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Abstract—Turbidostats are a class of bioreactors gaining in-
terest due to the recent availability of micro- and small-scale
devices for characterization and scaling-up of biotechnological
systems relevant in the biotech and pharma industries. The
goal is to keep cell density constant in continuous operation.
Thus the control law, i.e. the substrate feeding strategy, must
guarantee global or semiglobal convergence to an equilibrium
point. However, their control is difficult due to the uncertain,
time-varying and nonlinear nature of the processes involved. In
this paper we propose an adaptive control law that globally
stabilizes the desired biomass set-point. Further, in a certain
region of the state space the controller linearizes the dynamic
behavior after some time scaling. This way, the orbits of the closed
loop system are imposed by the designer. The intrinsic integral
action of the gain adaptation rejects parameter uncertainties.
Moreover, the controller implementation only assumes biomass
concentration to be measured. Both simulated and experimental
results show the performance of the controller.

Index Terms—Bioreactors; Nonlinear control systems; Output
feedback; Adaptive control.

I. INTRODUCTION

INDUSTRIAL biotechnology uses enhanced and/or ge-
netically modified microorganisms to produce specialty

metabolites (e.g. amino acids, vitamins, food additives, bio-
fuels,...) of importance for the health, chemical, food and
energy sectors among others. Bioreactors are the workhorses
where characterization, scaling-up, and production take place.
Therefore, their feedback control has received much atten-
tion. However, control of bioreactors is difficult due to:
(i) uncertainty on key variables of the system representing
the physiological state of the culture, (ii) non-linear process
dynamics, and (iii) large variability. In this context, model-
based design of controllers has been addressed using simple
models based on mass-balances [1] and developing generic and
robust controllers based on the minimal model concept [2]–
[4]. On the one hand, mass-balance based models concentrate
the uncertainty in specific terms; the bioreaction kinetics, and
the bioreaction yields. On the other, robust controllers based
on the minimal model concept use the mass-balance structure
and rough information on the kinetics structure and bounds.
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In continuous bioreactions the volume of culture inside the
bioreactor is kept constant by setting the inlet flow rate equal
to the outlet one. The higher risk of contamination and cell
mutation in continuous bioreactions have favoured its use only
for processes involving microorganisms with high mutation-
stability. Yet continuous bioreactors have some advantages,
like increased productivity for biomass and growth associated
products, reduction of raw materials, waste production and
maintenance requirements [5], or the possibility of analyz-
ing cultures under sets of steady state conditions [6], [7].
Thus, industrial bioprocesses like biofuels, pharmaceutics and
bioplastics production, etc. are increasingly being migrated
to continuous bioreactors [8]. A few classes of continuous
bioreactors are mostly used. In chemostats the goal is to
keep a desired specific growth rate of the microorganism [8].
Nutristats are used to drive substrate concentration to a desired
set-point, most often corresponding to optimal biomass or
production rate [4], [9]. Several approaches have been used to
stabilize the system at this optimum operating point, assuming
measurement of full state [10]–[12], biomass [3], or reaction
rate and substrate measurement or estimation [13]–[15].

Turbidostats regulate cell density at a prescribed value.
Low cost micro- and small-scale turbidostats are increasingly
becoming available for characterization and scaling-up of
systems without nutrient limitation [16]–[21]. Cell density
is continuously monitored either using a spectrophotome-
ter/turbidometer to measure optical density [22], [23], or using
methods based on dielectric permitivity [24], [25]. The control
law, i.e. the substrate feeding strategy, must guarantee global
or semiglobal convergence of biomass to an equilibrium point.

