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Rubbed wings, analysed calls and peculiar sound generator structure in males of a conocephaline 
katydid, Xiphelimum amplipennis, give insight into the making of broadband spectra. High shear 
forces are indicated by a robust forewing morphology. Intensity is high for frequencies in a 20-60 
kHz ultrasonic band. Besides a typical katydid sound-radiating mirror and harp, this insect has a 
long costal series of semitransparent specular sound radiators. These wing cells are loaded behind 
by an enlarged and partitioned subwing air space.
Calls repeat steadily with five different time-domain sound elements. Distinctive spectra are 
associated with two of these, giving stepwise frequency modulation that combines to create the 
exceptionally wide spectral breadth. Broadcast sound levels at 10 cm dorsal, right and left, are near 
100 dB. Costal wing-cell sound radiation was explored by loading the costal ‘speculae’ with wax. 
This produced almost no decrease in lateral sound levels, but did alter spectral content. Apparently 
this insect’s costal region both baffles and radiates. The species lives at high densities in cluttered 
vegetation and sound signal attenuation should code via spectral shape for distance ranging.

This is an Accepted Manuscript of an article published by Taylor & Francis in 
Bioacoustics: The International Journal of Animal Sound and its Record in February 2016, 
available online: https://doi.org/10.1080/09524622.2016.1138883
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Introduction
Xiphelimum amplipennis Caudell, 1906 (Fig. 1) is a ‘meadow katydid’ in the tribe Conocephalini 
Burmeister, 1838. It was first found in Paraguay, Caudell’s series being 7 males, (Rehn 1907). It was 
also reported from (probably) NE Argentina by Piran in 1942 and then from SE Brazil, renamed 
in error as Tympanotriba vittata Piza, 1971. The species’ closest tettgoniid relatives are probably 
Orchelimum spp. (Caudell 1906).

During the southern-hemisphere summer of 2012, this species was the dominant singer in 
the subtropical forest of Argentina’s Iguazú National Park. High-density populations of steadily 
calling males were heard day and night from understorey ‘cluttered’ vegetation (Fig. 2) in forest 
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clearings and along paths. Some males sang amid the roar of the nearby Iguazú cataracts. This 
insect stridulates, as do other katydids, using a tegminal generator of modified forewings (Gwynne 
2001). We set out to record and study its stridulation.

Fig. 1. X. amplipennis adult male. A. Silent perched on a leaf, mesothoracic wings (tegmina) flexed against 
back. B. Stridulating with canted tegmina; prominent convex metathoracic wings adjoin in midline between 
tegmina. C. Rear opening of subalar chamber, framed by metawing tips above, fluted tegmina tips laterally. D. 
Lateral aspect collage of backlit male shows steep-sloped abdomen behind semitransparent costal cell series.

Fig. 2. Habitat of X. amplipennis. Cluttered sound-attenuating vegetation bordering Sendero Macuco near 
CIES (Centro de Investigaciones Ecológias Subtropicales) field station, northern Argentina, the cluttered 
habitat of X. amplipennis.
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Many katydids produce tonal (resonant) spectra, dominated by a single narrow high-Q peak 
carrier frequency or its harmonics (e.g., Montealegre & Morris 1999). Meadow katydids, appear 
to be specialists in broadened spectra, emitting many carrier frequencies simultaneously across a 
wide band. For example, some North American Conocephalus spp. show an ultrasonic bandwidth 
of >20 kHz, from about 28 – 50 (Morris & Fullard 1983).

As we recorded and began to analyze the song of X. amplipennis we were surprised by the 
breadth of its band spectrum. Almost all spectral frequencies between 20 and 60 kHz are of high 
intensity, i.e., this insect has an ultrasonic spectrum bandwidth of >50 kHz. We were puzzled by 
the morphology of its tegminal generator, unusual among katydids, and saw these morphological 
peculiarities as illustrating how a generator might be adapted to make a broader spectrum.

The X. amplipennis sound generator has the same basic working parts as those of other 
katydids, but adds some odd features. In a ‘typical’ katydid generator the left tegmen bears a 
ventrally toothed transverse vein (file), engaged by an edge of the right tegmen (scraper). File 
and scraper serve to multiply sound frequencies (Michelsen 1983): thoracic flight muscles move 
the tegmina, drawing the scraper to and fro along the file. A series of scraper-on-tooth shear 
forces impart oscillations to thin-membraned sound-radiating wing cells called speculae: “glassy 
areas ...that serve as sounding boards” (Torre-Bueno 1962). Speculae, prominent on the right 
tegmen as the ‘mirror’ and ‘harp’, are usually confined to the tegmen’s anal region. Relatively low 
frequencies of muscle contraction are ‘multiplied’ to the higher frequencies of airborne sound 
by the file and scraper.

Importantly, all katydid tegminal generators include body spaces -- a subtegminal space 
below, against the back, a subnotal space above, contained by the rearward jutting pronotum. 
These air spaces are critical in katydid sound-making, for they load the speculae with sound 
radiation impedances (Michelsen 1983). Tegminal generators are also seen as dipole sound 
sources (Fletcher 1992; Braun, Chamorro-Rengifo & Morris 2009), i.e., a cantilevered oscillating 
diaphragm radiating sound to both of its sides. In most katydids the anterior or costal margin 
of the tegmen deflects down upon the singer’s sides. This deflected costal region, anterior to the 
main supporting compound vein (Sc+R, see below), is relatively thick, flexible rather than stiff. It 
appears adapted to act as a baffle, limiting short-circuiting inefficiences at the diaphragm edges 
(Fletcher 1992, p. 238).

Four features go well beyond ‘basic working parts’ in the generator of X. amplipennis,1) 
a ‘costal cell series’ 2) an enlarged space beneath the wings, 3) body length metawings that 4) 
partition the enhanced space. The costal cell series is an array of large semitransparent wing cells 
on the anterior margin of the tegmen (Fig. 1D, Fig. 4A) backed by greatly enlarged air space 
(Fig. 6C,D); backlit one sees through this insect to the steeply sloped line of its back, inspiring 
the common name ‘Clear-wing katydid’. The tegminal costal area, normally a baffle, appears in 
X. amplipennis to involve sound-radiating speculae. Is the costal array a structural adaptation 
for sound radiation, contributing more and different frequencies over a wider band? How might 
greater space contribute to a wider band spectrum?

To answer such questions we studied X. amplipennis’ wing morphology, using both orthodox 
light microscopy and laser tomography, contrasting it with the more typical generator, of Sphagniana 
sphagnorum (F. Walker, 1869). We present results of calling-song digital recordings and analysis 
(time domain, frequency domain, broadcast field) for 14 males. We specifically compared lateral 
sound levels looking for radiation enhancement. By wax-loading we tested whether the costal cell 
series contributes importantly to enhance sound radiation in this species, adding either intensity 
or spectral breadth or both.
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Methods

Study insect

During February/March 2012 adult male specimens of X. amplipennis were collected in Iguazú 
National Park, Argentina, from dense herbaceous vegetation along the Sendero Macuco (Fig. 2), a 
wide footpath near the CIES (Centro de Investigaciones Ecológias Subtropicales) field station. The 
insects were maintained individually in roofed, floorless, cylindrical all-Aluminum screen cages, 
diameter ~5 cm, height ~10 cm, screen mesh 18 strands per inch, the screen bent and stapled to 
shape, pinned down on a sound-absorptive foam block. (The screen is assumed to be acoustically 
neutral.) The insects were given small pieces of apple and misted often with water.

