
A Scenario Construction Process

Julio Cesar Sampaio do Prado LeiteJulio Cesar Sampaio do Prado Leiteaa, Graciela D. S. Hadad, Graciela D. S. Hadadbb, Jorge Horacio Doorn, Jorge Horacio Doorncc andand
Gladys N. KaplanGladys N. Kaplandd

aPontifõÂcia Universidade CatoÂ lica do Rio de Janeiro, Rio de Janeiro, Brazil; bUniversidad Nacional de La Plata, Buenos Aires, Argentina; cUniversidad
Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina; dUniversidad de Belgrano, Buenos Aires, Argentina

Scenario is a description technique that has been
attracting a lot of attention from practitioners and
from researchers. Several disciplines have been using
scenarios for some time now, but recently the informa-
tion system community has dedicated special attention to
the possibilities that this description technique provides
to enhance understandability of task-related descriptions
and communicability among stakeholders. This paper
aims its attention at a particular scenario construction
process, but while doing so it tackles important problems
regarding scenario management, in particular scenario
organisation. Our scenarios are described in a
structured way, using a simple conceptual model
together with a form-oriented language. We have been
using this representation for some time now, and our
results are based on several case studies conducted with
real-world problems.

Keywords: Organisational context; Requirements elici-
tation; Scenario management; Scenario modelling;
Stakeholders

1. Introduction

The necessity of ensuring good understanding between
requirements engineers and clients/users has motivated
the research and development of methods that allow
better results in the collaboration among all participants
in the requirements definition process. Requirements
engineers should understand, model and analyse the
application domain where the software will run and the

clients/users must validate whether or not the engineers’
vision is correct. Our research uses the idea of scenario
as a medium to achieve this goal.

The word scenario, defined as ‘the plot of a motion
picture’ in the Merrian–Webster Dictionary, has been
used for a long time in several areas of different
disciplines (military strategy, decision making, market-
ing, economy). The information system area started
using scenarios in the human–computer interface and
recently in software engineering. Jarke, Bui and Carroll
[50] provide an overview of scenario research in a
broader view, both from an information system point of
view as well as from a management (decision theory)
view. They point out that the effectiveness of the use of
scenarios in several disciplines is fundamentally due to
their capability of stimulating thinking. Scenario
provides a situated task vision together with an effective
way of communication among the actors involved in the
subject of study.

For us, scenarios describe situations that happen in the
Universe of Discourse (UofD).1 Carroll [5], taking into
account usage aspects, believes that scenarios allow us to
know the problem, to unify criteria, to gain clients/users
compromise, to organise the involved details and to train
new participants. The use of scenarios, as a way of
understanding the domain in which the software will
perform, has been recommended by several authors [6–
9] and those proposals became very important for
extending the use of scenarios in real practice. However,
a detailed analysis of the recommendations from the

Requirements Eng (2000) 5:38±61
ß 2000 Springer-Verlag London Limited Requirements

Engineering

Correspondence and offprint requests to: Julio Cesar Sampaio do
Prado Leite, Pontifı́cia Universidade Católica do Rio de Janeiro –
PUC-Rio, Rua Marquês de São Vicente 255, 22451-041 Gávea-RJ,
Rio de Janeiro, Brazil. Email: julio@inf.puc-rio.br

1‘The overall context in which software will be developed and
operated. The UofD includes all the sources of information and all the
people related to the software. It is the reality trimmed by the set of
objectives established by those demanding a software solution.’ [1, 2].
We use the term Universe of Discourse with the same meaning given
by Michael Jackson [3] to Application Domain. Loucopoulos [4] also
uses both terms as synonyms.



literature shows some degree of dispersion and contra-
diction in the use of scenarios. Recent work of the
CREWS project confirms this observation [10,11].

This lack of precision of when and how scenarios
should be used has spread to the engineers who are using
these techniques in the field. Thus, most developers see
scenario creation more as a craft than as an engineering
task. Recent studies concerning the use of scenarios in
industrial projects [11] have clearly proved this fact and
pointed out the necessity of more detailed definitions on
scenario construction to increase their use in real
situations. This is in complete agreement with Rolland
et al. [12] and Sutcliffe [13], who think that there is little
understanding about the usage and production of
scenarios.

The variety of interpretations, syntax and construction
mechanisms for scenarios goes as far as showing up
basic contradictions. For instance, with respect to the
scenario construction process there is no agreement
whether scenarios should be built in a top-down or in a
bottom-up fashion. We believe that part of the problem
of such diversity in the scenario literature is due to the
fact that the scenarios building process should be neither
top-down nor bottom-up.

The present work proposes a strategy for the creation
and use of scenarios2 as a grounding representation for
the requirements engineering process. The strategy is
built on the assumption that scenarios must rely on
natural language as a means of communication among
stakeholders, in particular among clients/users and
requirements engineers. The strategy also relies on the
idea of scenario evolution [14], starting from what
Rolland et al. classified as organisational context [10],
which aims at the ‘broad picture of how the work gets
done’ [10, p. 30], and what Jarke et al. [50] called
environmental scenarios. Our scenarios are neither
specifications nor requirements, they are auxiliary
descriptions for the process of requirements definition.
They provide a knowledge source where requirements
may be found and specifications may be based upon.

This paper details a scenario construction process.
This process addresses two important problems related
to scenario management [50]: organisation and quality.
The organisation problem arises as we start to deal with
a large number of scenarios. The quality problem refers
to the reliability of the descriptions presented as
scenarios. Regarding the first problem, we provide an
innovative middle-out strategy that systematises the
construction process using typed relationships and
operational heuristics. Regarding quality, we provide
policies and procedures for detecting defects and errors

in scenarios. It is important to stress that our proposal is
based on a cumulative experience on the use of
scenarios. For the last four years, we have analysed
more than 20 software projects that used scenarios in the
requirements process. In total we have analysed more
than 400 different scenarios.

We understand that describing the process, giving data
on its use and comparing it with other work contributes
to increase the knowledge about scenario management.
We have organised the paper into six sections. Section 2
provides a survey of existing scenario construction
processes. In section 3 we present our strategy, giving
emphasis to its reliance on natural language. Detail on
how scenarios are put together is given in section 4.
Section 5 reports on our experience in producing
scenarios. In conclusion we state that our results are
important to scenario management by comparing our
work with previous work, as well as pointing to future
research.

2. Different Approaches for Scenario
Construction

There are several styles3 in which scenarios are built.
such as textual narrative, storyboards, video mock-ups
and written prototypes [5,7,8,9,15]. This section stresses
the distinction between top-down and bottom-up
strategies by quoting some of the construction heuristics
proposed by the literature. We believe that this review is
important since our proposal, a middle-out strategy, is
perceived by us to be a major contribution. This belief is
based on our own experience of previously using top-
down and bottom-up strategies. In the following
paragraphs we present different quotations from the
literature.

Even if it is not clearly stated, Booch [16] seems to
adhere to a top-down approach since: ‘The most
complex application can be characterized in terms of a
few dozen primary scenarios. Primary scenarios model
the central problem. A Primary scenario represents some
fundamental system function. Secondary Scenarios
represent some variation on the theme of a primary
scenario. The entire desired behavior of a software
system can be captured through a web of scenarios,
much the same way as a storyboard does in making a
movie.’

Booch’s primary scenarios are seen as relevant
scenarios by Firesmith [17]; they are linked together
by a scenario lifecycle diagram: ‘A scenario lifecycle
diagram is used to document the valid interactions

2‘The process dimension of scenarios is seldom considered in the
literature’ [10, p. 36].

3The form view in the CREWS framework [10]. In this paper we
consider ‘use cases’ as one of the several styles of scenarios.

A Scenario Construction Process 39



among the top level scenarios of a system or assembly.’
And ‘Because scenarios are functional abstractions, there
is often a strong tendency to functionally decompose
them.’

Sutcliffe’s [18] proposal may also be seen as a top-
down approach taking into account the heuristics:
‘1. Initial requirements capture and domain familiariza-
tion. A grounding scenario is developed based on the
preliminary domain analysis, 2. Specification and
development of the concept demonstrator (early proto-
type). Design Rationale diagrams are used to explain
design options at the key points, 3. Requirements
Analysis – validation session to critique the concept
demonstrator.’

The scenario formalisation process using regular
grammars in a tree of scenarios described by Hsia et
al. [19] is also an example of a top-down approach.

On the other hand, Dano et al. [20] are closer to a
bottom-up approach in their proposal ‘to collect and
describe use cases based on a tabular notation’ and then
‘to create Petri Nets for each use case in order to bring
the necessary formalism to the analyst’ and finally ‘to set
up formal inter use cases links to obtain a global
description of the application.’

Robertson [21] identifies the need for linking
scenarios: ‘Since a single scenario gives partial
information, scenario-based analysis involves the ob-
servation of a set of scenarios.’ And ‘The systematic
question-asking technique helps to create a bridge
between the specific scenario events and the general
situations that enable, cause, or explain the events.’

Potts et al.’s Inquiry Cycle Model [15] may also be
included in the bottom-up approach: ‘Scenarios are
represented at two levels of detail: 1. Episodes or phases
that are sequences of fine-grained actions, 2. Families of
Scenarios using Jacobson’s uses relationship.’

It is also useful to watch the construction of use cases,
where top-down approaches may be found, such as in
Wirfs-Brock’s heuristics [22]: ‘1. Determine the soft-
ware system (boundaries, scope, identify actors, identify
system interfaces, develop first-cut subsystem partition-
ing), 2. Stereotype the actors (active or passive, roles),
3. Determine system use-cases (decompose system into
discrete chunks meaningful to both businesspeople and
developers), 4. Construct conversations (sequence of
interactions between actors and the system for each use-
case).’