Linear control theory was used in [26], and exact feedback
linearisation in [10], [27]–[29]. Feeding strategies that are
proportional to the reaction rate avoid biomass washout and
also avoid falling in batch operation. Variations adapting the
controller gain [14], [30] or including error feedback [2],
[31] have been proposed to achieve robustness against process
uncertainties and variability, and to improve the transient
response. In the first case, globally stable adaptive control
laws that in the end are integral control ones are designed
[14], [32], being the feedback gain dynamically adapted in
such a way that control never saturates. Controllers using this
idea can be applied to regulate biomass, substrate or product
concentration in continuous bioprocesses. These controllers
eliminate steady state errors but they were not designed to set
the transient response by controller tuning. To speed up the
transient, a nonlinear proportional control with adaptive gain
leading to a class of nonlinear PI controller was proposed in
[2] to control growth rate. Though exhibiting fast convergence
properties and robustness, it is not clear how to impose the
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desired dynamics and care should be taken to avoid controller
saturation. A saturated PI control is proposed in [3] with
implicit anti-windup protection, achieving robust closed-loop
stability. Biomass is measured and substrate is estimated
using an observer. The gains of both observer and controller
must meet some bounding conditions, and an iterative tuning
procedure is proposed to set them.

In this paper we propose an adaptive control law that
globally stabilizes the desired biomass concentration. Time
scaling and Stability Preserving Maps are used as tools to
simplify stability analysis and controller design [33]. The
controller linearizes the dynamic behavior in a certain region
of the state space after time scaling. This way, the closed
loop orbits are imposed by the designer, resulting in very
simple tuning rules. Neither a detailed model of the growth
kinetics nor knowledge of the bioreaction yields are required.
The controller assumes biomass concentration is measured
and the reaction rate is estimated from it using high-gain or
sliding observers [33], [34] whereby a practical principle of
separation can be assumed. The intrinsic integral action of
the gain adaptation rejects parameter uncertainties. In case the
reaction rate is indirectly measured or calculated with some
error then the steady state output error is bounded.

The paper is organized as follows. In Section II the problem
is formulated. The proposed control law and its analysis
are considered in Section III and Section IV respectively.
Simulations highlighting the performance of the controller
are shown in Section V and its experimental validation in
Section VI. Conclusions are outlined in Section VII.

II. PROBLEM STATEMENT

Consider a pure culture growing under a single substrate
being continuously fed to the reactor [1], [26]:

ẋ = µ(x, s,q)x−D(t)x

ṡ = −yµ(x, s,q)x+D(t)(si − s)
q̇ = Q (q, x, s,D(t))

(1)

where x ∈ <+ is the biomass concentration, s ∈ <+ the
substrate concentration, si ∈ <+ the substrate concentration
in the inlet flow, y the substrate-biomass conversion yield,
D(t) the dilution rate, i.e. the ratio between the flow rate and
the culture volume that will be used as control input, and
µ(x, s,q) the specific growth rate, where q gathers uncertain
parameters and other variables (DO, temperature, pH, growth-
linked products, etc.) affecting the reaction kinetics.

Model (1) encompasses a large number of practical cases
for production of biomass and growth-linked products.

Assumption 2.1: Assume the specific growth rate vanishes
if there is no substrate (µ(x, 0,q) ≡ 0), is strictly positive
whenever substrate is available (µ(x, s,q) > 0 ∀s > 0), and
is bounded (µ(x, s,q) ≤ µm ∀x, s, q ≥ 0). For technical
reasons, assume it can be modeled by a continuously differ-
entiable function of x and s (µ(x, s,q) ∈ C1).
This assumption is fulfilled by all standard specific growth rate
models [1].

Assumption 2.2: Assume biomass concentration x is avail-
able for measurement.

Definition 2.1: A bioprocess operates in continuous mode
when D(t) ≥ d > 0 ∀t ≥ t0 for some sufficiently small d.

The goal is to design a control law D(t) that globally
stabilizes system (1) at the specified biomass set-point x∗.

III. PROPOSED CONTROL LAW

A. Growth rate proportional feeding law

Consider a controller of the form

D(t) = γµ(t)x (2)

In the following we use µ(t) to emphasize the time varying
nature of the specific growth rate and that the feedback law is
not constructed from the uncertain model µ(x, s,q) but from
an observer-based estimation.

