowledge of the average deforma-

ion gradient tensor F̄�2� in the fibers.
In summary, the above-laid-out equations formally characterize

he constitutive response, macroscopic stability, and evolution of
icrostructure of a large class of fiber-reinforced elastomers. It is

mportant to emphasize, however, that the computation of W̄ and
�2� is, in general, a hopelessly difficult task because of the non-
onvexity of W�1� and W�2� and the randomness of the distribution
f fibers as characterized by �0. Over the past ten years, substan-
ial progress has been made in the development of variational
echniques to construct robust approximate solutions �see, e.g.,
efs. �12–15� and references therein�. More recently, Lopez-
amies and Idiart �5� have worked out an iterative homogeniza-

ion method that is actually capable of generating exact solutions

or W̄ and F̄�2�. In Sec. 3, for convenience and clarity, we summa-
ize the basic elements of this theory that are needed for our
urposes.

The Iterative Homogenization Method

In order to generate exact solutions for W̄ and F̄�2�, Lopez-
amies and Idiart �5� have proposed a “realizable” strategy.
oughly speaking, the idea is to construct a special but yet suffi-
iently general family of random microstructures that permit the
xact computation of the resulting homogenization problem. The
trategy comprises two main steps: �i� the first step �16� consists
f an iterated homogenization procedure �or differential scheme�
hat provides an exact solution for W̄ in terms of an auxiliary
ilute problem; �ii� the second step �17,18� deals with the auxil-
ary dilute problem, which consists in the construction of suitable
lasses of sequential laminates. The combination of these two
teps �see Sec. 3.3 of Ref. �5�� leads to an explicit framework for

enerating solutions for the total elastic energy W̄ and the local

elds including F̄�2� directly in terms of W�1� and W�2�, the one-
nd two-point statistics of the random distribution of fibers, and

he applied loading conditions F̄. To conclude these brief intro-
uctory remarks, it is appropriate to point out that because of the
terative construction process, the microstructures that this method
enerates can be best interpreted as containing fibers with cross-

3e

2e

1e
0�

F

(a)

z− = ∞2
3

z− =2
2

1

z− =2
1

1

Fig. 2 Schematic representation o
fiber-reinforced elastomer along a
mation gradient F̄: „a… In the unde
has a circular cross section „i.e., se
axis „with semiaxis z3

−2=�… is align
deformed configuration, the orient
eigenvector associated with the ze
the initial circular cross section ev
with semiaxes and principal direct
genvalues z1 and z2 and correspo
„see Eqs. „6… and „7…….
ectional areas of infinitely diverse sizes.
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For the transversely isotropic fiber-reinforced elastomers of in-
terest in this work, the iterated homogenization result for the ef-

fective stored-energy function W̄=W̄�F̄ ,c0� is implicitly deter-
mined by the following first-order nonlinear partial differential
equation �PDE�:

c0
�W̄

�c0
− W̄ − max

��R3
�

0

2�
1

2���i

�W̄

�F̄ij

� j − W�1��F̄ + � � ���d� = 0

�8�

subject to the initial condition

W̄�F̄,1� = W�2��F̄� �9�

Similarly, the average deformation gradient F̄�2�= F̄�2��F̄ ,c0� in the
fibers is implicitly determined by the following linear PDE:

c0
�F̄ij

�2�

�c0
−

�F̄ij
�2�

�F̄kl

�
0

2�
1

2�
�k�ld� = 0 �10�

where � is the maximizing vector in Eq. �8� subject to the initial
condition

F̄ij
�2��F̄,1� = F̄ij �11�

In the above expressions, �1=cos �, �2=sin �, and �3=0, Latin
indices ranging from 1 to 3, the usual summation convention is
employed, and all of the vector and tensor components are re-
ferred without loss of generality to a coordinate system ei �i
=1,2 ,3� with N=e3 �see Fig. 1�.

For a detailed description of the derivation and of the various
quantities involved in the above relations, we refer to Ref. �5�. In
the present context, it is appropriate to mention that the nonlinear
first-order PDE �8� corresponds to a Hamilton–Jacobi equation,
where the fiber concentration c0 and the macroscopic deformation

gradient F̄ play the role of “time” and “space” variables, respec-
tively �see, e.g., Chapter 14 of Ref. �19��. Due to the prominent
role of the Hamilton–Jacobi equations in physics, a substantial
body of literature exists on efficient techniques for solving this
type of equations �see, e.g., Refs. �19,20��. Hence, in spite of its
generality, expression �8� is fairly tractable and thus expected to
be extremely useful for generating analytical results. A similar

¯ �2�

2
v

1
v

3
v

z− = ∞2
3

z−2
2

z−2
1

(b)

e evolution of microstructure in a
ding path with macroscopic defor-
med configuration, a typical fiber
axes z1

−2=z2
−2=1… and its cylindrical

with the N=e3 direction. „b… In the
n of the fibers evolves to v3, the

eigenvalue „z3… of ZTZ. In addition,
es into an elliptical cross section
s that are characterized by the ei-
ng eigenvectors v1 and v2, of ZTZ
�
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comment applies to the linear first-order PDE �10� for F , which
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ould be solved by a variety of techniques such as, for instance,
he standard method of characteristics.