Also, Oberg et al.’s [23] proposal corresponds to a
top-down approach, since they wrote: ‘1. Problem
analysis’, ‘2. Understanding stakeholder needs’, that
involves ‘Find actors and use cases’ and ‘Outline the
use-case model’, ‘3. Defining the system’, that involves
the tasks: ‘Refine the use-case model’ and ‘Describe use
cases’, ‘4. Managing the scope of the project’, that

involves: ‘Prioritize use cases’ and ‘Model a use-case
view of the system architecture’, ‘5. Refining the system
definition’ that involves: ‘Detail use cases’, and finally
‘6. Managing changing requirements.’

Schneider and Winters’ [24] proposal consists of four
main primary phases following a top-down approach:
‘1. Inception phase: identify actors and high-level use
cases are developed to help scope out the project;
2. Elaboration phase: more detailed use cases are
developed, they are used to create the plan for next
phase. Product of this phase: detailed primary scenarios
and secondary scenarios; 3. Construction phase: use
cases are used as a starting point for design and for
developing test plans; 4. Transition phase: use cases can
be used to develop user guides and training.’

An intermediate approach closer to top-down is that
one of Constantine [25], where the process for
generating uses cases involves the following: ‘Identify
candidate use cases based on user role model and
brainstorming: generate a list of use cases; Sketch use
case map based on initial understanding (relationships
among use cases); Develop use case narratives in
structured form; Reduce concrete use cases to essential
form; Switch between narratives and map when needed.’

On the other hand, Jacobson [26,27] follows a strict
bottom-up approach: ‘We first describe the basic use
cases and then describe how to enhance them to allow
more advanced use cases, some of which may depend on
the basic ones. Abstract use cases should evolve from
concrete use cases, not the other way round. Extends
association let us capture the functional requirements of
a complex system, in the same way we learn about any
new subject: First we understand the basic functions,
then we introduce complexity.’

Gough et al. [28] follow an approach closer to the one
proposed in this article regarding their heuristics:
‘1. Creation of natural language documents: project
scope documents, customer needs documents, service
needs documents, competitor analysis and market
analysis. Get functional specifications of an existing
system, 2. To Identify the main actors in the system,
3. To derive the Scenario headings, 4. To complete
Scenario Description.’

In their conclusions Gough et al. [28] clearly
establish: ‘The need to provide a high level view of
scenarios interaction as a means of addressing the
complexity of a large number of scenarios.’

Weidenhaupt et al. [11] have found four types of
scenario processes in practice: ‘(i) Top-down decom-
position’, ‘(ii) From black-box to white-box scenarios’,
‘(iii) From informal to formal scenario definition’ and
‘(iv) Incremental scenario development.’

There are several lines written about top-down or
bottom-up, but we would like to point out Jackson’s

40 J.C. S. P. Leite et al.



view [3] on the matter: ‘The first (difficulty) is that Top-
Down enforces the riskiest possible ordering of
decisions. The largest decision is the subdivision of the
whole problem: it is the largest in scale and the largest in
its consequences. Yet this decision is taken first, when
nothing is yet known and everything remain to be
discovered.’ ‘The second difficulty is that the real world
hardly ever has a hierarchical structure. Instead there are
many parallel and overlapping structures.’

With these excerpts from the literature we have shown
that there is no agreement regarding how to build
scenarios. Of course, if the functionality of the system is
well known, the top-down approach could be used, while
if there is not enough knowledge we need to extract it
from the bottom up. In our process, where scenarios are
first deployed to understand the UofD, we start from a
bottom-up manner and later organise the scenarios using
the middle-out strategy.

We would like to point out that our contribution
should be viewed as a scenario engineering approach.
Although we do not claim to have the final word on
scenario construction, we firmly believe that the detailed
description of our process contributes to the field and
establishes grounds for further improvements.

3. A Natural Language-Based Approach

In this section we will focus on representation schemas
that deal with scenarios. First, we give a general
overview of our approach, which uses a controlled
vocabulary based on the lexicon of the application. The
following sections, 3.2 and 3.3, detail the representations
we use for scenarios and for the lexicon.

3.1. Overview

Although we know that the requirements engineers
should elicit, model and analyse requirements, we also
know that these tasks are very much tangled, forming a
complex web of relationships. Our work [2] does tackle
these three tasks, but here we will be more concerned
with the modelling aspect, in particular with an emphasis
on the organisation aspect of modelling.

A scenario is a partial description of the application
behaviour that occurs at a given moment in a specific
geographical context – a situation [9]. Several authors
have studied this technique [5,7–9,15]. Although each
scenario describes a particular situation, none of them is
entirely independent of the rest of the scenarios. Each
scenario keeps a semantic relationship with other
scenarios [16].

Scenarios accomplish different goals depending on the
phase where they are used during the software
development process. In the RE process, the scenario
goals are:

. to capture the requirements;

. to provide a means of communication among
stakeholders;

. to provide an anchor for traceability.

Scenarios are not created from the minds of the
requirements engineers; their definition should be
anchored on real situations. Our work anchors scenarios
on the organisational context [10]. But how do we elicit
such situations and model them accordingly? How do we
avoid using a modelling scheme that does not fit the
elicitation process? As such, we have the challenge of
having to choose a modelling strategy that fits the
process of eliciting and representing situations.

Using natural language for describing situations helps
the validation with the client/user and complies with the
goal of improving stakeholders’ communication. The use
of the Language Extended Lexicon (LEL) and scenarios
for requirements elicitation and their utilisation through-
out the entire software development process [2] allows
for validation with the client/user. The main purpose of
the lexicon is to capture the application vocabulary and
its semantics, postponing the comprehension of the
application functionality [29]. Scenarios are used to
understand the application and its functionality: each
scenario describes a specific situation of the application,
centring the attention on its behaviour.

The rationale of the proposed approach was presented
in Leite et al. [2] and the details of the first case study,
based on the Argentine Passports Issue System,4 were
reported in Hadad et al. [30]. On the basis of these
results, we conducted several other case studies,
including the one used as an example in this article,
which is a variation of the widely known Meeting
Scheduler problem [31, 32].5 This case was studied only
for the RE process and consisted in modelling the
meeting scheduler for the authorities of the Universidad
de Belgrano, Buenos Aires.

Our scenario model has a decomposition organisa-
tion, but this does not imply that we use a top-down
approach to build the scenarios. We do not use a
bottom-up approach either. A truly bottom-up process
would begin by discovering episodes, then building
4The past strategy consisted on building the LEL from the UofD.
Afterwards, scenarios were constructed based on the UofD and using
the vocabulary defined in the LEL. The lexicon and scenarios were
then validated against the UofD and the scenarios were used to verify
the lexicon.
5The problem proposed by van Lamsweerde is used for validating
methods/techniques in RE.

A Scenario Construction Process 41



sub-scenarios and finally integrating them in scenarios.
A top-down process would begin building either one or
few scenarios of the whole system, refining them later
to obtain a succession of scenario sets with increasing
levels of detail.

We based the construction of scenarios on the
vocabulary of the Universe of Discourse (UofD). This
vocabulary reflects the peculiar and most used
words or phrases in the UofD and should be present
in the LEL. The LEL is a representation of the
symbols in the application language, and it is anchored
on a very simple idea: understand the language of the
problem, without worrying about understanding the
problem.

Several authors [23,25] suggest the use of a glossary
containing the vocabulary of the application. Our
proposal is to build not just a glossary but a lexicon
that involves the denotation and the connotation of every
symbol discovered as a word or phrase relevant to the
application domain. The purpose of constructing this
lexicon is not only to enable a good communication and
agreement between the clients/users and the engineering
team but also to bootstrap the scenario construction
process and to help their description facilitating the
validation process. The use of the symbols of the lexicon
in the scenarios makes it possible for these symbols to be
a natural hyperlink between these two representation
structures, a fundamental characteristic of our require-
ments baseline concept [2].

In real practice, of 15 projects analysed by the
CREWS project [11] just one project, and to a lesser
extent three others, had employed glossaries. This one
project presented the practice of linking terms in the
glossary to scenarios by means of a hypertext navigation.
In our understanding this is an indication of the necessity
that requirements engineers have to anchor their under-
standing on the application vocabulary.

A fundamental characteristic of our work [2] is that
we anchor the natural language representation of
scenarios on a previous lexicon of the application
language. This characteristic is original and tackles the
important problem of reducing ambiguity in natural
language-based descriptions. As the scenario uses the
LEL symbols, they became a hypertext, the lexicon
symbols being the hyperlinks between these two
representations.

In the following sections we detail the representation
schemas used to describe the lexicon (LEL) and the
UofD situations (scenarios). Again we stress that both
representations are not intended to replace the require-
ments specification – their goal is to help the production
of specifications.

3.2. Language Extended Lexicon (LEL)

The LEL [33] is a meta-model designed to help the
elicitation and representation of the language used in the
application. This model is centred on the idea that a
closed description of language terms improves the
comprehension of the UofD. It is a natural language
representation that aims to capture the vocabulary of an
application.