Using (2), the closed loop dynamics for biomass and
substrate can be expressed as:

ẋ = D(t)(γ−1 − x)

ṡ = D(t)(si − yγ−1 − s)
(3)

Consider the simplest case, with γ = γ∗
4
= 1/x∗. Then:

ẋ = D(t)(x∗ − x)

ṡ = D(t)(s∗ − s)
(4)

where s∗ = si − yx∗ is the substrate equilibrium point. It is
clear that for a continuous bioreaction as stated in Definition
2.1, the controller (2) with γ = γ∗ locally stabilizes the
equilibrium P ∗ = (x∗, s∗) of (4).

B. Time scaling

The idea now is to semiglobally stabilize the biomass
concentration preserving the control law structure (2), i.e. to
feed the reactor in proportion to growth rate, but shaping the
feedback gain γ so as to improve the transient dynamics. To
this end, it is convenient to express the closed loop dynamics
in a new time scale τ where the controller design problem
becomes simpler. Consider the time scaling given by:

dτ = D(t)dt (5)

where τ can be interpreted as the volume of substrate fed
in [t0, t] relative to the bioreactor one. Now, defining the time
derivative w.r.t. the new time variable as (·)′ = d(·)

dτ , the closed
loop dynamics (3) become:

x′ = γ−1 − x
s′ = si − yγ−1 − s

(6)

Notice the system in the transformed time scale has its
eigenvalues at −1, and the parameter γ can be shaped to
improve convergence of one variable, say x, relative to the
other. Notice also that the dynamics of biomass and substrate
are decoupled in the transformed time scale.
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C. Adaptive shaping of γ
The goal now is to shape γ so as to improve convergence

of x towards the desired set-point x∗. To this end, we propose
the following adaptive control law in the τ -scale:

γ′ = −γ2
[
(γ−1 − x)(1− a)− b(x− x∗)

]
f(γ) (7)

where f(γ) is a saturation function satisfying:

f ∈ C1

f(γ) > 0 ∀γ ∈ (γ, γ̄),
y

si
< γ < γ∗ < γ̄

f(γ) = 1 ∀γ ∈ Γ = [γm, γM ] ⊂ (γ, γ̄), γ∗ ∈ Γ

f(γ) = 0 ∀γ 6∈ (γ, γ̄).

(8)

and γ0 = γ(τ0) ∈ (γ, γ̄).
To prove global stability of the closed loop system corre-

sponding to the biomass dynamics define the errors:

x̃ = x− x∗

γ̃ = γ−1 − γ∗−1
(9)

Taking derivatives w.r.t. τ we obtain the error dynamics

x̃′ = γ̃ − x̃
γ̃′ = f(γ) [(γ̃ − x̃)(1− a)− bx̃]

(10)

Let us now define the following positive definite radially
unbounded function:

W1 =

∫
0

γ̃ g

f( γ∗

1+gγ∗ )
dg

W2 =
b− a+ 1

2
x̃2

W = W1 +W2

(11)

with b− a+ 1 > 0. Using the Leibnitz Integral Rule for W1,
the τ -time derivative of (11) along the state trajectory is:

W ′1 =
γ̃γ̃′

f(γ)
= −(a− 1)γ̃2 − (b− a+ 1)γ̃x̃

W ′2 = −(b− a+ 1)x̃2 + (b− a+ 1)γ̃x̃

W ′ = −(a− 1)γ̃2 − (b− a+ 1)x̃2

(12)

which is negative definite for a > 1. Therefore, the equilib-
rium (x̃, γ̃) = (0, 0) of the error dynamics (10) is globally
asymptotically stable.