Specimens were photographed and drawn under a dissection microscope. For two males 
tegminal morphology was studied (by C.S.W.) using tomography. From these two specimens we 
obtained an estimate of cuticular thicknesses (mirror, costal cells etc.): wings were fixed in Bouin’s 
fixative; subsequently parts were dehydrated in ethanol and after an intermediate step employing 
epoxypropane, embedded in Araldit epoxy resin under vacuum. Serial semithin sections (1 µm) 
were made with a Leica Ultracut UCT ultramicrotome using glass or diamond knives. The sections 
were stained with a mixture of 1% azure II and 1% methylene blue in an aqueous 1% borax solution 
for 10 sec. at 80-90°C.

Forewing morphology

Designation of wing veins follows Béthoux (2012) and the reader can refer to Figs 3-5 in which 
veins, vein-delimited wing cells and other generator parts are labelled. Comparison helps make 
the structural peculiarities of X. amplipennis clearer, so the generator of another (also nonvolant) 
species, S. sphagnorum, is illustrated. S. sphagnorum males are brachypterous; X. amplipennis males 
are macropterous; but for both species their tegmina function in sound generation and not at all 
in flight. References to tegmen aspect, anterior and posterior, are relative to an extended tegmen.

Two compound-vein landmarks are used to designate tegminal topography: Sc+R and 
M+CuA (Figs 3, 4). These veins demarcate three wing areas proximal to the wingbase: anal, costal 
and mediocubital. The acoustically modified anal area, the site in katydids of files, scrapers and 
wing-cell sound radiators (see below), is that posterior to M+CuA. CuA separates from M distad 
and angles toward the posterior margin, approaching the cubitoanal emargination (Fig. 3B, cae): 
the CuA’s path marks the rearward border of the anal area. The costal area is the forewing anterior 
to Sc+R, a region turned down along the insect’s side; functionally the costa acts as a sound baffle 
(see below). The area between the costal and anal areas, i.e., between Sc+R and M+CuA and near 
to the wingbases, is termed mediocubital. The fourth tegminal area, the distal remainder of the 
tegmen, is dominated by archedictyon (primitive vein network, Torre-Bueno 1962) and is called 
here the distal region.

The scraper (s, Fig 4B) is an upward projecting ridge on the right tegmen’s posterior margin 
which engages file teeth from below. The region between the scraper and the rim of the mirror 
(m) is the scraper linkage (Fig. 4B); it is a mechanically critical region whose springiness greatly 
affects mechanisms of tooth engagement and power amplification in different tettigoniid species 
(Bennet-Clark 1998, Montealegre & Mason 2005, Montealegre et al. 2006, Patek et al. 2011). 

Tegminal stridulation arises out of thoracic distortion by indirect flight muscles. The canted 
tegmina are pulled against each other as axillary sclerites at the wing bases change linkage 
(Gutierrez 2015). To resist these transverse action forces, the proximal posterior margin of both 
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Fig. 4. X. amplipennis wings. A. Dorsolateral pronotum and dorsolateral aspect right tegmen: major cantilevered 
compound vein Sc+R, truss (t), adjoining robust ‘vestigial’ file (vf ). Anal wing region is proximal to wing base 
and posterior to M+CuA; elaborated costal cell series attains rear ‘corner’: archedictyon is primitive wing cuticle. 
B. Anal wing region set off by M+CuA; gutter indicates elevation above dorsum. Legend: hp, harp; ha, harp 
handle; s, scraper. C. Ventral aspect cleared right metathoracic wing transmitted light; note absence of costal 
area, prominent peripheral cubitus and anal veins stiffen wing edges.

Fig. 3. Tegmina of X. amplipennis (A) and S. sphagnorum (B), viewed dorsally, cleared, pinned. Numbers 1-6 
(A) indicate regions sampled for cuticle thickness (Table 1). Tegmina in B with engaged scraper (se) distad on 
file. Left tegmen functional files (ff ) well developed both species, robustly curved upon itself in X. amplipennis. 
Right-tegmen file of X. amplipennis (vf ) large, swollen, only nominally ‘vestigial’, compares to modest structure 
of S. sphagnorum. Legend: cae, cubito-anal emargination; ff, functional file; ha, harp handle; hp, harp; M+CuA, 
median plus cubitus anterior; Sc+R, subcosta plus radius; m, mirror; t, truss; vf, vestigial file; wb, wing base.
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tegmina is modified into a strut or ‘beam’ of close anal veins, called here a truss in reference to 
how the veins are deployed within the strut (t, Fig. 4).

In the anal area of the right tegmen of most katydids are two transparent sound-radiating 
speculae: “sounding boards” (Torre-Bueno 1962), a variably rounded to rectangular mirror is 
cradled by an elongate crescentic harp (m, hp, Figs 3, 4). The mirror shares one vein with the 
harp (CuPaα2, Cubitus posterior anterior alpha 2, Bethoux 2012). The harp is bounded anteriorly 
by M+CuA and divided middlewise by a fading CuPa (Bethoux 2012). The harp’s ‘handle’ is a 
short crossvein joining the mirror and CuA.

Table 1.  Total thickness measures (microns) of sectioned tegminal regions (rt: right tegmen; lt: left tegmen) for a 
X. amplipennis male specimen. REGIONS: Fig. 3B (1-6). RELATIVE: thicknesses relative to mirror mean of 2.35 
microns.

Call recording, sound level measures, spectral averaging

For each of 12 males, from five aspects (dorsal, lateral right, lateral left, anterior, posterior) at a 
10-cm distance, we obtained sound-level calibrated call recordings, each of 5-10 s duration. The 
longest wavelengths emitted by X. amplipennis are those of its audio peak near 7-8 kHz (see below), 
~4.6-cm wavelength. We took the length of two such waves as marking the transition from near 
to far field. Our 10-cm working distance for sound-level recordings puts the microphone just at 
the start of the far field for the lowest carrier frequencies of this species.

Recordings were made using a ¼” condenser microphone (40BD, G.R.A.S. Sound and 
Vibration) with a preamplifier (G.R.A.S. 26CF). Microphone, adapter and preamplifier total 16 
cm in length ~2 cm diameter. Microphone output went to a digitizer, Photon II Dynamic Signal 
Analyzer (Novel Dynamics), thence to the application RTPro 6.3491 (LDS Dactron, USA) 
running on a notebook computer. Sound frequencies from <1 kHz to beyond 70 kHz are treated 
uniformly by this equipment. We obtained levels at five aspects: frontal, rear, dorsal, right and 
left lateral. Recordings were achieved opportunistically over a period of two weeks, depending 
on which, and when, individuals were inclined to stridulate.

RTPro converts a computer into a sound level meter, calibrated for dBPa rms re 0.00002 
dyne/cm2. The y axis of a spectral display appears in dBPa rms-specific spectral component 
readings, but is also available as a single dBPa rms value for an entire spectrum (RTPro ‘numeric 
display’); the latter are referred to here as ‘all-spectrum’ readings.

The microphone barrel was adjustably clamped to a wooden-dowel support stand. The 
microphone tip was set 10 cm distant from the specular region of the insect, aligned with its long 
axis normal to the relevant body plane. For lateral recordings, both right and left, the microphone 
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long axis was normal to the sagittal midplane of the insect’s body; for frontal and rear recordings it 
was normal to the transverse body plane; for dorsal recordings it was normal to the frontal plane. 
Sound levels on the G.R.A.S. microphone pre-amplifier were set to boost by 20 dB. A small tape 
rule, or initially a thin protruding wire taped to the microphone barrel, aided in visual estimations 
of microphone tip to singing-insect distance.