The lexicon main goal is to register signs (words or
phrases) which are peculiar to the application domain.
Each entry in the lexicon is identified by a name or
names (case of synonyms) and has two descriptions (as
opposed to the usual dictionary, which provides only
one). The first, called Notion, is the usual one and its
goal is to describe the denotation (defines ‘what the
symbol is’) of the word or phrase. The second, called
Behavioural Response, is intended to describe the
connotation (describes ‘how the symbols acts in the
system’) of the word or phrase, that is, it provides extra
information about the context at hand. Entries are
classified into four types according to its general use in
the Universe of Discourse. The types are: Subject,
Object, Verb and State.

Figure 1 presents the Language Extended Lexicon
Model, while Fig. 2 shows an example of a symbol based
on the Meeting Scheduler case.

While describing the symbols, two principles [29]
have to be followed: the principle of circularity6 that
intends to maximise the use of symbols in the
description of other symbols, and the principle of

Fig. 1. The Language Extended Lexicon Model.

6This rule is also called ‘principle of closure’.

42 J.C. S. P. Leite et al.



minimal vocabulary that intends to minimise the use of
symbols that are external to the lexicon. These external
symbols must belong to a small subset of a natural
language dictionary.7 These rules stress the description
of the vocabulary as a self-contained and highly
connected hypertext [33].

In Fig. 3, we provide an entity-relationship [34] model
of the LEL.

3.3. Scenarios

Our scenario model is a structure composed of the
entities: title, goal, context, resources, actors,8 episodes
and exceptions and the attribute constraint (see Fig. 4).
Actors and resources are an enumeration. Title, goal,
context and exceptions are declarative sentences while
episodes are a set of sentences expressed in a simple
language that give an operational description of
behaviour.

Figure 5 shows the template for describing scenarios
based on natural language [2]. The scenario model
should be seen as a syntax and structural guidelines to:

. obtain a homogeneous description style among the
scenario set;

. demonstrate the several aspects that scenarios can
cover; and

. facilitate scenario verification (mainly by an auto-
mated process).

Guidance in the structure of use cases and scenarios is
shown by Cockburn [35]: ‘people in a project are quite
confused about how to write them’. That is why
Schneider and Winters [24] also proposed a template
to describe use cases and scenarios. Jarke et al. [50, p.
162] pointed out that practitioners claimed for guidance
in writing structured text scenarios.

A scenario must satisfy a goal that is reached by
performing its episodes. Episodes represent the main
course of action but they also include variations or
possible alternatives. While performing episodes an
exception may arise, signalling an obstacle to goal
achievement. The treatment of the exception may satisfy
the original goal or not.

Although main and alternative courses of action are
treated within one scenario, its comprehension is
facilitated by the use of natural language, well-bounded
situations and the use of sub-scenarios. This deals with
the scenario explosion problem pointed out by Cockburn
[35].

A sub-scenario is used when:

. common behaviour is detected in several scenarios;

. a complex conditional or alternative course of action
appears in a scenario; and

. the need to enhance a situation with a concrete and
precise goal is detected inside a scenario.

The attribute constraint is used to characterise non-
functional requirements applied to context, resources
and episodes.

A scenario may be interrupted by exceptions. Each
exception is described as a simple sentence that specifies

Fig. 2. An example of an LEL symbol.

Fig. 3. Entity-relationship diagram for the Language Extended
Lexicon Model.

Fig. 4. Entity-relationship diagram for the Scenario Model.

7For instance, in English the words in Collins Dictionary’s COBUILD
Wordlist, around 700 words, is an example of this subset.
8Constantine [25] makes use of the term UserRole with the same
meaning.

A Scenario Construction Process 43



Fig. 5. The Scenario Model.

44 J.C. S. P. Leite et al.



the cause of the interruption. If we include the title of
another scenario, the exception will be treated by this
scenario.

The context is described detailing a geographical
location, a temporal location and preconditions. Each of
these sub-components may be expressed by one or more
simple sentences linked by the logical connectors and,
or.

Episodes are simple, conditional and optional ones.
Simple episodes are those necessary to complete the
scenario. Conditional episodes are those whose occur-
rence depends on a specified condition. The condition
may be internal or external to the scenario. Internal
conditions may be due to alternative preconditions,
actors or resource constraints and previous episodes.
Optional episodes are those that may or may not take
place depending on conditions that cannot be explicitly
detailed.

Independently of its type, an episode can be expressed
as a single action or can itself be conceived as a scenario,
thus enabling the possibility of decomposition of a
scenario in sub-scenarios.

The scenario model provides the description of
behaviours with different temporal orders. A sequence
of episodes implies a precedence order, but a non-
sequential order requires the syntax shown in Fig. 5
allowing the grouping of two or more episodes. This is
used to express a parallel or indistinct sequential order.

Figure 4 describes the structure of a scenario using the
entity-relationship diagram,9 where only the relevant
relationships of entities are shown. Figure 6 exemplifies
a scenario of the Meeting Scheduler case.

4. Our Process

The general idea of our process is to anchor the scenario
description on the vocabulary of the UofD. As such, we
start from a pre-existing lexicon in order to build
scenarios. The lexicon describes the application voca-
bulary and the set of scenarios describes the application.
The LEL construction process is not detailed here, but
we should keep in mind that although the lexicon is build
first it evolves as we progress on building scenarios.

We have to understand that the process presented here
is as ‘it should be’ and is a result of four years of
experience in building and analysing scenarios. This
strategy follows the classical Parnas text on rational
design processes [37].

4.1. The Scenario Construction Process

The scenario construction process starts from the
application domain lexicon, producing a first version of
the scenarios derived exclusively from the LEL. These
scenarios are improved using other sources of informa-
tion and organised in order to obtain a consistent set of
scenarios that represents the application domain. During
or after these activities, the scenarios are verified and
validated with the clients/users to detect discrepancies,
errors and omissions (DEO). To describe the process, we
will use an SADT10 [38] model (Fig. 7), where the
following activities are mentioned:

1. DERIVE;
2. DESCRIBE;
3. ORGANISE;
4. VERIFY;
5. VALIDATE.

Although the process of scenario construction depicted
in Fig. 7 shows a main stream composed of three tasks:
DERIVE, DESCRIBE and ORGANISE, these activities
are not strictly sequential; some activities may be
concurrent due to the feedback mechanism, always
present in these situations [39]. There is a feedback when
VERIFY and VALIDATE take place, returning to the
DESCRIBE activity, where corrections are made based
on the DEO lists.11 The VERIFY activity occurs after
describing scenarios and also after organising them when

Fig. 6. An example of a scenario.

9Our actual model is an improvement over the original model
presented in Leite et al. [2].

10Notation of SADT: boxes represent activities, left arrows represent
input required by the activity, down arrows represent controls, up
arrows represent mechanisms and right arrows represents output from
the activity.
11A DEO list contains the discrepancies, errors and omissions
discovered during the validation or verification activities, where
suggestions for corrections are included.

A Scenario Construction Process 45



new scenarios appear or the integration scenarios are
generated. Scenarios are validated with the clients/users
after verification.

This process might also produce three DEO lists that
will act as a feedback for the LEL construction process
in order to maintain consistency between the vocabulary
of the scenarios and the LEL itself.

4.2. Description of the Activities in the
Construction Process

Below we detail the activities in the SADT model of Fig.
7, and for the activities DERIVE and ORGANISE, we
detail even further by presenting a SADT model for the
decomposition of each one of these activities.

(1) DERIVE
This activity aims at generating the derived candidate
scenarios from the information of the LEL using the
scenario model and applying the derivation heuristics.
The derivation process consists of three steps: identify-
ing the actors of the UofD, identifying candidate
scenarios and creating them using the lexicon. Figure 8
shows the SADT model that decomposes the DERIVE
activity.

(1.1) IDENTIFY ACTORS
Symbols representing actors of the UofD are identified
within the LEL. They should belong to the subject
type.12 Actors are classified into main actors and
secondary actors. Main actors are those who execute
actions directly in the application domain, while the
secondary actors are those who receive and/or give
information, but do not share responsibility in the action.

(1.2) IDENTIFY SCENARIOS
The behavioural responses of symbols chosen as main or
secondary actors are extracted from the LEL. Each
behavioural response represents a possible scenario, and
therefore it is incorporated to the candidate scenario list.
The scenario title is composed of the action (verb)
included in the behavioural response but expressed in
infinitive tense plus a predicate also taken from the
behavioural response.
When different actors execute the same action, it is very
likely that two or more scenarios of the list may share the
title; in this case all of them but one should be removed.

Fig. 7. SADT of the scenario building process.

12LEL symbols are classified into four types: Subject, Object, Verb
and State [29].

46 J.C. S. P. Leite et al.



(1.3) CREATE
The intention here is to build the scenario with as much
information extracted from the LEL as possible,
applying the creation heuristics; the product of this
step is the derived candidate scenarios.
The content of each behavioural response that leads to
every candidate scenario is analysed in order to find
lexicon symbols belonging to the Verb type, from now
on called a Verb symbol.

) If a Verb symbol is found within the behavioral
response:
The goal is defined based on the title, and the notion
of the Verb symbol.
The actors and resources of the scenario are
identified from the information contained in the
Verb symbol and should also be LEL symbols of the
Subject type and the Object type respectively.
The episodes are derived from each behavioural
response of the Verb symbol.

) If the behavioural response does not include a Verb
symbol:
Lexicon symbols within the behavioural response are
identified and considered as a possible source of
information.
The goal is defined on the basis of the scenario title.

Possible actors and resources are selected from the
above symbols by reading their full definition. Actors
are derived from Subject type symbols and resources
are derived from Object type symbols.
No episodes are derived from the LEL: they are left
for the next step.