Next we show that, after some finite time Tc the control
law (2)-(7) linearizes the biomass dynamics in the τ−scale
within the set Γ = [γm, γM ]. To this end, differentiating x
twice w.r.t. τ in (6) one gets

x′′ = −γ−2γ′ − x′

= f(γ) [x′(1− a)− b(x− x∗)]− x′
(13)

Since γ̃ asymptotically converges to zero, there will exist some
finite time Tc such that γ ∈ Γ for all τ ≥ Tc where, from (8),
f(γ) = 1. Therefore, once γ enters the set Γ the system will
behave according to the linearised dynamics:

x′′ + ax′ + b(x− x∗) = 0 (14)

Remark 3.1: Notice that although in this linear region
in the τ−scale it suffices to choose a, b > 0 to ensure
asymptotic stability, the Lyapunov function (11) we found is
more restrictive.

D. Stability in the original time scale

In the original time scale t, the control law becomes:

D(t) = γµ(t)x

γ̇ = −γ2 [(µ(t)−D(t))x(1− a)−D(t)b(x− x∗)] f(γ)

γ0 ∈ (γ, γ̄)
(15)

with b > (a− 1) > 0 and f(γ) defined as in (8).
Stability of the system (3)-(15) is equivalent to that of (6)-

(7) if the time scaling (5) defines a stability preserving map.
Theorem 3.1: If D(t) is bounded and strictly positive, the

time scaling (5) defines a stability preserving map.
Proof If D(t) is bounded and strictly positive, the time-scaling
(5) defines a strictly increasing and onto function ξ : t −→ τ .
Thus, the homomorphism given by the identity transformation
for the coordinates and the time-scaling defined by (5) pre-
serves stability. See Th. 7 and Coroll. 8 in [33]. �

Now we must prove that the dilution rate D(t) in (15) is
bounded and strictly positive. That is, we must prove that the
control law (15) induces continuous mode operation.

First we prove that D(t) does not vanish. The saturation
function (8) in the adaptive control law (15) ensures that

γ(t) ∈ (γ, γ̄) > 0 ∀t ≥ t0 (16)

Therefore, it will suffice to prove that both biomass x(t) and
the specific growth rate µ(t) are bounded away from zero. That
is, we must prove that the control law avoids both washout of
biomass and batch operation with substrate depletion.

Notice (x = 0, s, q) are stable fixed points of system (1)
which correspond to biomass washout. We can assume initial
conditions satisfying x0 > 0, i.e. there is some initial biomass
concentration in the bioreactor. To avoid washout the region
RX = {(x, s, q)|x ≥ x} must be positively invariant for some
sufficiently small 0 < x < x∗. By continuity RX will be
locally non-attractive if the dilution D(t) is smaller than the
specific growth rate as the biomass approaches zero:

lim
x→0+

D(t) = lim
x→0+

γ(t)µ(x, s, q)x < µ(0, s, q) (17)

Taking into account (16), condition (17) is trivially fulfilled.
Thus, the control law (15) avoids washout.

Now, given the properties for the specific growth rate in
Assumption 2.1 and the result above, to prove that the specific
growth rate µ(x, s, q) does not vanish it suffices to prove
that the substrate concentration s so does not, i.e. the control
law avoids batch operation with substrate depletion. From the
second equation in (1), it will suffice to show that

lim
s→0+

D(t) = lim
s→0+

γ(t)µ(x, s, q)x > yx lim
s→0+

µ(x, s, q)

si − s
(18)

so that S = {(x, s, q)|s = 0} is locally non-attractive. Notice
the control law (15) fulfills condition (18) provided γ > y

si
, as

required in the definition (8) of the saturation function f(γ).
Therefore, the specific growth rate µ(x, s, q) is bounded away
from zero.

Finally, we prove upper boundedness of the dilution rate
D(t). Assumption 2.1 and (16) ensure both the specific growth
rate µ(t) and the adaptation gain γ are upper bounded. So, it



4

only remains to show that biomass x is also upper bounded.
From (3), positivity of D(t), and boundedness of γ(t) given in
(16), the biomass concentration x cannot grow unboundedly
for its derivative will be negative whenever x > γ−1.

Thus, we have proved that the dilution rate D(t) is both
bounded from above and bounded away from zero. Therefore,
the time scaling (5) is well defined.