Early recordings taken at a sampling rate of 192 kilosamples per sec (e.g., specimen 13 
Figs 7C, 8) established no appreciable energy in the insect’s call beyond 70 kHz. Thereafter 
all recordings were made at 131 kilosamples per sec. Recording temperatures in the laboratory 
building varied between 24 and 30.5⁰C, a variation disregarded in calculating means.

Spectral analysis of natural singers

We used the visual spreadsheet DADiSP (DSP Development ver. 6.5) to carry out Fast Fourier 
Transform calculations on time-domain samples from the recordings originally obtained with 
RTPro. Power spectral densities for trains 2+3 and train 4, were calculated upon a time sample 
of 4096 values using a Welch moving average. Each time sample is divided into 25 segments of 
128 points each, where each segment overlaps the previous by 64 points. Signals were high-pass 
filtered at 200 Hz.

From each recording of each specimen, at each of 5 different aspects, we selected one 
complete phonatome group (PG). A time-domain sample of 16384 points was positioned to centre 
on and symmetrically encompass this PG. Fore and aft parts of trains 1 and 5 only sometimes 
accompanied, but the time sample always included all of both major trains. An FFT power 
spectrum of 6400 lines was calculated.

Using RTPro we also averaged FFT spectra over either 10 or 20 frames, by amplitude 
pretriggering at -10 ms each frame of a complete single song.

Statistical analysis

We tested the null hypothesis of no effect of aspect on natural sound levels using a repeated 
measures ANOVA. For each calculated FFT we obtained the dBPa rms value for the overall 
spectrum (an ‘all-spectrum’ reading) using RTPro ‘numeric display’. In a few instances where 
the recording distance was slightly other than 10 cm, the measured reading was corrected 
mathematically to a 10-cm distance per inverse spreading. 

Loading experiments

We looked for effects on sound levels and spectra of loading the costal wing areas with low 
melting-point wax. When all his ‘natural’ records from the five aspects were complete, a specimen 
became available for this experimental modification. Wax-treated stridulating specimens were 
recorded as opportunity provided, at the same aspects and standard 10-cm distances as for load-
free singers.

Wax was applied to wing surfaces using a custom-made heating device. A standard wall-
adapter power supply rated at 12V supplied power to the two leads of a tip made of standard 
¼-watt carbon film. One lead was bent into a loop to act as a reservoir for the melted wax, the 
remainder, wrapped around the body of a resistor (277 ohms) took up the resistor’s dissipated 
heat and conveyed it into the reservoir. One person gently hand-held an insect, while another 
applied melted wax by drawing the reservoir along a tegminal region. Slightly more than 2/3 of 
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the costal area was waxed, not the entire cell series. Wax loadings could not be easily removed, 
so loading of specimens was treated as an irreversible and incremental process. Low sample size 
precluded statistical analysis of the waxing experiments, and observed effects are presented as 
preliminary.

For each of six singers, tegminal costal cells were wax-loaded one side (4 insects on left, 
2 on right) and their songs compared for before and after effects (sound levels, spectral peaks) 
upon ipsilateral spectra. Three of these six specimens progressed to testing the effects of having 
both right and left costae waxed. Sound level measures were ‘numeric display’ (= ‘all-spectrum’ 
see above) and based upon one complete time-centred phonatome group (i.e., one song). Spectral 
comparisons were each based upon a time sample of four consecutive calls. The time sample was 
high-pass filtered at 200 Hz and the resulting power spectral density displays Welch smoothed. 
This Welch moving average was divided into 25 segments of 128 points each, where each 
segment overlapped the previous by 64 points.

For two other specimens, wax was applied to the metathoracic wings where they are exposed 
contiguous in the midline; the wax had the effect of fusing the hind wings, as well as increasing 
their mass. For one other specimen we recorded the animal singing with most of the subalar cavity 
open above as a result of excising its metathoracic wings with microscissors.

Results

Generator morphology 

X. amplipennis’ generator (Figs 3A, 4) differs from that of typical katydids, e.g., from that of S. 
sphagniana (Fig. 3B), in both strength and enclosed space. Veins are very enlarged and there is 
a great increase in tegminal surface area, containing a greatly increased volume of partitioned 
subtegminal air space.

Enlarged veins for greater force

The compound vein Sc+R (Figs 4 AB, 5D) is the main cantilevered wing support during 
stridulation; this vein is more robust in X. amplipennis to accomodate the insect’s higher wing 
mass. The scraper linkage of X. amplipennis (Fig. 4B) is reduced in comparison to S. sphagnorum 
(Fig. 3B) (Gutierrez 2015), perhaps making this region stiffer, i.e., affecting springiness (Patek et 
al. 2011) and power amplification (Bennet-Clark 1998). Greater stiffness would allow for more 
immediate but lower force translocation to the mirror rim.

The trusses (Figs 3, 4), which serve as opposing canted struts during stridulation, appear 
equally developed on both tegmina in both species. The tooth-bearing transversely running CuPb 
veins (Bethoux 2012), i.e., the file veins, show differences related to force translocation. These 
differences are katydid-typical for S. sphagnorum (Fig 3B): the left tegmen file (ff) is thick and 
functional, the right (vf) is undeveloped, aptly termed vestigial or ‘secret’ (Chamorro-Rengifo et 
al. 2014).

CuPb in X. amplipennis are remarkably katydid-atypical. In both left and right tegmen a 
second vein has been incorporated: CuPaα2 (Bethoux 2012); this combination lends more strength. 
The left tegmen file vein (ff, Fig. 3A) now appears to curl seamlessly back upon itself, like some 
cuticular cake decoration. The right tegmen file is differently shaped, fusiform, thickened almost 
as much as the left, (Fig. 4B). The teeth of this only nominally ‘vestigial’ file are comparable in 
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Fig. 5. Microcomputer tomography of X. amplipennis. A. Posterior aspect overlapped tegmina, shows file teeth 
comparably developed on right vestigial (vf ) and left functional (ff ) files. B. 3-D scan of thorax and part of 
abdomen with left body half removed virtually. Prominent Sc+R vein cantilevers the tegmen; costal array (ca) lies 
against the insect’s side topped by a costal shelf (cs). C. Complete scan, red/cyan coded (use 3-D goggles): shows 
possible internal engagement of lateral margins of metawings against Sc+R.  D. Virtual transverse section  shows 
triangular shape of dorsum-flattened abdomen.  Beneath the tegmina are two large spaces, partitioned by the 
metawings (mw): subtegminal (sts) and subalar (sas).

size to those of the functional file (Fig. 5A), seeming to suggest functionality in stridulation (but 
see below). 

Space and surface area

The subtegminal air cavity typical of katydids is a ‘tunnel of air’ floored by the dorsum of thorax and 
abdomen, sided by the costal regions and opening (often) widely rearward above the terminalia, 
e.g., S. sphagniana (Fig 3B of Morris 2008). For X. amplipennis added ‘tunnel’ space is apparent 
via the costal cell series (Fig. 4A) as one views a backlit male with his deeply depressed abdomen 
(Fig. 1D). The series, right and left, of deep, semitransparent rectangular costal cells gradually 
increment in size, until reaching a corner (Fig. 4A) marked by a nearly triangular cell (Fig. 4A). 
These rear corners, left and right, absent in typical katydid tegmina, also add to the volume of 
the subtegminal space within. A cornice (cs) juts outward below Sc+R and the top of the costal 
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series, contributing still further to cavity volume. The volume of this ‘tunnel’ in X. amplipennis is 
also enhanced by the raising of the plane of the anal area, i.e., the plane of the files and speculae 
(Fig. 3A), creating a plateau that separates itself distad from the archedictyon as a deep gutter 
(Fig. 4B) just where the M+CuA is bending toward the posterior margin of the tegmen (Fig. 4A). 