Closed-Form Solutions for Fiber-Reinforced Neo-
ookean Elastomers
The results presented in Sec. 3 are valid for any behavior of the
atrix and fiber phases as characterized by the stored-energy

unctions W�1� and W�2�. The aim of this work is to make use of
hese results for the first time to investigate the effect of micro-
tructure evolution on macroscopic behavior and stability. In this
egard, attention will be restricted to a specific case that is general
nough to contain all of the essential features of the problem and
hat at the same time leads to closed-form solutions. Thus, in this
ection, we will concentrate on the class of fiber-reinforced elas-
omers made up of an incompressible neo-Hookean matrix phase
einforced by a transversely isotropic distribution of incompress-
ble stiffer neo-Hookean fibers. The stored-energy functions char-
cterizing both phases are given by

W�r��F� =
	�r�

2
�I1 − 3� �12�

r=1,2�, where the positive material constants 	�1� and 	�2� cor-
espond to the shear moduli of the matrix and fibers in the ground
tate and I1=F ·F stands for the first principal invariant associated
ith F.
Within a slightly more general context, the specialization of Eq.

8� for W̄ to the case of neo-Hookean phases �Eq. �12�� has al-
eady been worked out in Sec. 6 of Ref. �5�. In the sequel �Sec.
.1�, we recall the relevant results from that work and utilize them
o write down closed-form expressions for the corresponding
verall constitutive response �3� and macroscopic stability condi-
ion �4�. In Sec. 4.2 further below, we construct a closed-form

olution of Eq. �10� for F̄�2� when specialized to neo-Hookean
atrix and fiber phases �Eq. �12��. This solution is, in turn, uti-

ized to construct explicit expressions, with the help of relations
5�–�7�, for the change in volume fraction, shape, and orientation
f the underlying fibers in fiber-reinforced neo-Hookean elas-
omers along arbitrary loading paths. We conclude this section by
urther specializing the solutions derived in Secs. 4.1 and 4.2 to
he practically relevant case of nearly rigid fibers �i.e., 	�2�

	�1��.

4.1 Overall Constitutive Behavior and Stability. Because
f the isotropy and incompressibility of the local constitutive be-
aviors �Eq. �12�� together with the transversely isotropic distri-
ution of fibers, it is first helpful to recognize that the effective

tored-energy function W̄ for fiber-reinforced neo-Hookean elas-

omers depends on F̄ and N only through a set of four invariants.
n this work, we will use the following “canonical” set �21�:

Ī1 = F̄ · F̄, Ī2 = 1
2 �F̄ · F̄ − �F̄TF̄� · �F̄TF̄��

Ī4 = F̄N · F̄N, Ī5 = F̄TF̄N · F̄TF̄N �13�

here it is emphasized that the third invariant J̄=det F̄=1 due to
he incompressibility of the matrix and fibers.

Next, given the linear dependence of Eq. �12� on I1, it is
traightforward to compute �see Appendix C of Ref. �5�� the maxi-
izing vector � in Eq. �8�. In turn, it is possible to carry out the

rientational integral in Eq. �8� and to finally solve the PDE for W̄
see Sec. 6 of Ref. �5��. The solution reads as follows:

W̄�F̄,c0� = �̄�Ī1, Ī4,c0� =
	̃

2
�Ī1 − 3� +

	̄ − 	̃

2

�Ī4 + 2��Ī4 − 1�2

Ī4

�14�

here

11007-4 / Vol. 133, JANUARY 2011
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	̄ = �1 − c0�	�1� + c0	�2�, �15a�

	̃ =
�1 − c0�	�1� + �1 + c0�	�2�

�1 + c0�	�1� + �1 − c0�	�2�	
�1� �15b�

Here, it is worth emphasizing that the effective stored-energy

function Eq. �14� is of the separable form W̄=W̄iso�Ī1�+W̄fib�Ī4�
—a functional form, which has been assumed in the literature on
a purely phenomenological basis �see, e.g., Refs. �22–24� and ref-

erences therein�—and that it does not depend on the second Ī2 nor

fifth Ī5 invariants.