Notice D vanishes on S . Therefore, the controller is not able
to start the process from s = 0. Anyway, the non-attractiveness
condition (18) is always satisfied since x∗ < si

y . Thus, it
(semi)globally stabilizes the equilibrium.

IV. CONTROLLER TUNING

The key tuning parameters of the controller are the gains a
and b. Some guidelines are given below.

A. Closed loop poles in the τ−time scale

Recall that after some finite time, the biomass error in the
transformed time scale τ will follow the linear dynamics (14).
By choosing a, b in the control law (15), and using b−a+1 >
0, we can place the corresponding eigenvalues λ1, λ2 of the
closed-loop system with:

ω0 =
√
λ1λ2 =

√
b

ξ =
λ1 + λ2

2ω0
=

a

2
√
b

1

2
ω−10 < ξ <

1

2
(ω0 + ω−10 )

(19)

where ω0 is the natural frequency, ξ the damping coefficient.
Equivalently, the last inequalities can be rewritten in terms of
ξ and the damping factor σ = ξω0 as

σ >
1

2
ξ <

σ√
2σ − 1

(20)

B. Effects of the growth rate observer

Any biased measurement in x will produce an error at steady
state independently of the controller tuning. To analyze the
controller performance we consider that estimation µ̂ of the
specific growth rate µ introduces an error, so that ∆µ = (µ−
µ̂)/µ. Then (1) and (15) become:

ẋ = γµ(t)x

(
γ−1 − µ̂(t)

µ(t)
x

)
γ̇ = −γ2µ̂(t)x [(1− γx)(1− a)− γb(x− x∗)] f(γ)

(21)

that evaluated at steady state result in:

xss =
x∗

1− (a−1)
b ∆µ

(22)

The effect of error in estimation of the specific growth rate
will depend on the term:

∆x/µ :=
(a− 1)

b
(23)

Recall that b > a−1 > 0 and a > 1, and notice ∆x/µ → 0 as
a → 1. Therefore, there is a compromise between transient
response (speed and overshoot) and steady state error. If

a, b are designed to have a given damping coefficient ξ and
damping factor σ = a/2 (thus a given settling time), then

∆x/µ =
(2σ − 1)ξ

σ2
(24)

For a given ξ, the error has a single local maximum
∆x/µ,max = ξ at σ = 1 (a = 2) and goes to zero as a → 1
or a→∞. Also, the smaller ξ, the smaller the error will be.
The steady state error of the classical algorithm (2) is very
similar to the error in the estimation of µ: ∆x/µ

∼= 1. Thus,
if well designed, the proposed controller will significantly
reduce the error. Anyway, to avoid this source of error one
can estimate µ using a supertwisting observer that gives finite
time convergence with zero steady state estimation error [33].

C. Design of f(γ)

The span of γ is constrained for the restriction y
si

> γ
and by the maximum flow rate of the pumping system. The
inequality γ > y

si
implies that the desired set-point for

biomass concentration must be bounded by x? < si
y , just

expressing that the amount of substrate converted into biomass
at equilibrium (yx?) must be smaller than the one in the input
flow (si). The adaptation limits γ and γ̄ must be set to fulfill
these constraints. The limits of the linear region γm and γM
can be close to γ and γ̄ but considering that a smooth transition
from 1 to 0 is required.

V. SIMULATED RESULTS

Intensive simulation analysis has been carried out to verify
the main features of the proposed control law. Set-point
changes, process start-up and effect of the initial conditions
have been evaluated considering growth kinetics without and
with substrate inhibition. Furthermore, the control strategy has
been compared with previous proposals in the literature, and
the advantages and disadvantages are discussed. The process
dynamics (1) has been simulated using the specific growth
kinetics plotted in Fig. 1a and process parameters y = 2.22 and
si = 3.6. The dilution rate is given by the dynamic feedback
law (15), with bounding function f(γ) as depicted in Fig. 1b.
The tuning constants a, b were set to different values. In this
section, the growth rate is assumed to be known so as to avoid
including observer dynamics in the controller assessment.