In both cases, the geographical and temporal location of
the context may be extracted from the behavioural
response of the LEL symbol that originated the scenario
(Subject symbol). Relevant information that should be
registered in the context preconditions may be available
not only in that behavioural response, but in other
behavioural responses of the same symbol.

Figure 9 exemplifies the DERIVE activity using the
Meeting Scheduler case and Fig. 10 shows the final
version of this scenario. The underlined words or phrases
are symbols of the Meeting Scheduler lexicon. We will
use numbers in Fig. 9 to explain the DERIVE activity:
1 – from the LEL entries we generate a list of actors;
2 – selecting an actor we have the corresponding LEL
entry; 3 – from the behavioural response of this LEL
entry we produce a list of candidate scenarios;
4 – selecting a candidate scenario we find the LEL
Verb symbol corresponding to the scenario title; 5 – we
use the notion of LEL Verb symbol to define the goal,
actor and resources; 6 – the behavioural response of the

Fig. 8. SADT of the DERIVE activity.

A Scenario Construction Process 47



Fig. 9. Graphic example for deriving a scenario.

48 J.C. S. P. Leite et al.



LEL Verb symbol will provide the basis to describe the
episodes; and 7 – from the behavioural response of the
LEL originated in 3 (Subject type) we derive the context
information.

(2) DESCRIBE
This activity aims at improving the candidate scenarios
by adding information from the UofD using the scenario
model, the lexicon symbols in the descriptions and
applying the description heuristics. The result is a set of
fully described scenarios.

After the previous step, an incomplete set of candidate
scenarios is obtained. They require to be extended in two
senses: new scenarios might be added and the scenario
content should be improved. Thus, if available, the
information gathered during the LEL construction
process, but not included in the lexicon, is used here
as well. When needed, the requirements engineers return
to the sources in order to collect more information.

This activity should be planned and usually relies on
structured interviews, observations and document read-
ing. First, information gathering aims at confirming and
improving normal courses of events. Afterwards,
alternative and exception cases should be detected.
Some causes of exception are elicited from the sources
of information while others may be deducted by
questioning the occurrence of episodes or the unavail-
ability or malfunction of resources. When discovering
causes of exception, the requirements engineers should
inquire how the exception is treated in the UofD; this
implies a new situation that might need to be described
through a separate scenario. Constraints may also be
detected, some elicited from the UofD and others by
examining the episodes. After finishing the scenario set

description, episodes should be carefully reviewed to
confirm sequential or non-sequential ordering and to
detect optional episodes.

Observing Fig. 7, we can see that there is a feedback
from the verification and validation processes, here
represented by the DEO lists (lists of Discrepancies,
Errors and Omissions). These lists may motivate changes
in the scenario description. It is also the case that, in the
DESCRIBE activity, we may generate a DEO list for the
LEL.

Below, we list some general heuristics regarding this
activity. Since some scenarios might already be partially
described at this point, these guidelines should be used to
review initial descriptions.

. Short sentences are preferred.

. The sentences should be written maximising the use of
the lexicon symbols.

. The use of more than one verb per sentence should be
avoided.

. Actors and Resources should be preferentially lexicon
symbols.

. The goal must be precise and concrete.

. At least one of the sub-components of the context
must be filled.

. The component Resources should list those involved
in the episodes or implicitly referred to the episode
verb, excluding trivial resources.

. The component Resources should not include those
needed in sub-scenarios.

. The component Actors should list those involved in
the episodes.

. The component Actors should not include those
needed in sub-scenarios.

. The verb of each episode should be precise and
concrete, specifying the final action and avoiding
ambiguity and vagueness.

. Every episode must be enacted within the geographi-
cal and temporal location described by the scenario
Context.

. The present tense should be preferred in describing
episodes.

. Avoid using ‘should’, ‘can’, ‘may’, ‘must’ in
episodes.

(3) ORGANISE
This activity is the most complex and more systematised
one in our scenario construction process. Its root is the
idea of integration scenarios, ‘artificial’ descriptions
with the sole purpose of making the set of scenarios
more understandable and manageable. Integration
scenarios give a global vision of the application.

When facing large applications, the number of
scenarios could be unmanageable and the requirements
engineer becomes sunk in details, losing the global

Fig. 10. Final version of a scenario.

A Scenario Construction Process 49



vision of the application. In order to face this problem,
we propose the construction of integration scenarios,
which give an overview of the relationship among
several situations, since each integration scenario
episode corresponds to a scenario. Therefore, the main
purpose of integration scenarios is to link disperse
scenarios providing a global vision of the application,
while preserving the natural language format encouraged
in our approach.

Thus, scenarios are organised by reorganisation and
integration, beginning with the fully described scenarios.
Although ORGANISE is located as third box at Fig. 7,
the activities VERIFY and VALIDATE must occur
before we start the organisation of fully described
scenarios. In other words, organising scenarios is a task
that is done only when there is a good confidence in
having a well-defined scenario set, ideally when the
DEO lists are empty.

In this activity we may need to go back to the UofD,
using the LEL and the scenario model and applying the
organisation heuristics. Nonetheless, the fully described
scenarios may still have some important weakness, such
as:

. lack of homogeneity;

. minor semantic problems; and

. lack of global perspective.

We understand that these problems may be minimised by
the heuristics that we detail for the ORGANISE activity.

Figure 11 shows the SADT model that decomposes
the ORGANISE activity. The heuristics used in this
activity reflect our experience on building scenarios. We
also have produced taxonomies of operations and
relationships that are used by these heuristics.

(3.1) REORGANISE
Scenarios may have different degrees of detail or
overlapping information, especially when built by more
than one requirements engineer. This situation gets more
complex as we have more scenarios and a larger team.
Basically reorganising scenarios consists in putting
together two or more scenarios in one or breaking a
scenario in two or more. Putting together is done when a
unique scenario becomes artificially divided during the
DERIVE or DESCRIBE activities. On the other hand,
we break a scenario when it contains more than one
situation. We describe these operations as pairs in
different dimensions. The criteria to decide which
operation to use in each dimension are given by
heuristics. The three main dimensions in which scenario
reorganisation can be applied are:

. sub-scenario;

. situations with variations;

. temporal context.

During the DERIVE and DESCRIBE activities focus is
not on the sub-scenario; thus at this moment derived sub-
scenarios require special attention to confirm that they
are needed and any hidden sub-scenarios should be
found to clarify the scenario set.

Fig. 11. SADT of the ORGANISE activity.

50 J.C. S. P. Leite et al.



In the UofD there may be situations very similar to
each other. How they were elicited for the scenario set
depends on several factors, such as the number of
requirements engineers involved, the order in which the
behavioural responses of LEL Subjects were considered,
and the viewpoints taken in consideration.

The duration of a scenario is also a difficult matter to
establish. In some cases two scenarios are so related that
one is produced immediately after the other; thus they
may be better described as just one scenario. On the
other hand, a scenario with a long life span (temporal
context ) containing episodes that are not very tight
semantically may lead to the creation of two or more
different scenarios.

Below we define, for each dimension in which
scenario reorganisation can be applied, the operations
that should be used for each dimension.

There are two operations in the sub-scenario dimen-
sion:

. Flatten

. Factor

There are two operations in the variation dimension:

. Consolidate

. Divide

There are two operations in the temporal context
dimension:

. Fusion

. Split

In order to establish the necessity of composition/
decomposition operations, some scenario properties and
relationships among them should be previously identi-
fied. When a scenario presents special properties mainly
in its episodes, decomposition may be applied. On the
other hand, composition may be used when discovering
specific relationships among scenarios: strong overlap,
precedence order or hierarchy relation.

It should be noticed that either the composition or
decomposition operation involves the risk of semantic
degradation. Decomposition creates two or more
scenarios where there was previously just one. This
procedure must not create ‘artificial’ situations; in other
words, decomposition must be applied only when the
resulting scenarios better describe the UofD. On the
contrary, composition replaces two or more scenarios by
one.

Operations are suggested as guidelines to improve
scenario comprehension and management. Therefore,
reorganisation should not be seen as a mandatory activity
but as good practice.

Below, operations with their corresponding properties
or scenario relationships are described:

. Flatten:13 May be applied when detecting non-
relevant sub-scenarios with few occurrences in other
scenarios. Flatten incorporates the episodes of the sub-
scenario inside each scenario that mentions it. The
sub-scenario should present the same granularity of
every flattened scenario. The original sub-scenario is
deleted when all occurrences are flattened. This
operation allows to reduce the number of non-relevant
scenarios and, thus, to ease their management. The
resulting scenario set decreases the hierarchy depth in
all flattening points. This operation can also be seen as
the inline feature of code generation in some program
languages.

. Factor: May be applied when a set of very relevant
episodes or a set of episodes with different level of
detail in relation to the rest is detected; in either case
the set deserves special treatment. Also, when
discovering the occurrence of the same set of episodes
in two or more scenarios having common behaviours
this operation may be used. Factor creates a sub-
scenario factoring episodes from one or more
scenarios. The group of episodes is replaced by the
title of the sub-scenario holding them. Factor makes
scenarios easier to understand and more reusable.

. Consolidate: May be applied to overlapping scenar-
ios. Two or more scenarios strongly overlap if their
goals and contexts are similar and they have several
coincidences in episodes. The original scenarios must
present the same ‘core of action’ [14]. Consolidate
copies the common episodes of the original scenarios
to the new one and creates new conditional episodes
using the non-shared episodes, the condition being the
corresponding part of the original scenario precondi-
tion. Occasionally new symbols may be added to the
LEL. Original scenarios are deleted. In consequence,
this operation allows reducing redundancy in the
scenario set.

