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ABSTRACT 
Ryanodine Receptors (RyR) are large ion channels necessary for Ca2+ release from 
intracellular stores in many cell types. Since RyR was discovered nearly 30 years ago, a 
fruitful research field has devoted to understanding the physiological regulation of the three 
protein isoforms in health, and the mechanisms underlying their dysfunction in sickness. 
This minireview discusses the structural characteristics of RyR2, the cardiac isoform, its 
regulation during cardiac function and the clinical significance of specific mutations. While 
hundreds of RyR2 mutations are associated with cardiac disease with different levels of 
confidence, close to 1500 variants appear in the general population without inducing harmful 
phenotypes. Hence, studying RyR2 mutations variants may shed light on overall protein 
regulation and the mechanisms that compensate for constitutive changes in RyR2 function. 
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Introduction 
The Ryanodine Receptor (RyR) is the largest ion channel known in nature. The name is 
derived from the alkaloid ryanodine, a high-affinity ligand that was fundamental for the 
initial characterization of the channel [1]. RyRs are localized on the sarco/endoplasmic 
reticulum of many cell types, where they control Ca2+ release from intracellular stores. Four 
identical subunits of nearly 5000 amino acids form a functional RyR with a total molecular 
mass over 2 million Daltons. Mammals express three isoforms, each encoded by separate 
genes located in different chromosomes; yet, they share ~65% sequence identity. RyR1 and 
RyR2 are mostly expressed in skeletal and cardiac muscle, respectively, while RyR3, the 
least known of the three isoforms, is expressed in several tissues. RyR2 is often called the 
“cardiac isoform,” which is technically correct but may be misleading: while it is indeed the 

predominant isoform expressed in the heart, it is also the major isoform of the brain [2]. In 
the heart, RyR2 serves as the major Ca2+ release channel and is a component of the 
excitation-contraction (e-c) coupling machinery; therefore, it is fundamental for cardiac 
function. This minireview discusses the general characteristics of RyR2 and its potential 
involvement in different forms of heart disease (heart failure, cardiac arrhythmia and 
beyond) as a primary or secondary cause, topics that have captivated investigators for nearly 
30 years.  
 
RyR2 Structure 
RyR2 is well-conserved among species. The human RyR2, for example, shares 97% 
sequence identity with the mouse RyR2 (the main model organism used in biomedical 
research), 99% with the rabbit RyR2 (a larger mammal commonly used in heart failure 
studies), and >99% with the porcine RyR2 (the species used for some recent structural 
studies by Peng et al. [3]). RyR2 folds into a mushroom-like structure with the “stem” 

embedded in the sarcoplasmic reticulum (SR) membrane and the “cap” located in the 

cytoplasm, spanning most of the gap between the SR and the sarcolemma (Figure 1A,B). 
This large cytosolic region contains anchoring points for a variety modulators, many of 
which have a stable association with RyR2 while others bind in a Ca2+-dependent manner 
[4]. Hence, RyR2 is considered an “allosteric giant” [5], not only because of its size, but for 
its role as a scaffold of a macromolecular complex.  
Elucidating the molecular architecture of RyR is a daunting task in part because of the sheer 
size of the channel. So far, the most informative approach for studying the organization of 
the protein has been cryo-electron microscopy (cryo-EM), which initially yielded maps of 
RyR1 with a resolution down to 9.6 Å [6]. Later, discrete domains were crystallized, solved 
at resolutions below 2 Å [7] and docked into known cryo-EM maps, providing a general idea 
of domain arrangement and interaction. Since then, a combination of enhanced computer 
power, clever purification steps and improved detector capabilities allowed the refinement 
of new cryo-EM structures to nearly atomic resolution. Elegant studies lately described 
RyR1 at an average resolution of 3.8 Å and in different states of activation by ligands such 
as Ca2+, ryanodine, ATP, and caffeine [8]. RyR2 lags closely behind with recent structures 
in the closed and open states at resolutions of 4.1 Å and 4.2 Å, respectively [3]. 
Unfortunately, docking solved individual domains into improved cryo-EM structures 
remains problematic, particularly in the periphery of the cytosolic cap where the resolution 
of the cryo-EM maps is still poor [5]. Therefore, the central tower of the channel — formed 
by the N-terminal domain (NTD), and the central (CD) and pore-forming (PFD) domains on 
the C-terminal end — offers the most detail. A second issue with interpreting these new 
structures is the evident differences between isoforms. The most detailed studies often use 
RyR1 obtained from rabbit skeletal muscle [8], prompting informed speculation about the 
structural features of RyR2. Some of these differences have been addressed by crystalizing 
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discrete domains with the amino acid sequence of both RyR1 and RyR2 [9]. Nonetheless, 
since important structural features locate to relatively conserved regions of the protein, such 
as the binding sites for Ca2+, ATP and ryanodine, the structure of RyR1 is expected to be 
consistent among the three isoforms. Then, the different biophysical properties of each type 
of RyR likely stem from the divergent regions and their interaction with conserved domains. 
All efforts devoted to determining the atomic architecture of RyR2 and the intricate domain 
re-arrangement that occur during the transition to the open state, whether directly on RyR2 
or through isoform homology, are extremely valuable because they provide structural 
foundations to biochemical and physiological studies. Thus, it is not at all surprising, but 
certainly expected, that RyR2 researchers rush to search for specific residues whenever an 
improved structure of the channel is published. Whether it is the putative luminal Ca2+ 
sensor, specific phosphorylation sites, disease-causing mutations or “unzipping” domains, 