Having generated the explicit expression �14� for W̄, the overall
stress-strain relation for fiber-reinforced neo-Hookean elastomers
can then be readily worked out as

S̄ =
�W̄

�F̄
�F̄,c0� − p̄F̄−T = 	̃F̄ + �	̄ − 	̃��1 − Ī4

−3/2�F̄N � N − p̄F̄−T

�16�

where the scalar p̄ is an arbitrary hydrostatic pressure associated

with the macroscopic incompressibility constraint det F̄=1. Simi-
larly, the corresponding incremental modulus tensor can be easily
computed to take the form �in indicial notation�

L̄ijkl =
�2W̄

�F̄ij � F̄kl

�F̄,c0� = 	̃�ik� jl + �	̄ − 	̃��1 − Ī4
−3/2��ikNjNl

+ 3�	̄ − 	̃�Ī4
−5/2F̄irF̄ksNrNjNsNl �17�

Upon direct use of Eq. �17� and some algebraic manipulation, the
macroscopic stability condition �4� can be shown to simplify to

B�F̄� = min
�a�=�b�=1

a·F̄−Tb=0

�	̃ + �	̄ − 	̃��N · b�2�1 − Ī4
−3/2 + 3Ī4

−5/2�N · F̄Ta�2�	

� 0 �18�

where the unit vectors a and b are required to satisfy the �incre-

mental� incompressibility constraint a · F̄−Tb=0. With the help of
the generic results put forward in Sec. 5.4 of Ref. �5�, it is not
difficult to show that along an arbitrary loading path with starting

point F̄=I, the macroscopic stability condition �18� first ceases to

hold true at critical deformations F̄cr with

Ī4
cr = F̄crN · F̄crN = �1 −

	̃

	̄
�2/3

�19�

As discussed in Sec. 6.1 of Ref. �5� �see also Ref. �25��, the
critical condition �19� has a direct physical interpretation. Indeed,

the fourth invariant Ī4 is a measure of the applied stretch along the
fiber direction. Since 	̃�	̄, condition �19� plainly states that
macroscopic instabilities may develop in fiber-reinforced neo-
Hookean elastomers whenever the compressive stretch along the

fibers reaches the critical value Ī4
cr= �1− 	̃ / 	̄�2/3�1.

4.2 Microstructure Evolution. Expressions �16� and �19�
provide rigorous results that completely characterize the macro-
scopic constitutive response and stability of fiber-reinforced neo-
Hookean elastomers subjected to finite deformations. In this sub-
section, with the aim of gaining a more fundamental
understanding on the behavior of these materials, we work out
results describing the evolution of the volume fraction, shape, and
orientation of the underlying fibers along arbitrary loading paths.

We begin by solving Eq. �10� for the average deformation gra-

dient in the fibers F̄�2�. For the case of neo-Hookean constituents
�Eq. �12��, the vector � in Eq. �10� takes a relatively simple form

that allows to compute the integral in Eq. �10� analytically �see the
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ppendix�. Once all of the coefficients �i.e., 1 /2��0
2��k�ld�� are

nown explicitly, the linear PDE �10� can be solved in closed-
orm. The solution reads as follows:

F̄�2��F̄,c0� = �1�F̄ − F̄N � N� −
2̌ − �1

Ī4

�F̄−T − F̄−TN � N�

+
2̌ − �1

Ī4

F̄N � u + F̄N � N �20�

here

u = �I − N � N�F̄TF̄N �21�

1 is a scalar function of the principal invariants Ī1, Ī4, and Ī5
iven by

�1 = ̌ +
Ī4 + ̌2�Ī1Ī4 − Ī5 − 2Ī4�

Ī1Ī4 − Ī5 + 2Ī4

�22�

nd

̌ =
	�1�

�1 + c0�	�1� + �1 − c0�	�2� �23�

ere, it is fitting to remark that Eq. �20� is, of course, a trans-

ersely isotropic function of F̄ with symmetric axis N, namely,
�2��F̄QN ,c0�= F̄�2��F̄ ,c0�QN for all proper orthogonal tensors QN
uch that QNN=N �see, e.g., Ref. �26��. Note also that

et F̄�2��F̄ ,c0�=1 for all applied deformations F̄ �with det F̄=1�
nd initial volume fraction of fibers c0 as a consequence of the
ncompressibility of the fibers.

We are now in a position to utilize the solution �20� in the
eneral equations �5�–�7� to establish rigorous relations for the
volution of microstructure in fiber-reinforced neo-Hookean elas-
omers. Because both the matrix and fibers are incompressible,

et F̄=det F̄�2�=1 and therefore Eq. �5� reduces trivially to c=c0.
hat is, the volume fraction of fibers in the deformed configura-

ion remains identical to the volume fraction of fibers in the un-
eformed configuration for the case of interest here.