The controller performance has been evaluated in time
scales t and τ since both lead to interesting conclusions. On
the one hand, the t−scale measures the process time in hours
having an obvious meaning. On the other, the time unit in the
τ−scale is the retention time, so that τ represents the times
the volume of the bioreactor is entirely exchanged. That is,
the duration of the transient response in the τ−scale represents
the amount of medium consumed before reaching the new set-
point. A key advantage of the τ−scale is that the transient is
independent of the dilution rate, which in steady state equals
the specific growth rate. On the other hand, processes with
lower specific growth rates are slower in the t−scale, thus
controllers performance is more difficult to compare. It is
important to point out also that the time mapping t(τ) is
monotonous and preserves the amplitude of a time response.
Moreover, as a general rule, faster responses in the τ−scale
are typically faster in the t−scale also.
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Figure 1. (a) Specific growth kinetics µ(s). (b) Bounding function f(γ) of
controller (15).

A. Set-point change

The response of the process to a set-point change for differ-
ent controller settings is first presented. The initial operating
point is (x0, s0, γ0) = (1/5, si−yx0, x−10 ) and the final one is
(x∗, s∗, γ∗) = (1/3, si−yx∗, x∗−1). The controller parameters
a and b were chosen so that the damping coefficient is constant
(ξ = .5) while ω0 ranges from 2 to 12.

Fig. 2 and Fig. 3 show the results for Monod and Hal-
dane specific growth kinetics. Note that the overshoot in the
x−response is the same for all ω0 but ω0 = 12. The reason is
that the controller temporarily leaves its linear region in this
case (see the plot of γ), so the expected linear behavior (14)
is temporarily lost. In case the controller always operates in
its linear region, there is a direct mapping between (a, b) and
the response in the τ−scale. Because of the nature of the time
scaling, the underdamped response designed in the τ domain
is also observed in the t−scale. Moreover, as observed in the
figures, the order is also preserved. The faster responses in the
τ−scale are also the faster ones in the t−scale. The reason is
that, although the t(τ) mappings are not the same for all cases,
they are very similar. Moreover, at the peak or settling time of
a given response, the t(τ) mapping practically coincides with
the ones corresponding to faster responses.

From Fig. 2 and Fig. 3 note that in the t−scale the process
with inhibition is slower than without it even if the responses
in the τ−scale are equal, being consistent with the fact that
the dilution rate is lower. Note also that the shape of the t(τ)
mappings are very similar for both growth kinetics.

B. Start-up

The process has been also simulated for the same set-
point as before but starting from very low initial conditions
(x0, s0, γ0) = (.05, .01, x∗). Note that the process is not
initially at steady state. Fig. 4 and Fig. 5 show the results
for the Monod and Haldane growth kinetics and for differ-
ent controller tunings. In particular, the response for three
different damping coefficients ξ and two different damping
factors σ = ξω0 are depicted. The responses in the τ−scale
present the classical linear second-order dynamics while γ
keeps between (γm, γM ). The responses in the t−scale are
very similar, preserving amplitude and order. Comparing both
figures, notice the x responses in the τ−scale are identical,
whereas the responses in the t−scale are very similar, although
the process with Monod kinetics is a bit faster because the
specific growth rate is higher. This shows the robustness of
the controller with respect to the growth rate kinetics.
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Figure 2. Set-point change for Monod kinetics. Former set-point:
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In addition, the controller performance is robust with respect
to variability in the substrate initial conditions, as observed in
Fig. 6. This figure shows the start-up from different initial
substrate concentrations for Monod kinetics and setting σ =
1.5, ξ = .75, evidencing that subsystem x−γ is independent of
the substrate initial condition in the τ−scale. Therefore, only
the dependence of the time-scaling on the substrate s when
getting back into the original time scale t –via the specific
growth rate µ(x, s)– will induce differences in the t−scale.
Anyway, the time responses of biomass preserve the shapes
and amplitudes of the responses in the τ−scale.