remains a matter of preference. 
 

 

 

 

Figure 1. Ryanodine Receptor Structure. Human RyR2 domains were determined based on the structure of 
the porcine RyR2 reported by Peng et al. [3] (PDB ID 5GO9). Domains are color-coded in all panels. A. Single 
RyR2 channel observed from cytosolic side. Black lines delimit the four subunits. B. Side view of a RyR2 
channel showing only two opposite subunits. The central tower of the channel, composed of NTD, CD and 
PFD is highlighted. Red arrowheads indicate the approximate location of the three known phosphorylation 
sites. C. Linear representation of a single RyR2 subunit. Individual domains are labeled. Vertical lines indicate 
the location of ~200 disease-causing mutations. D. Location of 1422 RyR2 residues susceptible to missense 
variants, drawn at the same scale as panel C. Arrows indicate the position of 29 variants that truncate the 
protein.  
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Cardiac Excitation-Contraction Coupling 
RyR has a crucial role in e-c coupling, the process that converts electrical signals in the form 
of action potentials (AP) into mechanical contraction (figure 2A). In the heart, RyR2 is 
activated by Ca2+ entering the cell through L-type Ca2+ channels (LTCC), and releases Ca2+ 
from the SR; thus, RyR2 couples with the external membrane through Ca2+-induced Ca2+ 
release (CICR). In contrast, LTCC physically triggers RyR1 opening in the skeletal muscle 
through voltage-gated Ca2+ release. CICR terminates shortly after RyR2 activation in healthy 
cells, and relaxation occurs as Ca2+ is removed from the cytosol by the sarco/endoplasmic 
reticulum Ca2+-ATPase (SERCA), replenishing the SR with Ca2+, and the electrogenic 
Na+/Ca2+ exchanger (NCX), extruding Ca2+ from the cell. Other mechanisms, such as the 
plasma membrane Ca2+ ATPase (PMCA) and the mitochondrial Ca2+ exchange contribute to 
a much lower extent. To allow for a dynamic cardiac function that satisfies the metabolic 
demands of the organism, many components of e-c coupling are regulated by the sympathetic 
nervous system via β1-adrenergic receptor (β1-AR) signaling (figure 2B), with the goal of 
allowing faster and stronger contraction. In the ventricles, the ultimate effect of β1-AR 
activation is to increase in the amount and speed of Ca2+ release, decrease the affinity of the 
myofilaments for Ca2+ and accelerate cytosolic Ca2+ removal. These changes are accomplished 
through direct phosphorylation of e-c coupling components (such as LTCC) or their partners 
(such as phospholamban [PLB], which regulates SERCA2a).  
 