On the other hand, the second-order tensor Z introduced in Eq.
7� can be shown to specialize to

Z = �I − N � N��F̄�2��−1 = �I − N � N���1�F̄−1 − N � F̄−TN�

− �2̌ − �1�Ī4�F̄T − N � F̄N� +
2̌ − �1

Ī4

u � F̄N� �24�

iven Eq. �24�, it is not difficult to deduce that the eigenvalues of
he symmetric second-order tensor ZTZ defining the Eulerian el-
ipsoid �Eq. �6�� are given by

z3 = 0

z2 = 1
2 �Ī1

�2�Ī4
�2� − Ī5

�2� + Ī1
�2�Ī4

�2� − Ī5
�2� + 2Ī4

�2�Ī1
�2�Ī4

�2� − Ī5
�2� − 2Ī4

�2��

z1 = 1
2 �Ī1

�2�Ī4
�2� − Ī5

�2� − Ī1
�2�Ī4

�2� − Ī5
�2� + 2Ī4

�2�Ī1
�2�Ī4

�2� − Ī5
�2� − 2Ī4

�2��

�25�

here

Ī1
�2� = F�2� · F̄�2� = 4̌2Ī1 − �4̌2 − 1�

2 + Ī4
3/2

Ī4

Ī�2� = F̄�2�N · F̄�2�N = Ī4
4
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Ī5
�2� = �F̄�2��TF̄�2�N · �F̄�2��TF̄�2�N = 4̌2Ī5 + �1 − 4̌2�Ī4

2 �26�

are principal transversely isotropic invariants of F̄�2�. The eigen-
vectors vi �i=1,2 ,3� of ZTZ associated with the above eigenval-
ues zi can, in turn, be readily computed. They may be written as

v3 = �F̄N�−1F̄N �27a�

v2 = �cos �2F̄−Tu + sin �2F̄−Tu��−1�cos �2F̄−Tu + sin �2F̄−Tu��
�27b�

v1 = �cos �3F̄−Tu + sin �3F̄−Tu��−1�cos �3F̄−Tu + sin �3F̄−Tu��
�27c�

In these last expressions, it is recalled that the vector u is given by
Eq. �21�, the vector u�=N�u has been introduced to ease nota-
tion and the angles �� are given by

tan �� = −
��ZTZ − z�I�F̄−Tu� · ��ZTZ − z�I�F̄−Tu��

��ZTZ − z�I�F̄−Tu�� · ��ZTZ − z�I�F̄−Tu��
�� = 1,2�

�28�

A few remarks regarding the physical significance of the above
results are now in order.

• The fact that ZTZ has a zero eigenvalue �z3=0�, as already
mentioned in Sec. 2, is a general result that applies to any
fiber-reinforced elastomer and not just to the fiber-reinforced
neo-Hookean elastomers under investigation here. Physi-
cally, z3=0 implies that the initially cylindrical fibers remain
cylindrical �i.e., infinitely long� in the deformed configura-
tion �see Fig. 2�. Moreover, the result �27a� for the associ-
ated eigenvector v3, which characterizes the average rota-
tion of the cylindrical axes of the fibers along arbitrary
loading paths, is also a general result that applies to any
fiber-reinforced elastomer. As a direct consequence of its
generality, note that v3 depends on the initial microstructure
via N �but not c0� and the macroscopic deformation gradient

F̄ but not on the constitutive behavior of the phases.
• In connection with the previous remark, it is also interesting

to recognize that in the direction of their long axes, the
fibers behave as macroscopic material line elements. Indeed,
according to the eigenvector �27a�, the direction N within an

undeformed fiber gets mapped to F̄N in the deformed con-
figuration. This rigorous result obtained from homogeniza-
tion therefore supports the popular assumption adopted in
phenomenological theories to treat fibers as material line
elements �see, e.g., the classical work of Spencer �27��.

• The eigenvalues z1 and z2, which serve to describe the av-
erage �elliptical� shape of the cross section of the fibers in
the deformed configuration, are seen to depend rather intri-
cately — as opposed to z3 — on the initial microstructure

via N and c0, the macroscopic deformation gradient F̄, as
well as on the constitutive behavior of the phases 	�1� and
	�2�. A similar comment applies to the corresponding eigen-
vectors v1 and v2, which describe the principal directions of
the average shape of the cross section of the deformed fibers
�see Fig. 2�.