Subtegminal space partitioned into a subalar chamber

In nonvolant katydids one expects to see the metathoracic wings completely absent or vestigial, but 
here they are strongly developed arched flaccid (Figs 1B, 4C), reaching the end of the body. Their 
cord-like veins are gathered toward anterior and posterior margins. ScR and Cu are crowded upon 
the anterior margin, anal veins are grouped toward the posterior. These metawings  are tightly 

Fig. 6. Sections of X. amplipennis. A. Transverse section of thorax just posterior to wing bases; thick-walled 
(hollow) file veins left (ff ) above right (vf ). Blue arrow directs to midline projection, rejected as able to 
engage with vf teeth (see text). B. Transverse section farther posterior showing scraper linkage (sl); note wing-
partitioned spaces beneath tegmina: subtegminal space (sts) and subalar space (sas) separated by metawings. 
C. Section still further back. Blue arrow marks midline appositon of metawing anal veins (av). Costal array 
(ca) forms lateral walls right and left of subalar space (sas); metawings comprise sas roof, with space above 
subtegminal (sts). D. Sagittal slightly-off-midline section shows steep downslope of flattened abdomen floor 
to the subalar space (sas).
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adpressed in the midline during stridulation (Fig. 1B) but are seemingly too flaccid to radiate 
much sound, their form suggests rather function as  an absorber of sound.

The metawings partition off, a rear subalar chamber, by bridging to the inner face of 
the ScR. The anterior margin of each metathoracic wing, appears shaped to engage with the 
ipsilateral  Sc+R vein of the tegmen (Figs 5C, D, 6B). The specimen prepared for tomographic 
analysis does not actually show these parts engaged, but one can observe in the scans how they 
might fit. See particularly the transvserse section of Fig. 5D where laterally the left hind wing lies 
near the main ScR of the left tegmen. We suspect this region adjoins/latches during stridulation, 
supporting the metawings along their length.

Surface area also relates to macroptery. X. amplipennis males are not seen to fly, yet are 
macropterous, with both tegmina and wings of body length. Macroptery in an animal that does 
not use its wings for flight should be seen as an acoustic adaptation involving increase in surface 
area available for possible sound radiation or baffling (see Discussion).

Overall these morphological peculiarities relate to increased area for sound radiation 
and enhanced volume of loading air masses. To move these additional components requires 
translocation of greater forces via strengthened veins.  These features go toward the making of a 
higher-impedance generator. 

Fig. 7. Time and frequency domain analysis of SN 13, (DADiSP) showing FM. Based on an original recording 
made at 192000 kilosamples/s 10-cm dorsal aspect 26 ºC. A. Time domain record (part of ) 4 calls, two in 
middle complete; PTG train components numbered 1-5. B. One complete call at higher time resolution, 
major trains colour coded. C. Welch-smoothed (moving average) power spectral density (psd) estimations 
comparing major trains (2+3 vs 4). A 6400-value time sample divided into 25 segments of 256 values each, 
where each segment overlaps the previous by 128 points; Fast Fourier Transform(FFT) of each segment 
calculated and averaged. The two song parts produce different spectra.
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Song structure: broadband frequency modulation

The call/song of a X. amplipennis male is readily audible to human ears as a steady series of ‘plosive 
sounds’, rather like a tiny one-stroke engine, running minutes at a time. At moderately high 
temperatures (~25ºC) one can easily count these calls and so estimate a call repetition rate of ~6 
per second. Each call is a grouping of 5 elements designated here as pulse trains and arbitrarily 
numbered 1-5 in Fig. 7A. Each impulse, probably coinciding with passage across one file tooth 
by the scraper, decays rapidly and a large number of these rapid-decay impulses/pulses give rise 
to a train with a characteristic overall shape, an ‘amplitude envelope’. Fig. 7A shows 2 partial and 
2 complete songs, one with its five train types numbered consecutively. In Fig. 7B trains 2 and 3 
are blue coded and train 4 is red.

Trains 1 and 5 are relatively faint, brief, and variable, and their pulses decline in amplitude 
throughout (Fig. 7 A, B) making for a triangular amplitude envelope. Trains 2 + 3 and 4 are 
much longer in duration and much more intense. Train 2’s envelope has a right-directed obovate 
shape, early pulses starting very faintly and very gradually increasing in both amplitude and rate 
(Fig. 7B). Trains 3 and 4 are maximally intense within the call and of nearly equal duration, 
the 3rd fusiform, the 4th rectangular, the 4th with a higher pulse repetition rate than the 3rd. All 
these train features, envelopes, durations, changes in pulse rates etc. are relatively stereotyped, 
repeating among individuals.

For a temperature range of 24-30 ºC, we calculated the following averages of time-domain 
elements (ms, ranges in parens). Song period was 169 (120-233). The first train’s duration is quite 
variable, just a file-touch of a few faint sound pulses, mean 2.4 (0.5-5.7). Train 5 is also brief, but 
with more pulses and longer lasting, mean 7.5 ms (2.9-16.6). Train 2 duration is on average 26.8 
ms (19.5-32.6). The 3rd train (20.7, 16.8-24.7) is temporally distinct from the 2nd, but sometimes 
‘only by envelope’; it rises then falls, pulses staying intense throughout. The pulse rate within 
train 4, calculated upon a count of the number of pulses in a 10-ms interval, is about 1700 per s; 
in train 3, it is ~2000. This insect achieves relatively high katydid tooth-contact rates; compared 
to e.g., <1000 in Conocephalus fasciatus (Morris 1965).

There are two conspicuous downtimes within each song: the first, between train 3 and 4, 
has a mean duration of 7 ms (4.9-10.6); the second between 4 and 5, is much longer, mean 29 
(23-35.7). Coefficients of variation (CV%) calculated for these time-domain parameters show 
the durations of train 3 and 4 and the 4-5 silent interval to be ~14%, substantially less variable 
than the durations of trains 1 and 5 (>50%).

The most intense frequencies of X. amplipennis’ song are all ultrasonic, but there is a low-
intensity audio peak (mean 8.3, range 7.2-9.8 kHz) associated only with trains 2+3. This relatively 
quiet audio frequency dominates human hearing.

The Welch-smoothed spectra (Fig 7 C) based upon trains 2+3 and train 4 are colour coded, 
to show the coinciding upward stepwise frequency modulation (FM). As the insect produces 
train 4 (Fig. 7C, Fig. 8) the audio peak drops out and higher ultrasonic frequencies, between 40 
and 70 kHz (red) dominate. The spectra of trains 2+3 include the aforementioned audio peak near 
8 kHz, but also ultrasonic frequencies maximally intense between 20 and 40 kHz (blue, Fig. 7C).