 

Figure 2. Cardiac Excitation-Contraction Coupling. A. Cardiac excitation-contraction coupling in basal 
conditions. Ca2+ enters the cell through LTCC and activates RyR2. Through CICR, RyR2 releases Ca2+ from 
the SR. Ca2+ is then removed from the cell through NCX and reuptaken into the SR by SERCA. B. Stimulation 
of β1-AR activates adenylyl cyclase (AC), which converts ATP into cAMP. PKA activated by cAMP then 
phosphorylates (P) several protein targets including LTCC, RyR2, PLB, and troponin I. Non-canonical β1-AR 
signaling that leads to activation of CaMKII via Epac2 is indicated. CaMKII is also activated by enhanced Ca2+ 
cycling. These changes lead to increased entry to the cell and release from the SR, and positive inotropy and 
lusitropy. 
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Each RyR2 subunit contains 353 serine and 222 threonine residues, many of which may be 
susceptible to phosphorylation based on computational analysis [10]. Nevertheless, only 
three sites have been extensively studied in the context of β1-AR activation: S2031, S2808, 
and S2814 (figure 1, recently reviewed in [11]). Despite the solid experimental evidence 
suggesting that RyR2 is phosphorylated downstream of β1-AR activation, it is still unclear 
whether RyR2 phosphorylation is required to regulate e-c coupling. The characterization of 
these three phosphorylation sites may suggest that phosphorylation of RyR2 results in 
increased channel activity rendering it “leaky” — susceptible to release Ca2+ spontaneously. 
However, all three expected functional outcomes of phosphorylation on channel activity 
appear in the literature: increase [12], decrease [13], and no effect [14]. Dissecting the role 
of RyR2 phosphorylation in the context of e-c coupling is complex because other factors that 
regulate RyR2 function, such as ICaL and SR Ca2+ load, are modulated simultaneously by β1-
AR activation. Also, many of the studies that have addressed this issue looked at the overall 
phosphorylation state of the channel, while more recently the focus is on single residues. 
This reductionist approach, in which phosphorylation sites are ablated individually, has 
proven helpful and necessary to parse this issue. From the size of the channel and the 
multitude of possible phosphorylation sites, it is apparent that more comprehensive studies 
will be needed because phosphorylation sites may work in concert, rather than 
independently, to modulate channel function. Moreover, other post-translational 
modifications, such as oxidation and nitrosylation, may also control any effects 
phosphorylation has on the channel [15]. 

 
RyR2 Dysfunction and Heart Disease 
The first indication of RyR2 dysfunction in human disease was in Heart Failure (HF), the 
advanced manifestation of other underlying conditions that deteriorate cardiac function, such 
as myocardial infarction and cardiomyopathy [16]. Interestingly, most reports dealing with 
RyR2 regulation in HF point to “hyperphosphorylation” of the channel as the basis of 

aberrant function. Phosphorylation of S2814 by the Ca2+/calmodulin-dependent kinase 
(CaMKII) is generally considered the critical post-translational modification, while there has 
been disagreement with the involvement of S2808 phosphorylation (figure 2B) [11]. In any 
case, RyR2 dysfunction in HF is likely a consequence rather than the primary cause of the 
syndrome.  
In 2001, Priori et al. reported the first RyR2 mutations in patients with catecholaminergic 
polymorphic ventricular tachycardia (CPVT) [17], a condition involving cardiac arrhythmia 
induced by stress in patients with structurally normal hearts [18]. This observation, together 
with subsequent studies that showed increased susceptibility to arrhythmia in mice harboring 
one of those mutations [19], demonstrated that RyR2 dysfunction may be the primary cause 
of heart disease. Nearly 20 years later, the number of mutations associated with CPVT 
exceeds 200 (figure 1C) and there is enough evidence in the literature to assert beyond doubt 
that some RyR2 mutations indeed produce CPVT. Several hypotheses have been proposed 
to explain CPVT in the context of RyR2 dysfunction (reviewed in [20]), but there is a 
common cellular feature connecting all: untimely release of Ca2+ mediated by mutant 
channels produces activation of NCX, which depolarizes the sarcolemma and induces 
extemporaneous action potentials and arrhythmia. Interestingly, the same mechanism seems 
to apply to both gain-of-function and loss-of-function RyR2 mutations, the difference being 
the timing of spontaneous Ca2+ release. Gain-of-function mutations generate diastolic Ca2+ 
waves and trigger delayed afterdepolarizations [21], while loss-of-function mutations 
promote Ca2+ release during an action potential and trigger early afterdepolarizations [22].  
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Clinical Significance of RyR2 Mutations 
RyR2 mutations associated with CPVT cluster mainly in four domains of the channel (figure 
1C). Together, these four domains contain around 93% of the mutations; hence, there seems 
to be a correlation between the region affected by a mutation and its potential pathogenicity. 
Remarkably, three of those domains form the central column of the protein (NTD, CD and 
PFD). HD1, on the other hand, is one of the peripheral domains but is touted as a region of 
inter-domain interactions and putative anchoring point for accessory proteins.  
As the number of CPVT-associated mutations continues to grow, so does the spectrum of 
phenotypes attributed to primary RyR2 dysfunction. There are reports in the literature of 
RyR2 mutations possibly associated with long-QT syndrome, Brugada syndrome, 
arrhythmogenic right ventricular cardiomyopathy (ARVC), and even colorectal cancer and 
intellectual disability [23]. This information is stimulating for basic science researchers 
because of the great potential to unveil new pathogenic mechanisms, but it deserves careful 
consideration. A recent study reported that 7.5% of individuals in a whole-exome sequencing 
(WES) cohort carry variants in RYR2, the gene encoding for RyR2, but only 1.2% of those 
variants were likely pathogenic based on clinical information. This suggests that RyR2 is 
highly tolerant to variability [24]. Indeed, a larger cohort of WES and whole-genome 
sequencing information reports 1422 RyR2 residues susceptible to 1751 different amino acid 
changes [25]. Since these variants are distributed randomly throughout the protein (figure 
1D), it further suggests that variation outside the canonical mutation “hot-spots” of CPVT is 