4.3 The Case of Nearly Rigid Fibers. The above-presented
results correspond to a general heterogeneity contrast between the
matrix and the fibers. In practice, however, actual fibers in rein-
forced soft materials are usually several orders of magnitude
stiffer than the matrix phase �i.e., 	�2�
	�1��. In this regard, let
��1 /	�2� be a small parameter and expand expressions �14�,
�16�, �19�, and �20� for the effective stored-energy function, over-
all stress-strain relation, stability criterion, and average fiber de-

formation, respectively. The expansions are
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energy: W̄�F̄,c0� =
c0�Ī4 + 2��Ī4 − 1�2

2Ī4

�−1

+
1 + c0

2�1 − c0�
	�1��Ī1 − 3�

−
�3 − c0�c0	�1�

2�1 − c0�
�Ī4 + 2��Ī4 − 1�2

Ī4

+ O���

�29�

tress-strain: S̄ = c0�1 − Ī4
3/2�F̄N � N�−1 +

1 + c0

1 − c0
	�1�F̄

−
�3 − c0�c0

1 − c0
	�1�F̄N � N − p̄F̄−T + O��� �30�

tability criterion: Ī4
cr = 1 −

2�1 + c0�
3�1 − c0�c0

	�1�� + O��2� �31�

iber deformation: F̄�2� =
Ī4

1/4

Ī1Ī4 − Ī5 + 2Ī4

��F̄ +
1

Ī4

F̄−T�
��I − N � N� −

1

Ī4

F̄N � u�
+ F̄N � N + O��� �32�

In the limit of rigid fibers as �→0, the physical requirement
hat the energy and stress above remain finite restricts the set of

ossible deformations to those such that Ī4= F̄N · F̄N=1, namely,
eformations that do not involve the stretching of the fibers. For
=0, the above expressions then simplify to

energy: W̄�F̄,c0� =
1 + c0

2�1 − c0�
	�1��Ī1 − 3� �33�

stress-strain: S̄ =
1 + c0

1 − c0
	�1�F̄ − q̄F̄N � N − p̄F̄−T �34�

stability criterion: Ī4
cr = 1 �35�

fiber deformation: F̄�2� = R̄�2� =
1

Ī1 − Ī5 + 2
��F̄ + F̄−T��I

− N � N� − F̄N � u� + F̄N � N �36�

everal comments are in order. First, the scalar q̄ in Eq. �34� is the
agrange multiplier associated with the macroscopic kinematical

onstraint Ī4= F̄N · F̄N=1. Second, the critical stretch along the

bers Ī4
cr reduces identically to 1. This does not imply, however,

hat macroscopic instabilities in rigidly-reinforced elastomers will

evelop for all applied deformations F̄ with Ī4= F̄N · F̄N=1, which
nclude, for example, the undeformed configuration. Instead,
hether macroscopic instabilities do develop in the limit of rigid
bers depend ultimately on the applied stresses �no instabilities
ccur, of course, at zero stress�, and require, therefore, further
nalysis which, for conciseness, we will not report here. Third, the
verage deformation gradient in the fibers reduces to a proper

rthogonal second-order tensor R̄�2� as expected physically since
he fibers can only undergo rigid body rotations in this case. Con-
equently, the tensor ZTZ characterizing the average shape and
rientation of the fibers in the deformed configuration also sim-

lifies significantly in the rigid-fiber limit. It is easy to show that
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ZTZ = R̄�2�Z0
TZ0�R̄�2��T = I − R̄�2��N � N��R̄�2��T �37�

From this result, it is evident that the eigenvalues of ZTZ are
equal to those of Z0

TZ0= �I−N � N�. This implies that the shape of
the fibers will remain fixed upon deformation—that is, z1=z2=1
and z3=0—which is, of course, consistent with the fibers being

rigid. On the other hand, the rotation tensor R̄�2� serves to fully
characterize the reorientation of the principal axes of ZTZ with
respect to those of Z0

TZ0= �I−N � N�.

5 Sample Results and Discussion
In order to provide more insight into the analytical solutions of

the previous section, we next present illustrative results for spe-

cific loading conditions F̄, initial orientation of fibers N, values of
fiber-to-matrix heterogeneity contrast t�	�2� /	�1�, and initial vol-
ume fraction of fibers c0. Of special interest is to bring out the
interplay between microstructure evolution and macroscopic con-
stitutive response and stability.