The spectra generated during the song represent a stepwise modulation between trains 
2-3 and train 4. They are both low-Q band spectra of large bandwidth and with a high level of 
intrinsic variability in subpeaks (Fig. 9). A low-intensity audio peak near 8 kHz is a consistent 
feature of train 2+3 spectra, and is always absent from the spectrum of train 4 (compare blue and 
red in Fig. 9). An upward shift into the further ultrasonic occurs with train 4. There are multiple 
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Fig. 8. Waterfall display (DADiSP, time into the page) showing frequency modulation associated with the two 
major trains (1-5). A waterfall display helps to make FM more apparent with band-spectrum singers like X. 
amplipennis.  Specimen is as for Fig. 7 so recorded at 192 ks/s. The audio peak (~8kHz) is associated with train 
2 as it becomes train 3; this peak disappears as the spectrum shifts higher (>40 kHz) for train 4. Trains 1, 5 have 
effectively no ultrasonics above 40 kHz.

Fig. 9. Welch-smoothed (moving-
average) power spectral density 
estimations (DADiSP) comparing major 
trains (2+3 vs 4). A 1024-value time 
sample is divided into 15 segments of 128 
points each, where each segment overlaps 
the previous by 64 points; FFT of each 
segment calculated and averaged. Six 
different specimens show interindividual 
variation in spectra and how each major 
train contributes different frequencies to 
the spectrum of the overall call.
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peaks with variable peak locations but this upward ultrasonic modulation is always present. Some 
idea of variability in peaks within the band is provided by the six spectra of Fig. 9. Blue (train 
2+3) spectra (note presence of 8 kHz peak) are shown roughly overlapped in relative amplitude 
with train 4 (blue) spectra of the same singer: blue spectra mostly represent an upward shift 
including ultrasonics between 50 and 60 kHz.

Fig. 8 is a waterfall display, depicting the spectrum changes during one song, the numbers 
beside indicating pulse trains 1 through 5 (time advances into the display). The band spectrum 
of trains 2 plus 3, shows its most intense frequency peaks between 20 and 40 kHz; with train 
4 this spectrum shifts markedly upward and frequency peaks between 40 and 60 come to the 
fore. Both the first and last pulse trains show affinity with the lower 20-40 frequency range.

Natural sound levels

Among the five measured aspects, sound levels for this dipole generator should be greatest dorsally, 
where the broadcast field is relatively ‘free field’ (free of body effects) and where the vibrating 
speculae, though displaced during to-fro stridulation, come closest overall to presenting normal to 
the plane of the microphone’s condenser face. As expected the highest mean sound level measured 
was dorsal: 99.253 dB (Pa rms, n=12 singers) at 10 cm, the microphone barrel’s long axis normal 
to the insect’s dorsum.

The repeated measures ANOVA (sound level the dependent variable, aspect the independent) 
significantly rejected the null of equal mean sound levels for the five aspects (F = 48.506, p 
<.0005). Sound levels were normally distributed at each aspect, as assessed by Shapiro-Wilk’s 
test (p>.05). Mauchly’s Test of Sphericity indicated the assumption of sphericity (homogeneity 
of variances) had not been violated [χ2 (9)=1.670, p=.996]. (There was one outlier in the data as 
assessed by inspection of box plots for values greater than 1.5 box-lengths from the edge of the 
box; this outlier is ignored as unlikely to affect the result.)

Bonferroni-corrected post hoc pairwise comparisons were conducted. The largest decrease 
in sound level was seen in shifting the microphone from dorsal (M=99.253, SD=1.439 dB) to 
rear aspect (M=92.351, SD=2.003 dB), a statistically significant mean decrease of 6.901 dB, 
95% CI [4.8-9.0], p<.0005. Shifting from dorsal to right lateral (M=97.723, SD=2.190), there 
was an average decrease of only 1.530 dB, 95% CI[-0.437- 3.496], nonsignificant at p=.199. By 
contrast changing from dorsal to left lateral (M=96.343, SD=2.202) there was a mean decrease 
of almost 3 dB (2.909 dB) which was statistically significant 95%CI [1.034-4.785]. Frontal 
aspect mean sound level was = 93.591 (SD=2.055) and this decrease, 5.66 dB, 95% CI [3.6-7.8] 
is significantly different from dorsal p<.0005. Comparing frontal and rear aspects, the mean 
difference of 1.24 dB is not significant 95% [-1.08-3.56]. Comparing side-to-side differences, 
left lateral (M=96.343, SD=2.202) vs right lateral (M= 97.72, SD 2.190) there was a mean 
nonsignificant difference of only 1.38 dB.

In comparison to its dorsal aspect level, emitted sound decreases significantly frontally 
and opposite the rear opening of the subalar chamber; frontal and rear levels were comparable. 
Lateral aspect levels did not differ significantly from each other, but did differ re comparison to 
dorsal levels: shifting to aspect left lateral (side of the ‘nonspecular’ forewing) the level drop was 
significantly different from dorsal; moving to aspect right lateral (the side of the mirror-harp 
forewing) level drop was not different from dorsal.
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Wax-Loaded costal cells

‘All-spectrum’ lateral sound levels (dBPa rms) are compared in Table 2 for the 6 males 
experimented upon: one tegminal side, either their left or right costal series, has been loaded 
with wax; this level at 10 cm is compared with the same individual’s unloaded ipsilateral levels. 
For each reading three all-spectrum levels were measured then averaged. In two cases the 
unloaded sound level decreased with loading by almost 6 dB. But in the 4 other instances the 
change was trivial, one down and 3 actually increasing. At best the effect of loading with wax 
upon the lateral broadcast at 10 cm was either a modest reduction in sound level (>6 dB) or a 
trivial change.

Three of these males were loaded on both costal regions with wax and dorsal sound levels 
recorded at 10-cm. These are compared to their original unweighted sound levels (all-spectrum) 
at 10-cm distance in Table 3. Loading again saw a lowered level in all three males, down from 
their natural unloaded sound level, but this sound-level decrease was in all cases trivial: less than 
a 2-decibel drop; for two males the drop in level was < 1-dB.

Table 2.  Mean all-spectrum dBPa rms lateral sound levels, 10-cm distance, measured wax-loaded and unloaded on 
ipsilateral side.  Readings in parens on 3 different songs were averaged.  Three singers show modest level drops with 
loading, three small level increases. 

Table 3.  Mean all-spectrum dBPa rms dorsal sound levels, 10-cm distance (*corrected by inverse square law calculation 
from 9cm), measured with both right and left costal areas natural then both wax-loaded.  Readings in parens on 3 
different songs, then averaged. Costal series loading has almost no effect on dorsal aspect levels.
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Fig. 10. Spectral breadth and wax loading. A. The ultrasonic spectrum extends from 20 well beyond 60 kHz. 
Averaged spectra for 20 consecutive calls (SN 13), pretriggered, originally sampled at 190 ks/s, made with RTPro; 
each of the 20 FFTs of 16384 values with spectral lines 6400. B. Effect of wax loading on band subpeaks for 
time samples, based upon 4 consecutive songs of the same individual. Both spectra made 10 cm lateral to side 
where costal array was waxed. Spectra high-pass filtered at 200 Hz, Welch-smoothed. Natural spectrum blue, 
wax-loaded spectrum red. Sound levels show little change, but loading has caused a shift in inharmonic spectral 
maxima.

For two specimens we wax-loaded the metawings where they are visible and contiguous 
dorsally in the midline. This operation welded the two metawings, right and left, together, as 
well as adding mass. The sound levels measured at 10 cm dorsal are given in Table 4. One singer 
showed an increase of 2.7 dB and the other a decrease of 2.4 dB -- again, trivial shifts in sound 
level.