. Divide: May be applied when the presence of several
conditional episodes, driven by the same condition, is
detected. Divide produces two new scenarios, moving
the trigger condition to both preconditions. Non-
trigger condition-based episodes are put in both
scenarios. On the other hand, trigger condition-based
episodes are moved to their corresponding scenario
with the removed condition. The original scenario is
deleted. This operation helps to avoid cluttered
scenarios, thus reducing complexity.

. Fusion: May be applied to scenarios that present a
contiguous precedence order, compounded goals and
coupled contexts. No temporal gap may exist among

13In [14], another scenario operation, called Encapsulate, was defined
and used; actually flatten and fusion are a specialisation of
Encapsulate.

A Scenario Construction Process 51



these scenarios. A temporal gap occurs when there is a
long time interval between two scenarios. Fusion
copies the episodes of every original scenario to the
new scenario in the corresponding order. The original
scenarios are deleted, giving an opportunity to reduce
the number of scenarios and, thus, to ease their
management.

. Split: May be applied to a scenario if there is a
temporal gap between episodes or when detecting a
very extended temporal context. An extended tempor-
al context may be detected straightforwardly by the
context itself or by the sequence of the episodes. Also,
discovering more than one geographical location in a
scenario could be used as a guide for considering the
necessity of a split operation. Therefore, the scenario
is representing more than one situation, contradicting
the scenario definition. The decomposition of the
scenario should produce scenarios with a well-
bounded temporal context. Split copies all the
episodes that precede a temporal gap to a new
scenario and those following the temporal gap to
another new scenario. The original scenario is then
deleted. Preconditions of the second and following
new scenarios may reflect the contiguous precedence
order established. Thus, split allows to reduce
complexity and to better understand situations.

Figure 12 shows the factor operation applied to two
scenarios with several common episodes that have a
specific goal; a new scenario holding those episodes is
created and the original scenarios are rewritten,
replacing the common episodes by the new scenario
title. Figure 13 exemplifies the consolidate operation
applied to two overlapped scenarios, producing a single
scenario holding common episodes while non-common
episodes are incorporated into a conditional statement.

When applying composition operations, the goal of the
resulting scenario should be extended to embrace the
whole situation, especially during fusion; in case of
consolidate the goal is extended by generalisation. On the
contrary, when applying decomposition, the goal of the
new scenario may be less global than the original one.

Since consolidate and divide are opposite operations,
after a consolidation the resulting scenario may be
considered for a division returning to the original state
and vice versa. Criteria to decide to go back or forth are
required. Consolidate should be applied if few condi-
tional episodes appear in the resulting scenario and
should be avoided otherwise. On the other hand, divide
should be chosen only if several trigger-condition-based
episodes are affected by the operation.

Fusion and split are opposite operations too; thus both
require criteria to decide the best direction to go. The
keyword here is the temporal gap, either with respect to

scenarios or to episodes. A delay between two episodes
may be considered as a temporal gap only if it cannot be
embraced by the scenario temporal context. In other
words, a specific episode could be preceded by a
temporal gap in one scenario but not in another one. It
then becomes clear when to split or fusion scenarios.
The sub-scenario dimension operations also require
criteria to avoid looping from one state to the opposite.
Therefore, flatten should be applied when flattened
episodes in the resulting scenario have the same level of
detail as the rest of the episodes and when the original
sub-scenario does not represent a situation by itself,
which could be confirmed by a lack of meaning of its
goal. On the contrary, factor should be used only if a
meaningful goal can be found for the new sub-scenario
as a consequence of having discovered a specific and
actual situation inside a larger scenario.

(3.2) DEFINE
Several authors have proposed scenario relationships,
such as Jacobson’s uses association and extend
associations [27], Booch’s semantic connections [16],
Dano’s temporal links [20] and others. Those relation-
ships were identified and found valuable for other
purposes. Since the target of the relationships that we
are going to define here is the construction of integration
scenarios, a new set of relations is necessary. As such the
DEFINE activity identifies different relationships among
scenarios in order to be able to integrate them.

Below we detail each type of relationship we have
identified in our work with scenario integration.

. Hierarchical relationship is the one established
between scenarios and sub-scenarios. This relation-
ship comes naturally while describing the scenarios or
reorganising them. The behaviour of a scenario is
described through a set of episodes, which could be
simple actions or sub-scenarios; the latter case occurs
when the action is more complex or is common to
several scenarios. A scenario may contain more than
one sub-scenario or none. A sub-scenario could be
included in one or more scenarios and can itself
contain sub-scenarios, allowing many levels of depth
in the hierarchy. Thus, we can define a hierarchy as a
set composed of a scenario and its sub-scenarios.

. Overlap relationship is that one established among
scenarios with common portions. This relationship is
observed mainly when several common episodes are
present among different scenarios; thus common
actors and probably common resources appear.

. Order relationship is the one established between two
hierarchies when one precedes the other. A hierarchy
may come before other hierarchies setting up a partial
temporal ordering with them. Thus, a hierarchy may
have zero or more predecessors and zero or more

52 J.C. S. P. Leite et al.



Fig. 12. An example of factor.

A Scenario Construction Process 53



successors. A sequence is established when a
hierarchy is immediately preceded by another one.
Since the second may be also preceded by a third one,
a large number of hierarchies may be involved in a
sequence beginning with at least one leader hierarchy.
It should be noticed that a sequence could have more
than one leader hierarchy and also more than one
trailer hierarchy.

. Exception relationship is the one established between
a scenario and those scenarios that treat exceptions.
When a scenario has an exception, its cause is
described and if a treatment of the exception is
specified a scenario for treating the exception is
mentioned. A scenario may be related to one or more

exception scenarios. An exception scenario may treat
exceptions occurring in different scenarios.

If two scenarios are linked by an exception relationship
they will be put together in one integration scenario as a
sequence, where the normal scenario comes first,
followed by a conditional episode holding the exception
condition and the solving exception scenario.

The overlap relationship is not currently used in the
scenario integration activity since it is essentially based
on hierarchy and order relationship. However, the
possibility of integration by generalisation has been
detected. The scope, advantages and inconveniences of
integration by generalisation are still being studied.

Fig. 13. An example of consolidate.

54 J.C. S. P. Leite et al.



(3.3) INTEGRATE
The INTEGRATE activity implements the middle-out
behaviour of our construction process. Its first three steps
are bottom-up and the last two steps are top-down. As
such the integration of scenarios could be seen as a five-
step procedure. The four initial steps mainly rely on
syntax information, but the last one requires more
semantic knowledge. In this activity, first, scenarios are
grouped in hierarchies and then hierarchies are grouped
in sequences. Finally these sequences are used to build
integration scenarios. Figure 14 shows an example of an
integration scenario produced for the Meeting Scheduler
case. Note that since an integration scenario is produced
just to organise a set of scenarios, it does not use the
entities: resources and actors.

Build Scenario Hierarchies is the first step of the
scenario integration activity. A hierarchy is a set of
scenarios linked by hierarchical relation. Every hier-
archy has a root scenario, which is not referred to as sub-
scenario by another scenario. The hierarchies are
identified by their root scenario. Isolated scenarios are
hierarchies by themselves.

Detect Partial Order among Hierarchies is done
based on the comparison between the preconditions or
resources or constraints of a hierarchy against the title,
goal or episodes of other hierarchies. If a precondition of
a hierarchy identifies an initial state that is satisfied by
another hierarchy there is a partial order between this
two hierarchies. The same may occur with a resource
needed in one hierarchy and produced by another one.
Besides, episode and resource constraints may be
satisfied by another hierarchy, thus establishing a partial
order. These constraints can be used for comparison
when they point out to resource states or certain
conditions that should be previously met. Preconditions,
resources and constraints of hierarchies are not obtained
from the root scenario itself but from the whole
hierarchy. To establish hierarchy preconditions, first
preconditions of all the scenarios belonging to the
hierarchy must be unified; then, preconditions required

by a sub-scenario and satisfied by another sub-scenario
must be removed from the union. The resources and
constraints of the hierarchy are obtained in the same
way. The goal of a hierarchy is just the root scenario goal
and the comparison should stop as soon as a partial
ordering is found or detected as impossible. If the partial
order between two hierarchies only takes place under
certain conditions, it is labelled with the condition. To
reduce the search for hierarchy providing resources or
satisfying constraints and preconditions it is better to
check against title and goal in the first place and check
against episodes only on failure. If a comparison is
successful, partial ordering is found, otherwise the next
comparison takes place. If no comparison is successful,
then there is no partial ordering. The comparisons used
in this step are:

. hierarchy precondition against titles of other hierar-
chies;

. hierarchy constraints against titles of other hierar-
chies;

. hierarchy resources against titles of other hierarchies;

. hierarchy precondition against goals of other hier-
archies;

. hierarchy constraints against goals of other hierar-
chies;

. hierarchy resources against goals of other hierarchies;

. hierarchy precondition against episodes of other
hierarchies;

. hierarchy constraints against episodes of other
hierarchies;

. hierarchy resources against episodes of other hier-
archies.