largely innocuous. Remarkably, the 31 specific mutations summarized in table 1 appear in 
both clinical reports and cohorts of healthy patients. Then, what is the clinical significance 
of novel RyR2 mutations? If a patient carries any given RyR2 mutation and shows an 
abnormal phenotype, should this be labeled as the disease-causing mutation? 
This issue was addressed in a recent commentary, where it was argued that if the clinical 
diagnosis is inconclusive, any rare mutation identified in a patient is likely a false-positive 
— i.e. a variant of unknown significance (VUS) [26]. Indeed, new RyR2 mutations require 
careful analysis because even with a robust phenotype, a given variant could be merely 
coincidental. Classifying a mutation as pathogenic therefore requires a multi-level approach, 
where biophysical, biochemical and physiological studies support a robust clinical case; but 
it is impractical, and nearly impossible to apply these standards to all mutations. Hence, a 
strong clinical case is paramount to identify candidate mutations for in-depth molecular 
studies. Unfortunately, many clinical reports in the literature lack critical information, as 
summarized in table 1. In some cases, the original description did not provide details of the 
patients’ phenotype, considered a mutation as “pathogenic” even when the patient carried 

variants in other relevant genes or provided a diagnosis without the appropriate tests. For 
other mutations, this issue is compounded by their high incidence in large cohorts. Such is 
the case of T1107M, reported in cases of CPVT but with higher prevalence than CPVT itself 
(~4 in 10,000 alleles) [20]. Therefore, this mutation is unlikely disease-causing, and other 
epigenetic or environmental factors probably synergized to produce a disease phenotype. 
This residue is also subject to inter-species variation, and the functional and structural 
characterization was performed using A1107M, the mouse analog [9,27].  
Ultimately, the large variability in RyR2 should not discourage the study of rare mutations, 
even from patients with phenotypes other than CPVT. T1107M, for example, raised 
considerable interest in the field because it was the first RyR2 mutation associated with 
hypertrophic cardiomyopathy (HCM), a disorder that, unlike CPVT, involves severe 
structural remodeling of the heart. RyR2 is mainly a Ca2+ channel, and this ion modulates at 
least two signaling pathways involved in cardiac hypertrophy; consequently, it is easy to 
hypothesize a pathway linking primary RyR2 dysfunction and cardiac structural remodeling. 
Later identification of T1107M in patients with CPVT and its high prevalence in the general 
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population detached from an abnormal phenotype show the elusiveness of such link. As 
additional novel mutations are identified, one that finally allows to fill these gaps will most 
likely be identified. Furthermore, novel mechanisms may be unveiled from the study of other 
mutations associated with syndromes hitherto unrelated to intracellular Ca2+ handling, such 
as long-QT syndrome. 