C. Comparison with other controllers

Next the proposed controller is compared with the baseline
controller D(t) = γ∗µ(t)x and with the one proposed in [14]:

γ̇ = Kµ(t)x(x− x∗)(γ − γ)(γ̄ − γ) γ0 ∈ (γ, γ̄)

D(µ, x) = γµ(t)x
(25)
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Figure 4. Process start-up for Monod kinetics. Initial condition:
(x0, s0, γ0) = (.05, .01, 3), set-point: (x∗, s∗, γ∗) = (1/3, 2.86, 3).
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Figure 5. Process start-up for Haldane kinetics. Initial condition:
(x0, s0, γ0) = (.05, .01, 3), set-point: (x∗, s∗, γ∗) = (1/3, 2.86, 3).
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for Monod kinetics. Initial condition: (x0, s0, γ0) = (.05, s0, 3), set-point:
(x∗, s∗, γ∗) = (1/3, 2.86, 3). Controller tuning: (ξ, σ) = (.75, 3).
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Figure 7. Effect of µ estimation error on controller performance using the
proposed (left) and (25) (right) controllers. Initial condition: (x0, s0, γ0) =
(.05, .01, 3), set-point: (x∗, s∗, γ∗) = (1/3, 2.86, 3).

Notice controller (25) consists basically of the baseline con-
troller where the gain γ is adapted, introducing an integral
compensation. The main feature of this controller is its capa-
bility to reject disturbances at steady state. However, since
it has only one tuning parameter and it does not include
proportional action, its potential to improve the transient
response is limited. In fact, the cost of faster responses is
larger overshoots. This is probably the main shortcoming of
this approach. On the other hand, the controller proposed in
this paper allows improving the desired transient response and
is very easy to tune. Yet, although significantly attenuated,
some measurement errors cannot be completely rejected.

Fig. 7 shows the time t evolution of biomass concentration
and adaptation gain for different tunings of the proposed con-
troller (left) and controller (25) (right) in presence of a −10%
error in the estimation of µ(t). The response obtained with the
baseline controller is plotted in both columns. The simulation
scenario of start-up is repeated. Notice with the proposed con-
troller one can achieve better settling time and can easily set
the desired transient specifications. This is because there are
two tuning parameters to set the linear second order dynamics
(in τ−scale). Furthermore, it significantly reduces the error in
comparison with the baseline controller as predicted by (24)
form 11% to 2.5%. On the other hand, controller (25) achieves
zero error thanks to the integral action. Yet, in pure integral
adaptive controllers as (25), a large integral action that drives
the error to zero reasonably fast deteriorates significantly the
transient response. Although controller (25) response in the
large tends to the desired value, the transient is longer (12
hours) than the one obtained with our controller (5 hours).
These results suggest exploring the possibility of combining
or scheduling both controllers in order to improve the transient
response and completely reject steady state errors.

VI. EXPERIMENTAL RESULTS

We used the experimental setup shown in Fig. 8. It consists
of a 16ml turbidostat adapted from [17] and fed by a syringe
pump (NE-1000, New Era Pump Systems, Inc.). Volume was
kept constant by injecting pressurized air using a small pump.
Optical density at 650 nm (OD650) was measured with an
absorbance custom-made sensor using a fotodiode converting
light intensity to frequency (TSL235-LF, Farnell). In our
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Figure 8. Experimental turbidostat setup.

working range there was a linear relationship between OD650

and biomass concentration, with OD650 = 1 approximately
corresponding to 1.5 g/L wet weight, so we controlled optical
density. We grew E. coli transformed cells containing the blue-
purple chromoprotein amilCP using SOB medium as substrate
with 20mM glucose (3.603 g/L). We expected a yield for E.
coli grown on glucose around y = 2.2 g glucose/g biomass
[35] so that y/si ≈ 0.6. Therefore we used the lower bound
γ = 1 with the saturation function (8) as in Fig. 1b. This gives
a good stability margin. The culture was grown overnight,
and was diluted before each experiment so that the initial
concentration was OD650 = 0.12 in all cases. The sensor was
calibrated at each experiment using a spectrophotometer (Zuzi
4140) to compensate for absorbance of the medium.