For one specimen whose natural sound level at 10 cm dorsal was measured as (97.42, 97.70, 
98.76)  = 97.96 dBPa rms, metawings were completely removed, leaving the subtegminal cavity 

Table 4.  Mean all-spectrum dBPa rms sound levels, 10-cm dorsal distance, measured with metawings unloaded and 
loaded with wax.  Readings in parens on 3 different calls, then averaged.  Loading has no important effect on dorsal 
aspect broadcast levels.
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unpartitioned. The sound level at 10 cm for this operated singer was (101.37, 101.40, 101.89) = 
101.55 dBPa rms, i.e., the insect did not show any appreciable change in sound level as a result 
of the operation.

For each of 6 males with their costal series wax-loaded on one side, we compared time 
samples of 4 sequential calls; resulting FFTs were high-pass filtered at 200 Hz and a moving 
average applied (Welch periodogram). We compared the wax-loaded spectrum, 10 cm lateral 
to the same side, with that individual’s natural spectrum. By inspection we determined 5 of 
the 6 singers showed spectral changes as a result of loading (Fig. 10B); one seemed more or 
less unaffected. Energy bandwidth still extended far into the ultrasonic but the frequency 
peaks altered substantially between original unloaded to wax loaded. The specimen’s spectra 
were chosen for Fig. 10 to be representative of the alterations in all 5. There was no similarity 
in subpeak change among the specimens, so we can only say the moving-averaged subpeaks 
were quite altered by the loading. We undertook a control of change in the absence of waxing 
manipulation. For different recording events, taken of the same unloaded individuals, 5 on the 
same day, one after a 4-day interval. These analyses showed no change in subpeak patterns. 

Discussion

Structure for a broader spectrum
Cuticle is “praeternaturally multifunctional” (Vincent & Wegst 2004) and easily takes on 

a diversity of forms to diverse ends. We infer adaptation from form and when an animal makes 
a sound of extreme spectral breadth, we may seek to attribute this to the peculiar forms of its 
cuticular generator. Oddities of form in X. amplipennis, such as the costal cell series, the enlarged 
hindwing partitioned subtegminal chamber etc. suggest ways in which morphology might have 
evolved in the direction of making a broader spectrum.

Based on X. amplipennis’ generator oddities, we offer an ‘evolutionary structural recipe’ 
for making a wider spectrum. Add more radiating panels (speculae) to increase the tegminal 
surface area involved in sound radiation. Increase the volumes of the loading air spaces behind 
these cells, a necessary feature if the panels are to oscillate efficiently. Partition the subtegminal 
space with the metawings, creating two chambers that load and resonate in different ways to 
make different frequencies. Make the additional speculae diverse in thickness, dimension and 
stiffness, giving them more frequency-diverse resonances when excited. (Perhaps make them 
behave (move) differently when forces change tension within tegminal parts.) Raise generator 
power (force) to increase energy input to the sound. To bring a band of many frequencies rather 
than a single tonal peak to the same functional level, more force is required, so strengthen all 
the parts of the generator that translocate forces. Since the wings push against one another in 
shear, strengthen the bilateral symmetry of force translocation. By placing speculae at different 
distances from the site of force introduction, create phase differences that will diversify spectral 
content. Vary file-scraper stroking patterns, i.e., engage the file with the scraper in different 
directions at different speeds for different distances along the file: X. amplipennis arrives at its 
very wide band by combining two different less-broad spectra associated with different scraper 
stroking behaviours.
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Force, strong veins and enlargement of the vestigial file

Tettigoniid tegmina illustrate very well the edict of D’Arcy Thompson (1917) “the form of an 
object is a ‘diagram’ of forces”. The direction, the thickness, the stiffness of tegminal veins is an 
indication of where forces are translocated within the structure when it generates sound.

Insects are necessarily small sound sources, a source of basic sound making inefficiency 
(Michelsen 1983). The form featured in this insect’s generator, so different from that of other 
katydids, suggests evolution, within insect size constraints, to move more air and to make more 
sound with necessarily stronger generator parts. The stridulatory organ then becomes overall a 
larger sound source, effecting an improvement in impedance matching between the insect and 
the air (Bennet-Clark 1999).

To the ‘ancestral katydid generator’ X. amplipennis adds more moving parts and larger 
volumes of loading air, i.e., more reactive and resistive radiation impedances (Michelsen 1983). 
Force input must be greater to achieve comparably high intensity at more frequencies under 
additional loads: shear forces between the tegmina must be greater in this species. It is because 
the files, right and left, must sustain much greater reaction forces that they are so very enlarged 
and robust -- much more so (proportionately) than the files of conocephaline relatives, species of 
Orchelimum and Conocephalus.

X. amplipennis has evolved toward a more bilaterally balanced strength in its file veins, 
allowing for a greater build-up of action-reaction transverse forces. The right-tegmen file vein, 
CuPb, is also strengthened through modification of its associated truss: the strong truss plus 
the swollen file vein form together a cuticular beam (vf of Fig 3A, 4B) alligned between scraper 
and wingbase. The left tegmen (ff of Fig. 3A) is strengthened in the same plane for the same 
reason (Fig 3A), but by the curling incorporation of a second more distad swollen vein, CuPaβ. 
(Compare to the tegminal morphology of S. sphagnorum (Fig. 3B) where typical left-tegmen file 
structure involves just the vein CuPb as a tooth buttress and the CuPaβ vein is separate.) The 
vestigial file vein of the right tegmen is vestigial in name only and has thickened and enlarged 
to balance the strength of the left tegmen file.

Lower tooth density (Fig. 5A) in X. amplipennis, i.e., relatively wider spacing of file teeth, 
may be yet another acoustic adaptation for increased force. Power amplification by wider tooth 
separation is discussed by Bennet Clark (1998) in relation to Ephippiger spp. (another group 
of broadband making tettigoniids). Kinetic energy is gained as the scraper spends more time 
speeding up between “widely separated” file teeth; this kinetic energy “is dissipated on impact 
producing a transient sound pulse” (Bennet-Clark 1998). Wider file-tooth spaces would also 
allow for forces contributed by more scraper linkage distortion and ‘springiness’ (Patek et al. 
2011).

The normally feeble file vein of a katydid right tegmen, presenting tiny nonfunctional teeth 
(Chamorro-Rengifo et al. 2014) is so enhanced in X. amplipennis as to raise the possibility of 
functionality by switching tegminal overlap. Switch-wing singing occurs in other tettigoniids 
(Morris et al. 1975) and especially in the related haglids (Morris & Gwynne 1978). Switching 
might even help to explain the complex time-domain pattern of X. amplipennis: there could 
be a reversal in tegminal overlap at the end of the ‘fro’ return stroke upon one file leading to a 
‘to’ stroke upon the file of the other wing etc. Such tegminal behaviour might account for the 
distinct amplitude envelopes of 2+3 and 4 and explain the oddity that both 2+3 and 4 pulse 
trains occur in succession, i.e., explain the absence of the typical amplitude modulation pattern 
of conocephalines: minor-major to-fro train alternation. In addition tegminal reversal might 
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help explain the observed song FM.
However careful examination of the tomographic scan with switching in mind revealed no 

body structure on the left tegmen that could possibly engage the right tegmen file from beneath. 
(Fig. 6A blue arrow shows a midline body elevation also rejected as unlikely to make effective 
contact.) Since file teeth, though never used, are always manifest in vestigial files (Chamorro-
Rengifo et al. 2014), one supposes selection for general enlargement, for the making of a much 
stronger bigger vein, could have resulted in enlarged teeth as a pleiotropic effect. We think these 
enlarged right-file teeth are never used.