Build Hierarchy Sequences begins with the review of the
partial ordering relationship detected among hierarchies.
This is done to clarify which is the set of hierarchies that
immediately precedes a given one. To do this, all partial
orders derived by transitivity are deleted. It is said that
among hierarchies A, B and C there is a transitivity if A
and B precedes C but also A precedes B. Transitivity is
not easy to remove. However, it can be eliminated by
grouping all partial order relations with the same
hierarchy on the left side of the relation. Any additional
partial order between hierarchies on the right side of a
relation is used to identify a transitivity. New informa-
tion from the UofD may be elicited when gaps between
hierarchies are found. This happens when two hierar-
chies in sequence do no match properly since one or both
lack some actions that actually take place in the UofD.
Isolated hierarchies are sequences by themselves.

Build the Integration Skeleton is done following the
sequences obtained in the previous step. This step builds
only the episode components of the integration scenar-
ios. First a main scenario is built and then intermediate-Fig. 14. An example of an integration scenario.

A Scenario Construction Process 55



level integration scenarios may be obtained. All
sequences are put in the main integration scenario
marked with the non-sequential indicator (#). If a
sequence is composed of more than one scenario, a
stub for an intermediate-level scenario is created and a
nominal title is used in both the main integration
scenario and the stub. This is applied to every existing
stub creating new stubs when non-sequences of
subsequences show up.

Compose Title, Goal and Context for the Integration
Scenarios is the step where new semantic information
needs to be added. This is done by watching the
scenarios involved in the integration scenario. This step
acts as a sort of final verification, since the title and the
goal should be written preserving cohesion; in other
words, no conjunctions should be allowed. Descriptions
should be written based on the LEL.

(4) VERIFY
The VERIFY activity is performed at least twice during
the scenario-building process, the first one over the fully
described scenario set and the second after the
ORGANISE activity. This is done following a checklist
with verification heuristics. As a consequence of this
activity, two DEO lists are produced: one used at
DESCRIBE and the other used during the LEL
construction process. The verification is divided into
intra-scenarios, inter-scenarios and against the LEL.
The intra-scenario verification includes:

. Verify syntax:
– Check the completeness of every component.
– Check the existence of more than one Episode per

scenario.
– Check the syntax of each component as established

in the scenario model.

. Verify relationship among components:
– Check that every Actor participates in at least one

episode.
– Check that every Actor mentioned in episodes is

included in the Actor component.
– Check that every Resource is used in at least one

Episode.
– Check that every Resource mentioned in Episodes

is included in the Resources component.

. Verify semantics:
– Check coherence between the Title and the Goal.
– Ensure that the set of Episodes satisfies the Goal

and is within the context.
– Ensure that actions present in the preconditions are

already performed.
– Ensure that Episodes contain only actions to be

performed.
– Ensure the same level of detail inside a scenario.

The inter-scenarios verification includes:

. Verify sub-scenarios existence:
– Check that every Episode identified as a sub-

scenario exists within the set of scenarios.
– Check that the set of Episodes of every sub-

scenario is not already included in another
scenario.

– Check that every exception is treated by a scenario.

. Verify context:
– Check that every precondition is either an

uncontrollable fact or is satisfied by another
scenario.

– Check coherence between sub-scenario precondi-
tions and scenario preconditions.

– Check that geographical and temporal locations of
sub-scenarios are equal or more restricted than
those of scenarios.

. Verify equivalence in scenario set:
– Check that Goal coincidence only takes place in

different situations.
– Check that Episode coincidence only takes place in

different situations.
– Check that Context coincidence only takes place in

different situations.

The against LEL verification includes:

– Check that every lexicon symbol is identified.
– Check the correct use of lexicon symbols.
– Check that Actors are preferentially Subject

symbols.
– Check that Resources are preferentially Object

symbols.
– Check that the behavioural responses of Subject

symbols are covered by scenarios.

Using the verification DEO lists, the scenarios and the
LEL are modified. If major corrections were needed, a
new verification could be required. When the Describe–
Verify cycle is over, the ORGANISE activity should
provide a larger set of scenarios, which in turn are
verified, starting a possible Describe–Organise–Verify
cycle. This activity is actually done by means of an
inspection process [40].

Its is important to stress that our verification process is
driven by syntax checks, by cross-referencing the LEL
and the scenarios and by a checklist. Some of the
heuristics of this checklist were given above. The
checklist registers what was learned in terms of
verification during our experience with scenarios.

(5) VALIDATE
Scenarios are validated with the clients/users usually by
performing structured interviews or meetings. During

56 J.C. S. P. Leite et al.



validation, the doubt component must be considered
with special attention for those scenarios still presenting
it.

It is important to stress that, although using a
structured description, our scenarios are written in
natural language, employing their client/user’s own
vocabulary and describing a specific well-bounded
situation.

The validation task allows the detection of DEO in
scenarios. Errors are mainly detected by reading each
scenario to the client/user; some omissions may also
appear during that reading but others by questioning the
lack of information or details in scenarios. Discrepancies
may appear during interviews but they mainly arise
afterwards, when analysing the collected information.

Note that the primary goal of validation is to confirm
the elicited information and to detect DEO; however, a
side effect of this process is the elicitation of new
information. The validation of a set of scenarios, after a
verification process, should confirm that the Universe of
Discourse situations, occurrences, have been reported in
accordance with the perception of the UofD actors
(clients/users) in charge of reading and discussing the
scenarios.

4.3. Observations from the Meeting Scheduler
Case

The box below summarises the evolution of the set of
scenarios during the construction process for the Meeting
Scheduler and Fig. 15 shows graphically the numbers
mentioned inside it.

Evolution of scenarios:
. 23 scenarios in the initial list
. 16 scenarios in the final list
. 14 scenarios were kept from the initial list to the

final list
. 9 scenarios of the initial list were included as

simple episodes inside other scenarios
. 2 scenarios of the final list were generated after

the verification and validation processes (these
two scenarios were previously included as simple
episodes inside other scenarios)

. one integration scenario

. 87% of the scenarios were obtained by applying
the derivation heuristics.

The composition of the 16 final scenarios was:
. 4 scenarios
. 9 sub-scenarios
. 3 exceptions

5. Using the process

The process described here, as stated before, is the last
polished version of the process which has been evolving
since the first case study in 1996 and has included the
lessons learned during the construction and analysis of
more than 400 scenarios. Here we give a brief
description of some of these case studies. Most of
them were done by third parties in a university
environment (graduate and undergraduate seminars) at
the universities involved in this project as well as by the
researchers themselves. Some of them were checked
with the potential clients, and at least one of them has
resulted in a real system (PUC-Rio Informatics
Department graduate advancement control system). We
have analysed each of these sets of scenarios to come up
with the construction process just presented. Some of the
case studies did go through an organisation process
(based on the process we present here), but others did
not. We list below the problem classes where scenarios
were developed.

1. Argentine passports issue system [2,42]. A set of 24
scenarios and 34 LEL symbols were produced by a
team of researchers. This system is centralised in the
Federal Police Department, which is the unique
organisation authorised for the issue of passports for
the whole country. The complexity of the system
comes up from the strict control that is necessary and
the high volume of information that it deals with.

2. Meeting scheduler system [41,43]. Three different
sets of scenarios (16,13 and 17), using an LEL of 34
entries, were generated, two by undergraduate student
groups and one by a team of researchers. The
Universidad de Belgrano was used as the target
organisation based on the case study proposed by van
Lamsweerde [31].

3. Saving plan for automobile acquisition system [44,
45]. Nine different sets of scenarios were generated,
seven by undergraduate student groups and two by
teams of faculty members. The goal of this system is
to manage saving plans for the acquisition of brand

Fig. 15. Result of the organisation process for the Meeting
Scheduler.

A Scenario Construction Process 57



new vehicles. A group of physical or legal persons is
constituted and participates monthly in an adjudica-
tion process organised by a general manager in order
to deliver a vehicle. An average of 18 scenarios for
each group were produced, ranging from 8 to 22
scenarios. The LEL varied from 16 entries to 68
entries.

4. Graduate advancement system [14]. Five different
sets of scenarios were generated by graduate student
groups. From one of these five sets, a real system was
modelled and developed for the Informatics Depart-
ment of PUC-Rio and it manages all operations
regarding the control of graduated students (http://
www.inf.puc-rio.br/~dilbert).

5. Library system. Four different sets of scenarios were
generated by groups of senior undergraduate students.
The system consists basically of recording books and
users and checking the loan of books.

6. Text editor system. Eight different sets of scenarios
developed by senior undergraduate students.

7. The lexicon and scenarios for the lexicon and the
scenario construction processes [46]. A set of 64
scenarios and 78 LEL entries were produced by an
undergraduate student group and two researchers.
This lexicon describes all the important items in the
construction of the lexicon and scenarios, following
our approach. The set of scenarios describes the
situations that occur during the construction of the
lexicon and the scenarios. Both the lexicon and
scenarios were analysed by the authors of the present
paper. The lexicon and scenarios are available at
(http://usuarios.arnet.com.ar/ogarcia).

Some of the above sets were developed intuitively from
scratch, beginning with the UofD and following the idea
of finding situations, while others were constructed using
an approach similar to the one previously described. In
the case studies performed without following our
process, scenario producers noticed the necessity of
having an overview of the problem, materialised in one
or more ‘general scenarios’ [41] or another model that
would help to get a first idea of the application domain.
This idea is similar to Booch’s primary scenarios [16]
and to Sutcliffe’s grounding scenarios [18]; that is, the
general scenario makes it possible to have an abstract
view of the set of scenarios.

On the other hand, when the scenario set was
developed following the heuristics described in the
previous section, there was no need for a general
overview at the beginning of the process, since we were
not using a top-down approach. Our process answers the
question of how to organise scenarios, when we have
many of them. As such, we believe that the process
reported here has a clear-cut distinction between creating

the scenarios for the several situations and then
organising them as a model, in the software engineering
sense.