To estimate the specific growth rate µ̂ from biomass mea-
surements x we used the super-twisting based observer (26)
presented in [36]:

σ = p−1 log

(
x

z1

)
ż1 = −D(t)z1 + pz1z2 + 2pβ |σ|

1
2 sign(σ)

ż2 = α sign(σ)

µ̂ = pz2

(26)

The observer parameters were set to α = 1.625, β = 1.5 and
p = 0.2 using the tuning methodology in [33], and its initial
conditions were set to z1(0) = 0.1, z2(0) = 1.25. These result
in µ̂(0) = 0.25 for the estimated specific growth rate. We did
not allow for an initial open-loop period for the observer to
converge before closing the loop. This observer converges in
finite time. In all cases it converged in less than one hour, as
shown in Fig. 10 (middle).

Fig. 9 shows the experimental results fit well with the the-
oretical predictions considering the noisy, uncertain and time-
varying context. We used the parameters (a, b) = (4, 7.11)
corresponding, in the τ scale, to peak time τp = 1.8, settling
time τs = 2 (98% criterium) and overshoot δ = 0.03, and
(a, b) = (2, 4) for τp ≈ 1.8, τs = 4 and δ = 0.16. The
proposed control law is compared with the baseline controller
corresponding to (2) with γ = 1/x?. The comparison between
the time responses in the τ− and t− scales shows that order
and magnitude are preserved. The experimental relationship
between both time scales is shown in the bottom panel. As

Figure 9. Biomass concentration x in the t time scale (top), in the transformed
τ -time (middle), and relationship between t and τ (bottom). Initial conditions:
x0 ≈ 0.12(OD600). Set-point x∗ = 0.2. Proposed controller: (a, b) =
(4, 7.11) (yellow), (a, b) = (2, 4) (blue). Baseline controller (orange).

predicted by the simulations in section V, although the t(τ)
mappings are not the same for all cases they are very similar.

Fig. 10 shows the experimental dilution D, estimated spe-
cific growth rate µ̂ and controller gain γ. Notice the controller
is robust with respect to uncertain factors that affect the
specific growth rate and may differ from one experiment
to another (e.g. substrate initial concentration, oxygen dif-
fusion, cells metabolic state, etc.). This is reflected in the
slightly different steady state value of the specific growth
rate reached for each experiment. Notice there were per-
formed independently in different days, so the environmental
conditions (e.g.temperature) were most probably different.
The controller designed in τ to achieve longer settling time
((a, b) = (2, 4), τs = 4) indeed delivers lower values of
dilution rate D and has lower values of the adaptation gain γ
during the transient.

VII. CONCLUSION

In this work we have proposed an adaptive control law that
globally stabilizes the desired biomass set-point in continuous
bioreactions. Using time scaling we render the system linear
in the transformed time scale, where analysis and tuning of
the controller becomes extremely simple. Stability is pre-
served in the original time domain. Important time-response
characteristics such as order and magnitude relationships are
also preserved in practice. Furthermore, our controller only
assumes biomass concentration is measured, and does not
require a detailed model of the growth kinetics or knowledge
of the bioreaction yields. The intrinsic integral action of the
gain adaptation rejects parameter uncertainties. In case the
reaction rate is indirectly measured or calculated and some
error appears, then the error is bounded, and the proposed
controller can be tuned so as to significantly reduce it.

The simulation and experimental results validate the easi-
ness to tune the controller to achieve desired time response
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Figure 10. Dillution D (top), estimated specific growth rate µ (middle) and
controller gain γ (bottom). Proposed controller: (a, b) = (4, 7.11) (yellow),
(a, b) = (2, 4) (blue). Baseline controller (orange).

patterns, and its robustness in face of noisy uncertain bioreac-
tion environments.
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