 
Perspectives 
RyR2 is a remarkable protein with an intricate structure and subject to a myriad of regulatory 
mechanisms. A single mutation in RyR2 can destabilize the entire e-c coupling apparatus 
producing severe disease, and yet, thousands of mutations appear in the general population 
without apparent damage. While these seemingly harmless variants are often regarded as 
non-clinically relevant, an intriguing hypothesis is that they may act as genetic modifiers, 
affecting the severity of heart disease caused by other etiologies [28]. Additionally, at least 
29 variants found in healthy individuals produce premature termination of protein synthesis 
(figure 1D), and comparable genetic mutations in mice [29] and rabbits [30] generate a ~50% 
decrease in RyR2 expression without an obvious abnormal phenotype. Hence, even more 
astonishing than RyR complexity is the capacity of the organism to compensate for such 
drastic physiological changes. Researchers working with animal models understand that in 
some cases it is more revealing to study the adaptation to a genetic manipulation than the 
genetic manipulation itself. It is clear, though, that the study of RyR2 and its sister isoforms 
in sickness and in health will continue fueling exciting research for years to come. 
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Table 1. RyR2 Mutations Reported in both Clinical Cases and Large-Scale Sequencing Cohorts. 

 

Substitution Allelic 
Frequency Clinical Presentation 

Pathogenic PotentialA 
Reference 

Frequency Clinical 
L62F 4.06x10-6 CPVT ++ + [31] 
L73V 4.06x10-6 SCDB ++ - [32] 

V186M 2.44x10-5 CPVT + + [31] 
H240R 1.08x10-5 CPVT + + [31] 
S406L 2.17x10-5 CPVT + + [33] 
R414C 8.13x10-6 SCD ++ + [34] 
P466AC 8.68x10-5 ACA + + [35] 
L555V 4.07x10-6 diLTQSB ++ - [36] 
R739H 4.08x10-6 CPVT ++ + [31] 

R1013QC 4.76x10-4 CPVT - + [31] 
T1107M 4.26x10-4 CPVT?, HCM - + [31,37] 
A1136V 7.06x10-3 CPVTB - - [38] 
T1223A 4.07x10-6 Syncope ++ - [39] 
P1256TC 1.63x10-5 Syncope + - [39] 
N1551S 2.75x10-4 CPVT + + [40] 
S1765CC 1.73x10-4 ? + - [41] 
V1810L 8.14x10-5 CPVTB + - [42] 
E1837K 2.04x10-5 CPVT + + [31] 
I2075T 8.15x10-6 iVFB ++ - [43] 

V2113M 3.97x10-4 CPVT + + [31] 
R2267H 2.85x10-5 SID ++ + [44] 
R2359Q 3.25x10-5 CPVT?B + - [45] 
Y2392C 4.07x10-6 CPVT, SCD ++ + [46] 
A2439T 1.62x10-5 ? + - [41] 

A2498VC 4.82x10-5 CPVT? + - [47] 
K4392R 1.64x10-5 ACA, CPVT + + [48] 
G4471R 3.23x10-5 Family History of SCD + - [49] 
H4552R 1.63x10-5 SUD? + - [50] 
A4556T 3.98x10-5 ? + - [35] 
R4790Q 4.06 x10-6 CPVT ++ + [31] 

 
ACA: aborted cardiac arrest; CPVT: catecholaminergic polymorphic ventricular tachycardia; diLQTS: 
drug-induced long QT syndrome; iVF: idiopathic ventricular fibrillation; SCD: sudden cardiac death; 
SID: sudden infant death; SUD: sudden unexplained death. ?: Report does not give specific details of the 
patient. 
A: Pathogenic potential based on variant frequency (arbitrarily defined as < 1x10-5: ++ and < 4x10-4: +) 
and the clinical report. -: indicates inconclusive diagnosis or insufficient clinical information. 
B: Mutation identified with other variants in RyR2 or other genes such as PKP2, MYBPC3 and MYH7. 
C: More variants reported for this residue. Only the one indicated appears in HGMD. 
Table compiled from the literature and the following databases: variants and allele frequency from the 
Genome Association Database (gnomAD) [25]; disease-associated mutations from the Human Gene 
Mutation Database (HGMD) [23]. 
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