6. Conclusions

Scenarios have been attracting much attention from the
RE community. A significant number of articles have
been dealing with the subject and there is a continuous
effort to improve processes and scenario representations.
We consider our work a contribution mainly to the area
of scenario management [50].

From other work [8, 47] we became convinced of the
importance that scenarios have for describing the
behaviour of objects and the advantage of tracing this
behaviour through the software system interface. From
Carroll [5] we achieved a better comprehension of the
cognitive aspects of scenario-based development and
also a confirmation that scenarios must begin in the
Universe of Discourse and not only in the software
system interface. This idea was also reaffirmed by
Zorman [9], who well defines scenarios as situations; in
addition, we utilise her study of scenario representation.
Potts [15] showed us the relevance of relating scenarios
with goals and thus proved important our previous
knowledge of the meta model oriented to goals proposed
by Dardenne et al. [48]. In particular, we differ from
Potts [15] because we use a scenario hierarchy instead of
a goal hierarchy and our construction of hierarchies uses
a bottom-up strategy against Potts’s decomposition of
goals.

Dano et al. [20] consider that Use Cases and scenarios
are interchangeable because they capture specific ways
of using the system functionality, while for us scenarios
capture situations of the application domain. Besides,
[20] proposes the utilisation of formalisms as an
alternative to natural language. Our approach consists
of using natural language with rules for eliciting and
then modelling scenarios. We agree with Rolland [12]
that the use of natural language in scenarios implies an
easy-to-understand model though it may be attached
with ambiguities and inconsistencies. These drawbacks
can be reduced by employing a well-defined UofD
vocabulary such as our LEL [29], complemented with a
verification process such as presented here. With respect
to Sutcliffe [18], we share entirely the convenience of
integrating methods for the requirements production.
Nonetheless, the idea of developing a prototype that acts
as ‘concept demonstrator’, as proposed by that author,
only helps to establish the requirements concerning the
man–machine interface and that are specific to the
artefact in construction, leaving out other aspects of the
application domain.

58 J.C. S. P. Leite et al.



The operations presented in the ORGANISE activity
(section 4) were inspired by Breitman’s work [14],
which discovered, from analysis of sets of scenarios, that
scenario authors have used certain types of operations in
producing the scenarios. The difference is that our
operations were designed to achieve the goal of
producing an organised set of scenarios.

During the learning process that we went through, it
became clear to us that we have deployed two different
ways of organising scenarios: one that we called general
scenarios and the other which we called integration
scenarios. General scenarios are the root scenarios that
we use when following a top-down strategy. Table 1
synthesises the characteristics of using general scenarios
versus integration scenarios, learned through our
experience in the case studies already mentioned.

In a top-down approach the general scenarios are
described at the beginning of the scenario construction
process, from poor and general application domain
knowledge. Conversely, the integration scenarios in a
middle-out approach are described as the last step of the
process, after acquiring large and detailed domain
knowledge.

General scenarios need continuous maintenance along
the construction process in order to achieve consistency
with the rest of the scenarios, otherwise they will lose
their utility and should be put aside. As the integration
scenarios are built at the end of the process, they are
naturally consistent with the rest of the scenarios.

General scenarios give an approximate image of the
application domain at the beginning of the process and
with a great maintenance effort they could provide a
view similar to the integration scenarios. This effort is
directly related to the possibility of verifying the
consistency among scenarios. The integration scenarios
episodes show the relationships among scenarios, while
the general scenarios show activities that may or may not
be scenarios.

In practice [11], general scenarios are used to divide
tasks, not yet well known, among the team of engineers.
This is neither possible nor desirable with our approach.

As pointed out by Jackson (see section 2), a top-down
approach is useful to organise a problem when it is
previously known but not before.

Based on our experience with scenarios we have
concluded that there is an advantage of using integration
scenarios instead of a top-down organisation. We have
stated that our ‘middle-out’ strategy produces a set of
scenarios that, although, representing different UofD
situations, are organised following software engineering
modelling principles We consider that our contribution
to scenario research is to unveil some of the aspects of
the scenario construction process. Although our work is
biased by our own representation model (Fig. 5), we
believe that the aspect of composition/decomposition is
of general interest to scenario construction. We see the
theme of composition/decomposition related to the
abstraction facet (Contents View) of the CREWS
framework [10], but there they only make a distinction
between instance and type scenario. It is important to
notice that our use of scenarios is of the typed scenario
as per the cited framework; that is, we treat actors and
events by their collective name and not by particular
instances.

It is important once more to stress that in our view
scenarios describe situations in the macrosystem and not
only a sequence of interactions between a user and a
system. Prior work on scenario integration [49] used a
user-interaction point of view and focused on the
behavioural aspect of scenarios. Glinz used Statecharts
as a means to model scenarios, exploring not only the
capability of decomposition of Statecharts but also the
concurrence aspects, thus making possible not only the
integration of several scenarios in one, but also the
analysis of the scenarios for consistency problems.
Contrary to Glinz [49], our approach to scenario
integration deals with the behavioural aspect of scenarios
(episodes), but with other context information as well,
such as actors, resources, goals and preconditions. On
the other hand, our proposal is strongly based on
heuristics that, as of now, does not have automated
support.

Desharnais et al. [51] describe a state-oriented
relational approach to scenario and applies it to
sequential scenarios. Scenarios here are atomic descrip-
tions, in a Z style, of the interaction between the system
and the environment represented by a triple (T, Re, Rs),
where T is a space and Re and Rs are disjoint relations
on T. The approach assumes that the scenarios fulfil
certain consistency descriptions. From the atomic
scenarios, a functional specification is derived. This
approach seems promising, once you get to the level of
these atomic descriptions, which in our understanding
are of a level even lower than our episodes.

Table 1. Comparative table for scenario construction

Characteristics General scenario Integration scenario

Approach Top-down Middle-out
Construction At the beginning Close to the end
Re®nement need Yes No
Consistency effort High Very low
Full application domain
view

Approximated Proximal

Inter-scenario view Poor Clear
Allow problem division Yes No
Allow consistency Only if re®ned Yes

A Scenario Construction Process 59



One of the first articles dealing with scenario
organisation came from the object-oriented community
[35]. In this article Cockburn presents the problems of
‘scenario explosion’ and proposes a hierarchy of goals as
a way of solving it. Regnell [52] also deals with the
problem in a goal-oriented way; his proposal organises
the use cases in a top-down fashion (environment level,
structure level, event level), but he also points out that to
better understand a user case there should be a synthesis
phase were use cases are integrated in abstract usage
scenarios.

The CREWS–L’Ecritoire [53, 54] approach uses a
combination of goals and scenarios not only to elicit but
also to organise scenarios. From goal elicitation, by case-
based discovery, a template-driven strategy with free
prose leads to scenarios. Once scenarios are available
they are organised in a hierarchical way, also based on
goal modelling (AND/OR relationships). They also
provide some heuristics for quality management [54].
Comparing this with our work, we may say that we
directly use situations, in a bottom-up fashion, to
understand the problem and when organising the
scenarios we may integrate them with our integration
mechanisms that encapsulate the notions of AND/OR
relationships.

Sutcliffe et al. [55] present a method for scenario-
based RE. Its basic representation is similar to ours, with
the difference that we have scenario sub-scenarios
hierarchies (n levels of structuring) and they have just
one level of structuring; that is, each use-case can have m
scenarios. They also present a method as a DFD diagram
[55, p. 1074, Fig. 1], where four steps are presented:
elicit use case, analyse generic problems, generate
scenarios and validate scenarios. We have shown here
a much more detailed process, focusing on elicitation of
scenarios from the connotation of the application
vocabulary.

We would like to stress that our results are based on
real experience with the use of scenarios. We firmly
believe that the presentation of our strategy for building
scenarios is important to researchers as well as for
practitioners, since the information we provided helps
the general understanding of how scenarios are produced
and how they might get organised. We will continue
studying the abstraction facet of scenarios and, in
particular, we are looking at the other axis of abstraction
mechanisms, namely specialisation/generalisation, in
order to explore how this type of organisation could
support scenario reusability.

Acknowledgments. We would like to thank the reviewers for their
time and careful reading of our first submission. We hope that by
addressing their comments the paper is more readable. We would like

to thank Karin Koogan Breitman for her comments. Financial support
for this work was partially provided by Universidad de Belgrano,
Conicet, Faperj and CNPq.