Frequency modulation 

The overall extreme-width spectrum of X. amplipennis’ call is achieved in part, by changing 
within the call between two very different band spectra (Fig. 7C, Fig. 8). These two spectra 
are stereotyped within and between individuals. Their distinct subpeaks, coincide with distinct 
time-domain pulse-train patterns and with different amplitude envelopes and different pulse 
rates -- suggesting rather complex underlying tegminal motor movements. In the songs of many 
Conocephalini short low-intensity trains usually alternate with long high intensity, corresponding 
to ‘to and fro’ changes in scraper direction on the file. That in X. amplipennis the longest most 
intense trains (2 3 and 4, Fig. 7B) should occur immediately adjacent in time seems to allow no 
time for scraper return. It is likely complex changes in scraper direction force and speed, especially 
speed, underlie frequency modulation.

It is much easier to discover FM in a tonal than a band spectrum, yet the first katydid shown 
to frequency modulate was Conocephalus nigropleurum, a broadband-spectrum nonresonant singing 
conocephaline (Pipher & Morris 1974). This species uses a simple to-fro cycle of stroking and two 
specimens were recorded making a 5-kHz lowering FM on each (presumed) closing of the tegmina. 
A time-domain oscillogram of three complete tegminal movement cycles of C. nigropleurum song 
(Fig. 3 of op. cit.) is alligned beside a waterfall display (Fig. 4 of op. cit.), time advancing downward. 
As the scraper draws closer to the wing base in each cycle, the ultrasonic spectral band (~28-55 
kHz) shifts lower in frequency. Whereas in X. amplipennis each of two different stroking cycles 
makes a different spectrum, in C. nigropleurum a different spectrum is achieved with just one 
simple to-fro stroking cycle.

Modest carrier frequency changes occur among crickets, happening in association with the 
“beginning and end of each pulse” (DeSutter-Grandcolas 1998). And some tonal tettigoniids also 
modulate their carrier frequency. For example, Docidocercus chlorops, a neotropical pseudophylline 
katydid repeats a single high-Q , 60-ms wave train in the very low ultrasonic, ~24 kHz (Morris et 
al. 1989, see their Fig. 14). The fundamental pure-tone frequency in D. chlorops drops by 800 Hz 
to midtrain then climbs again 1000 Hz by pulse end. (The shift of its 3rd harmonic (3 times the 
fundamental) is more evident than the fundamental in its more strongly curving waterfall display.) 

Another example of resonant/tonal FM comes from Phaneropterinae, the largest group of 
Tettigoniidae and one in which nonresonant (broadband) songs are the rule (Heller & Hemp 
2014). Ectomoptera nepicauda of East Africa shifts both up and down in a series of sinusoid pulses in 
the high ultrasonic, between 80 and 120 kHz (op. cit.). Yet another instance is the pseudophylline 
katydid Ischnomela gracilis. During the short pulse (8 ms) of I. gracilis, its carrier frequency drops by 
about 1 kHz which coincides with a drop in scraper speed. Scraper speed change – varying rates 
of tooth contact is the basis of resonant cricket FM and is offered to explain FM in E. nepicauda 
and I gracilis.
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Transients and translocation

Band spectrum ‘non-resonant’ singers have a tooth impact rate “much lower than the carrier 
frequency” (Elsner & Popov 1978) and make a series of severely damped sound ‘impulses’: 
“heavily damped oscillations” of “highly-transient, rapidly decaying wave trains” (op. cit.). These 
wideband singers “pulse modulate” (Broughton et al. 1975). Each transient pulse gives rise to 
a wide spectrum “to a whole group of frequencies, wider as the phenomenon becomes shorter” 
(Dumortier 1963, p.356, see his Fig. 219).

Trains of transient pulses (Fig. 7B) manifest as a broad inharmonic spectrum with spectral 
‘lines’ that Michelsen (1983) terms “broad-band maxima”. These broadband maxima can show 
remarkable stability within individuals and species. For example in C. nigropleurum, for a given 
distance and allignment, repeatability extends beyond the broadband maxima, down to the 
tiniest spectral subpeaks; spectral frequencies are repeated stereotypically in each tegminal cycle, 
over thousands of file-run cycles (Morris & Pipher 1967). A similar level of stability of broadband 
maxima is seen in acoustic grasshopper band spectra, which match species-typical spectral 
consistency to ear response (Meyer & Elsner 1996).

The spectral line maxima could be altered, in effect filtered, by the substance of the tegmen 
as the forces spread out from the site of tooth-scraper engagement. Forces follow a path (or 
diagram, Thompson 1917) through the tegminal veins and cells. So e.g., with the right tegmen 
Fig. 4A, this path entails crossing the scraper linkage to the truss and mirror rim, then passing 
on to the harp, to the M+CuA, on to Sc+R and then beyond to the costal region. Ultimately 
forces travel distad in the costal area along the array of costal cells. This force translocation 
naturally introduces a time delay which will affect the phase of emitted sounds. The costal cell 
series, being situated farthest along on this force path is a kind of late spectral ‘filter’.

In those wax-loading experiments where we compared the effect on spectra of wax-loading 
the costal cell series, a substantial ultrasonic band of 20-60 kHz remained; but for 5 of the 6 
males subpeaks changed dramatically under loading. This indicates the shape of the natural 
broadband is affected by input from the costal cell series, that the costal area, farthest removed 
along the path from the tooth-scraper force input, is contributing to spectral shape. It is yet 
another indication that the costal series is not just functioning as a baffle, but also serves as a 
sound radiating surface. When loaded its thicker speculae, thicker than the mirror, were not 
greatly affected in their acoustic movement by loading. But there was an interesting change in 
spectral shape (Fig. 10B), i.e., frequencies were shifted within the band.

Adding spectral frequencies by spaces

Acoustic ‘surround’ spaces, embracing the tegmina proper, modelled as resonators incorporate 
two reactive elements: a compliance and an inertance (Bennet-Clark 1999). The interaction of 
these elements determines “the frequency in insect sound-producing mechanisms” (op. cit.). X. 
amplipennis’ rear subalar cavity seems to show the form of a ‘classic’ Helmholtz resonator. Perhaps 
the fluid air of the subalar cavity acts as a compliance, spring-like, to the mass-like inertance of 
the posterior neck air. But in this insect, this supposed resonating rear cavity does not “vibrate at 
or near a single frequency” (op. cit.): instead it is part of a stridulum that puts energy into many 
frequencies over a unusually wide band. On the basis of observed output the rear cavity could be 
contributing to nearly every ultrasonic frequency between 20 and 60 kHz (Fig. 10).

But in some morphological respects the rear cavity of X. amplipennis is unlike a ‘classic’ 
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Helmholtz resonator. Helmholtz analysed sound frequencies by bringing brass ‘eggs’ (necked 
at one-end) of different sizes to his ear. Listening through a hole at the non-neck end, he could 
analyse a tone by the excited activity of the compliant air cavity when the neck air was stimulated 
at the appropriate incoming sound frequency. The sides of this insect’s rear cavity, the costal 
series, are cantilevered compound membranes with a potential lateral mobility unlike a metal 
‘egg’. Rather, in this respect the X. amplipennis rear cavity better ressembles a two-headed drum 
or ‘tom tom’ of “indefinite pitch” (Rossing 2000).