Motivated by possible comparisons with experiments, we con-

sider applied axisymmetric compressive deformations F̄ of the
form

F̄ = �̄−1/2�e1 � e1 + e2 � e2� + �̄e3 � e3 �38�

where �̄ is a loading parameter in the range 0��̄�1 that takes
the value 1 in the undeformed configuration. Moreover, the initial
orientation of the cylindrical axes of the fibers is henceforth pa-
rameterized as

N = cos �0e1 + sin �0e3 �39�

with the angle �0� �0,90 deg� �see Fig. 3�a��. Thus, the case
�0=90 deg corresponds to uniaxial compression along the fibers
while �0=0 corresponds to a type of transverse uniaxial compres-
sion with tensile load being applied along the fibers. Given Eqs.

�38� and �39�, the scalar overall stress S̄�−dW̄ /d�̄ �which, in this
case, proves easier to visualize than the effective stored-energy

function W̄ and the individual components of S̄� is given by

S̄ = −
dW̄

d�̄
= 	̃

1 − �̄3

�̄2
+ �	̄ − 	̃�

�
�cos2 �0 − 2�̄3 sin2 �0���cos2 �0 + �̄3 sin2 �0�3/2 − �̄3/2�

2�̄2�cos2 �0 + �̄3 sin2 �0�3/2

�40�

λ

λ

1 2/λ−
1 2/λ−

3
e

Ν

0
ϕ

1
e

(a) (b)

3
e

n

ϕ
1

e

(b)

�0�

Fig. 3 Pictorial representation of the applied loading condi-
tions „38… and the resulting evolution of the orientation of the
fibers as determined by relations „42… and „43…
and the macroscopic stability criterion �19� specializes to
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�̄cr
3 sin2 �0 − �1 −

	̃

	̄
�2/3

�̄cr + cos2 �0 = 0 �41�

ith the critical stretch �̄cr determining the deformation at which
ong-wavelength instabilities may first develop along axisymmet-
ic loading paths �Eq. �38��. Furthermore, the average fiber orien-
ation �Eq. �27a�� in the deformed configuration reduces to

n � v3 = cos � e1 + sin �e3 �42�
here

� = Arcos� cos �0

cos2 �0 + �̄3 sin2 �0
� �43�

s depicted in Fig. 3�b�. The evolution of the remaining micro-
tructural variables �z1 ,z2 ,v1 ,v2� are of lesser importance in the
resent context of axisymmetric loading conditions and will not
e detailed here for conciseness.
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ig. 4 Angle of rotation of the fibers � „given by expression
43…… in fiber-reinforced neo-Hookean elastomers subjected to
xisymmetric compression „Eq. „38…… for various initial fiber
rientations �0 as a function of the applied macroscopic
tretch �̄; Note that the results are completely independent of
he constitutive behavior of the matrix and fibers, as well as of
he volume fraction of fibers

0

10

20

30

40

50

0 20 40 60 80
ϕ0

t = 2

c .=0 0 3

( )µ =1 1 t = 50

t =

S

λλ =1

d
d

(a)

Fig. 5 Overall constitutive respon
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We begin by examining the angle of rotation of the fibers � as

a function of the applied deformation �̄. Results are shown in Fig.
4 for various initial fiber orientations ��0=0,10 deg, 35.3 deg, 60
deg, 80 deg 89.9° deg, and 90 deg�. Recall that fiber rotation was
found to be independent of matrix and fiber constitutive response
and of fiber volume fraction. It is seen that fibers rotate away from
the axis of applied compression and toward the axis of applied

tension as deformation progresses �i.e., �→0 as �̄→0 monotoni-
cally for all �0� �0,90 deg��. For the smaller orientations �0,
fiber rotation evolves gradually with deformation. As �0 ap-
proaches 90 deg, however, fiber rotation is initially negligible but
drops rapidly after a certain deformation level. Finally, in the lim-
iting case of �0=90 deg, fibers do not rotate as dictated by the
symmetry of the problem. It will be seen below that the ability of
the fibers to undergo large and rapid rotations plays a critical role
in the macroscopic response and stability of fiber-reinforced elas-
tomers.

The macroscopic response as characterized by relation �40� is
shown in Fig. 5. Figure 5�a� displays the overall stiffness

dS̄ /d�̄ 
�̄=1 in the small-deformation regime as a function of the
initial fiber orientation �0 for various fiber-to-matrix heterogeneity
contrasts �t=5, 20, 50� and a moderate volume fraction of fibers
�c0=30%�. In this regime, where no evolution of microstructure
takes place, it is seen that the overall stiffness is highest when the
fibers are perfectly aligned with the compressive axis of loading
��0=90 deg� and is lowest when the fiber orientation is �0

=arcos2 /3�35.3 deg regardless of contrast. These angles do
not depend on fiber concentration either. In fact, maximum stiff-
ness along the fibers is a universal feature of fiber-reinforced sol-
ids while minimum stiffness at �0�35.3 deg can be shown to be
a feature shared by all transversely isotropic reinforced solids with

effective stored-energy functions independent of the invariant Ī5,
which is the case here.