References
1. Leite JCSP, Freeman PA. Requirements validation through

viewpoint resolution. IEEE Trans Software Eng 1991;
17(12):1253–1269

2. Leite JCSP, Rossi G, Balaguer F, Maiorana V, Kaplan G, Hadad
G, Oliveros A. Enhancing a requirements baseline with scenarios.
Requirements Eng 1997;l2(4):184–198

3. Jackson M. Software requirements and specifications: a lexicon of
practice, principles and prejudices. Addison-Wesley, Reading,
MA/ACM Press, New York, 1995

4. Loucopoulos P, Karakostas V. System requirements engineering.
McGraw-Hill, London, 1995

5. Carroll J. Introduction: the scenario perspective on system
development. In: Carroll J (ed). Scenario-based design: envision-
ing work and technology in system development. Wiley, New
York, 1995, pp 1–18

6. Potts C. Using schematic scenarios to understand user needs. In:
Proceedings of DIS’95 – Symposium on designing interactive
systems: processes, practices and techniques. ACM Press/
University of Michigan, 1995, pp 247–256

7. Booch G. Object oriented design with applications. Benjamin
Cummings, Redwood City, CA, 1991

8. Jacobson, I, Christerson, M, Jonsson, P, Overgaard, G. Object-
oriented software engineering: a use case driven approach.
Addison-Wesley, Reading, MA/ACM Press, New York, 1992

9. Zorman L. Requirements envisaging by utilizing scenarios
(Rebus). PhD dissertation, University of Southern California,
1995

10. Rolland C, Ben Achour C, Cauvet C, Ralyté J, Sutcliffe A,
Maiden M, Jarke M, Haumer P, Pohl K, Dubois E, Heymans P. A
proposal for a scenario classification framework. Requirements
Eng 1998;3(1):23–47

11. Weidenhaupt K, Pohl K, Jarke M, Haumer P. Scenarios in system
development: current practice. IEEE Software 1998;34–45

12. Rolland C, Ben Achour C. Guiding the construction of textual use
case specifications. Data Knowl Eng 1998;25:125–160

13. Sutcliffe A. Workshop: exploring scenarios in requirements
engineering. In: Proceedings of the third IEEE international
symposium on requirements engineering. IEEE Computer Society
Press, Los Alamitos, CA, 1997, pp 180–182

14. Breitman KK, Leite JCSP. A framework for scenario evolution.
In: Proceedings of the IEEE international conference on
requirements engineering. IEEE Computer Society Press, Los
Alamitos, CA, 1998, pp 214–221

15. Potts C, Takahashi K, Antón AI. Inquiry-based requirements
analysis. IEEE Software 1994;11(2):21–32

16. Booch G. Scenarios. Rep Object Analysis Design 1994; 1(3):3–6
17. Firesmith DG. Modeling the dynamic behavior of systems,

mechanisms, and classes with scenarios. Rep Object Analysis
Design 1994;1(2):32–36

18. Sutcliffe A. A technique combination approach to requirements
engineering. In: Proceedings of the third IEEE international
symposium on requirements engineering. IEEE Computer Society
Press, Los Alamitos, CA, 1997, pp 65–74

19. Hsia P, Samuel J, Gao J, Kung D, Toyosima I, Chen C. Formal
approach to scenario analysis. IEEE Software 1994;7(2):33–41

20. Dano B, Briand H, Barbier F. An approach based on the concept
of use case to produce dynamic object-oriented specification. In:
RE’95: Proceedings of the third IEEE international symposium
on requirements engineering. IEEE Computer Society Press, Los
Alamitos, CA, 1997, pp 54–64

21. Robertson SP. Generating object-oriented design representations
via scenario queries. In: Carroll J (ed). Scenario-based design:
envisioning work and technology in system development. Wiley,
New York, 1995, pp 279–306

60 J.C. S. P. Leite et al.



22. Wirfs-Brock R. Designing objects and their interactions: a brief
look at responsibility-driven design. In: Carroll J (ed). Scenario-
based design: envisioning work and technology in system
development. Wiley,, New York, 1995, pp 337–359

23. Oberg R, Probasco L, Ericsson M. Applying requirements
management with use cases. Rational Software Corporation, 1998

24. Schneider G, Winters J. Applying use cases: a practical guide.
Addison-Wesley, Reading, MA, 1998

25. Constantine L. Joint essential modeling, user requirements
modeling for usability. In: International conference on require-
ments engineering (Tutorial Notes). Constantine & Lockwood,
Colorado Springs, CO, 1998

26. Jacobson I. Basic use-case modeling. Rep Object Analysis Design
1994;1(2):15–19

27. Jacobson I. Basic use-case modeling (continued). Rep Object
Analysis Design 1994;1(3):7–9

28. Gough PA, Fodemski FT, Higgins SA, Ray SJ. Scenarios: an
industrial case study and hypermedia enhancements. In: RE’95:
Proceedings of the international symposium on requirements
engineering. IEEE Computer Society Press, Los Alamitos, CA,
1995, pp 10–17

29. Leite JCSP, Franco APM. O Uso de Hipertexto na Elicitaçao de
Linguagens da Aplicaçao. In: Anais de IV Simpósio Brasilero de
Engenharia de Software. SBC, Brazil, 1990, pp 134–149

30. Hadad G, Kaplan G, Oliveros A, Leite JCSP. Integración de
Escenarios con el Léxico Extendido del Lenguaje en la elicitación
de requerimientos: Aplicación a un caso real. Rev Inform Teórica
Aplicada (RITA), Brazil 2000;6(1):77–104

31. van Lamsweerde A, Darimont R, Massonet Ph. The meeting
scheduler system: preliminary definition. Internal report, Uni-
versité Catholique de Louvain, 1993

32. Leite JCSP. Eliciting requirements using a natural language based
approach: the case of the meeting scheduler. In: Monografias em
Ciência da Computação, Departamento de Informática, PUC-Rio,
1993

33. Leite JCSP, Franco APM. A strategy for conceptual model
acquisition. In: IEEE international symposium on requirements
engineering. IEEE Computer Society Press, Los Alamitos, CA,
1993, pp 243–246

34. Chen P. The entity-relationship model: towards a unified view of
data. ACM Trans Database Syst 1976;1(1):9–36

35. Cockburn A. Structuring use cases with goals. Technical
report, Humans and Technology, Salt Lake City, UT (http://
members.aol.com/acockburn/papers/usecases.htm), 1995

36. Breitman KK, Leite JCSP. Processo de Software baseado en
Cenários. In: Proceedings of WER’99, Workshop en Requer-
imientos, Buenos Aires, Argentine, 1999, pp 95–105

37. Parnas DL, Clements PC. A rational design process: how and why
to fake it. IEEE Trans Software Eng 1986;SE-12(2):251–257

38. Ross D, Schoman A. Structured analysis for requirements
definition. IEEE Trans Software Eng (special issue on require-
ments analysis) 1977;3(1):6–15

39. Goguen JA, Linde Ch. Techniques for requirements elicitation.
In: Proceedings of the international symposium on requirements
engineering. IEEE Computer Society Press, Los Alamitos, CA,
1992, pp 152–164

40. Doorn J, Kaplan G, Hadad G, Leite JCSP. Inspección de
Escenarios. In: Proceedings of WER’98, Workshop en Engenhar-
ia do Requisitos, Maringá, Brazil, 1998, pp 57–69

41. Hadad G, Kaplan G, Oliveros A, Leite JCSP. Construcción de
Escenarios a partir del Léxico Extendido del Lenguaje, Buenos
Aires, Argentine, 1997, pp 65–77

42. Leite JCSP, Oliveros A, Rossi G, Balaguer F, Hadad G, Kaplan
G, Maiorana V. Léxico extendido del lenguaje y escenarios del
sistema nacional para la obtención de pasaportes. Technical
report 7, Departamento de Investigación, Universidad de
Belgrano, Buenos Aires, 1996

43. Hadad G, Kaplan G, Oliveros A, Leite JCSP. Léxico Extendido
del Lenguaje y Escenarios del Meeting Scheduler. Technical
report 13, Departamento de Investigación, Universidad de
Belgrano, Buenos Aires, 1998

44. Rivero L, Doorn J, Del Fresno M, Mauco V, Ridao M, Leonardi
C. Una Estrategia de Análisis Orientada a Objetos basada en
Escenarios: Aplicación en un Caso Real. In: Proceedings of
WER’98: Workshop en Engenharia do Requisitos, Maringá,
Brazil, 1998, pp 79–90

45. Mauco V, Ridao M, del Fresno M, Rivero L, Doorn J. Ingenierı́a
de Requisitos, Proyecto: Sistema de Planes de Ahorro. Technical
report, ISISTAN, UNCPBA, Tandil, Argentine, 1997

46. Garcı́a O, Gentile CG. Diseño de una herramienta para
contrucción de LEL y Escenarios. Graduation dissertation,
Universidad Nacional del Centro de la Provincia de Buenos
Aires, Argentine, 1999

47. Rubin KS, Goldberg J. Object behavior analysis. Commun ACM
1992; 35(9):48–62

48. Dardenne A, van Lamsweerde A, Fickas S. Goal directed
requirements acquisition. Sci Comput Prog 1993;20:3–50

49. Glinz M. An integrated formal model of scenarios based on
statecharts. In: Proceedings of the 5th ESEC, Lecture Notes on
Computer Science 989. Springer, Berlin, 1995, pp 254–271

50. Jarke M, Bui TX, Carroll JM. Scenario management: an
interdisciplinary approach. Requirements Eng 1998;3(4):155–173

51. Desharnais J, Frappier M, Khedri R, Mili A. Integration of
sequential scenarios. IEEE Trans Software Eng 1998;24(9):695–
708

52. Regnell B. Hierarchical use case modeling for requirements
engineering. Department of Communication Systems, Lund
Institute of Technology, Lund University, Sweden, 1996

53. Rolland C, Souveyet C, Ben Achour C. Guiding goal modeling
using scenarios. IEEE Trans Software Eng 1998;24(12):1055–
1071

54. Ben Achour C, Rolland C, Souveyet C. A proposal for improving
the quality of scenario collections. In: Proceedings of the 4th
international workshop on RE: foundations of software quality,
REFSQ’98. Presses University of Namur (http://sunsite.informa-
tik.rwth-aachen.de/CREWS), 1998, pp 29–42

55. Sutcliffe AG, Maiden NAM, Minocha S, Manuel D. Supporting
scenario-based requirements engineering. IEEE Trans Software
Eng 1998;24(12):1072–1088

A Scenario Construction Process 61