As deformation progresses ��̄ decreases� into the large-
deformation regime, the constitutive response turns out to be strik-
ingly different as a result of the underlying microstructure evolu-

tion. Figure 5�b� displays the overall stress S̄ as a function of

applied deformation �̄ for the choice t=20, c0=30%, and the vari-
ous initial fiber orientations considered in Fig. 4. While at small
deformation levels, large fiber orientations ��0=60 deg, 80 deg�
lead to stiffer responses than small orientations ��0=10 deg, 35.3
deg� in accordance with Fig. 5�a�; at large deformation levels,
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hey lead to softer responses. The limiting case �0=90 deg, how-
ver, remains the stiffest regardless of deformation level. This
ighly nonlinear dependence of stress on initial fiber orientation is
manifestation of fiber rotation. Small initial orientations induce

radual fiber rotations leading to parabolic responses. Large ori-
ntations, by contrast, induce rapid fiber rotations within a small
eformation range leading to S-shaped responses with inflexion
oints precisely where fiber orientations � exhibit a sudden drop,
f. Figs. 4 and 5�b�. This strongly suggests that fiber rotation acts
s a significant geometric softening mechanism, an interpretation
hat is consistent with the intuitive notion that a rigid rotation of
bers serves to “accommodate”—at a microscopic length scale—
art of the imposed macroscopic deformation at no energy ex-
ense.

The symbols “ �” in Fig. 5�b� denote points at which the fiber-
einforced solid becomes unstable as dictated by the criterion �41�.
oss of stability is seen to occur for the large fiber orientations
nly ��0=60 deg, 80 deg, 90 deg�. This behavior can be linked as

ell to the rotation of the fibers. The critical stretch �̄cr at which
acroscopic instabilities are first encountered under axisymmetric

ompressive loadings are displayed in Fig. 6. Figure 6�a� shows

cr for various fiber-to-matrix heterogeneity contrasts �t=5, 20,
0� and fiber volume fraction c0=30% as a function of the initial

rientation of the fibers �0. Figure 6�b� shows �̄cr for �0
90 deg and fiber volume fractions c0=10%, 30%, and 50% as a

unction of the contrast t. A key point to remark from Fig. 6�a� is
hat fiber-reinforced neo-Hookean elastomers are more stable for
maller values of �0. In fact, there is a threshold �depending on
he contrast t� in �0 beyond which the response remains stable for
ll applied deformations. Physically, as already mentioned at the
nd of Sec. 4.1, these results entail that the onset of macroscopic
nstabilities is governed by the amount of compressive deforma-
ion applied along the cylindrical axes of the fibers. Indeed, under
oading conditions of the form �38�, �0=90 deg corresponds to
he case at which maximum compression is being applied along
he fibers. Decreasing the value of �0 effectively decreases the
mount of compression in the fiber direction. The other major
oint to recognize from Fig. 6�a� is that increasing the contrast
etween the two phases as measured by the parameter t renders
he material more unstable, irrespectively of the volume fraction
f the fibers c0. This is even more clearly seen in Fig. 6�b�.

In connection with all of the results presented in Fig. 6, it is
lso important to remark that macroscopic stability is consistently
ost through the softening of the effective incremental shear re-
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fibers. For instance, for the perfectly aligned case of �0=90 deg,
the material loses macroscopic stability because of the vanishing

of L̄1313 at �̄cr �see Eq. �4��. This type of “failure” mode is con-
sistent with the development of kink bands, which have been ob-
served to appear in various types of fiber-reinforced materials
�see, e.g., Ref. �28��. To better understand these stability results,
we turn once more to Fig. 4, where we notice that the more the
fibers can potentially rotate—that is, within the present context,
the larger the angle �0—the more unstable fiber-reinforced neo-
Hookean elastomers become. Physically, this behavior is in accord
with the idea that if the fibers—and in particular, the stiff fibers—
rotate away from the direction of applied compression, the effec-
tive incremental shear response of the material in the perpendicu-
lar direction to the fibers softens. It is because of this geometric
softening that fiber-reinforced neo-Hookean elastomers may be-
come macroscopic unstable in spite of the fact that they are made
up of matrix and fibers �Eq. �12�� that are locally stable �i.e.,
strongly elliptic�.

6 Concluding Remarks
By exploiting the capability of the theory of Lopez-Pamies and

Idiart �5� to generate results for the local �stress and deformation�
fields in fiber-reinforced hyperelastic solids, we have been able to
derive rigorous closed-form expressions for the evolution in �rela-
tive� size, shape, and orientation of the underlying fibers in a
representative class of fiber-reinforced elastomers under arbitrary
3D loadings. Exact results of this sort had hitherto been restricted
to layered materials �see, e.g., Ref. �29��—the simplest class of
composites and a crude 2D idealization of fiber-reinforced solids.
The usefulness of these expressions is that they provide a means
to identify microscopic mechanisms that govern the macroscopic
properties and stability of fiber-reinforced elastomers. In this
work, the results have indicated that the rotation of the fibers—
which depends critically on the relative orientation between the
loading axes and the fiber direction—can act as a dominant geo-
metric softening mechanism. More specifically, it was found that
the long axes of the fibers tend to rotate away from the axis of
maximum compressive loading toward the axis of maximum ten-
sion. A direct consequence of this behavior is that loadings with
predominant compression along the fibers lead to larger rotation
of the fibers, which in turn lead to larger geometric softening of
the constitutive response and in some cases—when the heteroge-
neity contrast between the matrix and the fibers is sufficiently
high—also to the loss of macroscopic stability. Akin microscopic
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lasses of fiber-reinforced elastomers subjected to shear deforma-
ions.

We conclude by remarking that the results of this work can help
nderstand the behavior of many other solids with oriented micro-
tructures besides fiber-reinforced elastomers. Indeed, soft modes
f deformation and instabilities akin to those reported here have
een observed, for instance, in thermoplastic elastomers with
amellar nanostructures under certain types of compressive load-
ngs �32�. Elastomers reinforced with aligned ellipsoidal particles
ave also been found to exhibit distinctively softer mechanical
roperties when compressed along the long axes of the particles
33,34�. Perhaps even more interestingly, the rapid rotation of
ligned mesogens in smectic elastomers has been identified as a
ey mechanism behind the complex macroscopic properties of
his class of liquid crystal elastomers �35�.

ppendix: Coefficients in the PDE (10) for the Case of
iber-Reinforced Neo-Hookean Elastomers
In this section, we provide explicit expressions for the coeffi-

ients 1 /2��0
2��k�ld� �k , l=1,2 ,3� that appear in the PDE �10�

or F̄�2� when specialized to the case of fiber-reinforced neo-
ookean elastomers. Without loss of generality, we write these

oefficients in a coordinate system ei �i=1,2 ,3�, where the initial
rientation of the fibers N is aligned with the coordinate basis
ector e3 �see Fig. 1�.

1

2�
�

0

2�

�1�2d� = q0�Ī4�q2F̄11 + 2q1F̄12� + �2q1q3 + q4�q2 − 2Ī4

− Ī1Ī4 + Ī5��F̄13�

1

2�
�

0

2�

�1�2d� = q0�Ī4�2q2F̄11 + q2F̄12� + �2q1q4 + q3�q2 − 2Ī4

− Ī1Ī4 + Ī5��F̄13�

1

2�
�

0

2�

�1�3d� = 0

1

2�
�

0

2�

�3�1d� = q0�Ī4�q2F̄21 + 2q1F̄22� + �2q1q3 + q4�q2 − 2Ī4

− Ī1Ī4 + Ī5��F̄23�

1

2�
�

0

2�

�3�2d� = q0�Ī4�2q1F̄21 − q2F̄22� + �2q1q4 + q3�− q2

− 2Ī4 − Ī1Ī4 + Ī5��F̄23�

1

2�
�

0

2�

�2�3d� = 0

1

2�
�

0

2�

�3�1d� = q0�Ī4�q2F̄31 + 2q1F̄32� + �2q1q3 + q4�q2 − 2Ī4

− Ī1Ī4 + Ī5��F̄33�

1

2�
�

0

2�

�3�2d� = q0�Ī4�2q1F̄31 − q2F̄32� + �2q1q4 + q3�− q2

̄ ¯ ¯ ¯ ¯
− 2 I4 − I1I4 + I5��F33�
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1

2�
�

0

2�

�2�3d� = 0 �A1�

Here,

q0 =
	�1� − 	̃

2	�1�Ī4�2Ī4 + Ī1Ī4 − Ī5�

q1 = C̄13C̄23 − C̄12C̄33

q2 = C̄13
2 − C̄23

2 − C̄11C̄33 + C̄22C̄33

q3 = C̄11C̄23 − C̄12C̄13

q4 = C̄13C̄22 − C̄12C̄23 �A2�

where the notation C̄= F̄TF̄ has been used for convenience and it

is recalled that the effective constant 	̃ and principal invariants Ī1,

I4, and Ī5 are defined, respectively, by Eqs. �15b� and �13� in the
main body of the text.
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