A tom-tom “conveys only a weak sense of pitch” (op. cit.), i.e., its spectral output is broadband. 
The two opposing membranes of the drum represent a ‘two-mass vibrator’ in which there is “both 
acoustical and mechanical interaction between the two heads”. In the drum two normal modes 
of vibration are established. In one instance the “masses move in the same direction and [in] 
another, at a higher frequency… they move in opposite directions” (Rossing 2000). This simple 
model offers a hypothetical basis for ways in which a two-mass vibrator could contribute more 
frequencies to spectral output.

Costal array as both baffle and radiator

The costal cell array of X. amplipennis, hanging down into contact with the insect’s pleura, is 
positioned to serve as an acoustic baffle. This is the understood role of tegminal costal areas in 
other tettigoniids (Braun, Chamorro-Rengifo & Morris 2009). The two sides of a sound-radiating 
plate produce sound waves exactly out of phase, making for destructive interference at plate edges. 
But “if the acoustic situation can be modified to impart some asymmetry [to this dipole] and thus 
some monopole component, then the output can be considerably increased” (p.238, Fletcher 1992). 
Sound cancellations in the plane of the panel are reduced if tegminal costal areas “impart some 
asymmetry” – which it would seem the costal series of katydids in general and X. amplipennis in 
particular, must do.

Cuticle is also “praeternaturally functional” (Vincent & Wegst 2004) at higher resolution, 
i.e., at tissue level. A baffle and a speculum are functional opposites: a baffle keeps sound 
out of the air, minimizes radiation, lessens reverberation; speculae do the opposite: introduce 
sound waves into air, enhance radiation and perhaps even increase reverberation. Baffle cuticle 
is typically thick, opaque, inhomogeneous, blood-suffused, heavy, flaccid, bent upon itself and 
without tension; it drapes down upon the tergites like a curtain, forestalling short-circuiting. 
The contrasting cuticle of sound-radiating diaphragms, of mirrors and harps -- specular cuticle 
-- is relatively stiff, thin and flat, confined to a plane, homogenous and even perhaps under 
tension (sometimes when torn, a mirror shows stress lines). It is often transparent and the relative 
transparency of X. amplipennis’ costal cells suggested to us a possible function for them in sound 
radiation: as some sort of secondary speculae or perhaps something baffling certain frequencies 
and radiating others.

Transparency is not a diagnostic feature of sound radiators. Typophyllum leaf mimics (Braun 
2015) illustrate the distinction between transparency and translucency in cuticular diaphragms. 
Speculae among species of this genus vary in thickness and transparency in association with 
the tonal nature of a species’ output (Braun 2015). In species where the Q of the pure-tone 
spectrum is higher, the speculum is stiffer and translucent rather than transparent. Broader 
banded spectra are apparently associated with fully transparent speculae. The same linkage 
is seen in species of Panacanthus (Montealegre & Morris 2004). A thinner more transparent 
speculum may vibrate more readily in intrinsic frequency modes, whereas thicker and perhaps 
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more uniform (in cuticular substructure) speculae lend themselves to being driven by successive 
generator inputs (Braun 2015).

Though not quite the window-glass transparency of a typical harp or mirror speculum 
(Figs 1B, 3B), the costal cell cuticle of X. amplipennis has a transparency that shows clearly the 
dorsum in a backlit animal (Fig. 1D). In its thickness the mirror (region 1 of Fig. 3A) of X. 
amplipennis is <3 microns, an extremely thin double (because of the outgrowth embyrogeny of 
wings) cuticular layer. The costal cells (region 6 of Fig. 3A) are almost five (4.8) times thicker 
than the mirror (Table 1), but are still substantially thinner than the (perhaps acoustically 
unmodified?) archedictyon tegminal regions (region 5 of Fig. 3A); these latter range in thickness 
up to >28 microns. X. amplipennis’ costal cells being semitransparent, homogeneous and relatively 
stiff, their ‘traditional’ function in baffling might be considered modified rather than replaced.

The very intense lateral measured sound levels are consistent with costal-cell contribution 
to sound radiation. Sound levels at 10 cm to the right and left sides of this insect measure in the 
high nineties, 96.3 dB to the left, 97.7 to the right; these readings compare very closely to 99.3 
dB dorsally.1 While there was no lateral level enhancement relative to dorsal, as we anticipated 
per the morphology of the costal cell series, neither was there any substantial drop in level. One 
would suppose that by their positioning the costal cells must still baffle the primary speculae 
(mirror, harp), acting to minimize edge cancellation of their sound radiation. 

Wax loading the costal series of one side showed no great effect upon lateral sound levels 
(Table 2). Some levels were down (5-7 dB), more or less as expected under a hypothesis of the 
costal series as radiators, some were slightly up (<1.7 dB), but there were no dramatic level 
changes. For the two insects measured dorsally at 10 cm, with both right and left costal series 
loaded, the change in dB level was trivial. And loading of the metawings in two males had 
likewise ambiguous and trivial effects. If the costal series with their thicker cells contribute as 
sound radiators, additional mass does not much impair their ability to radiate sound. In this 
species we think the costal region is both baffle and radiator.

X. amplipennis shows the usual tettigoniid form asymmetry between right and left tegmina: 
the mirror-harp homologous cells of the file (left) tegmen are thick and opaque. This strong 
structural difference seems to manifest itself in a small right-left asymmetry of the broadcast 
field. The Bonferroni-corrected post hoc pairwise comparisons showed a nonsignificant mean 
1.5 dB decrease shifting between dorsal and right lateral. But shifting between dorsal and left 
lateral, there was a significant decrease of almost 3 dB.

Broadband as adaptation

Knowing the distance to a conspecific is critically important for katydids. Male calls are shown, 
by speaker phonotaxis, to draw females (e.g., Morris et al. 1978) over long and short distances. 
They are also shown, by speaker phonotaxis, to affect the singing-territory distance of rivals (e.g., 
Morris 1972), i.e., males use their songs to space themselves (e.g., Chamorro-R J et al. 2007). 
Tettigoniid calls transfer information to conspecifics at a distance, conspecific females localizing 
mates, conspecific males localizing rivals, and spectral components, propagating differentially, 
can code for distance (Lewis et al. 1975, Morris 1978, Forrest et al. 2006, Robillard et al. 2015). 

This is the “degradation for ranging” hypothesis of Wiley & Richards (1978). It applies 

1 Whether these values are elevated relative to the dorsal-aspect levels of other conocephaline spp. is not yet determined.  
Of special interest would be species of Conocephalus or Orchelimum.
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to shorter ranges and perhaps less so longer ranges. Many acoustic animals are not calling at 
interindividual distances that “place strong constraints on the structure of their signals for long-
range communication. An individual might do better to produce a signal that degraded during 
transmission in ways that allowed the receiver to judge its distance” (op. cit.). In other words callers 
in close proximity are selected more for assessment of close-range proximity than for maximizing 
communication distance. Vegetation plays a critical role in this. Spectral shape will code for 
distance because higher frequencies travel less effectively through vegetation than lower. Using 
ultrasonic wavelengths will create a coding mechanism more sensitive to a neighbour’s trespass. 
One should look for “features of signals that [correlate] with the expected spacing of individuals 
in relation to the degradation of signals in a particular habitat” (op. cit.).

The multiple-frequency ‘noisiness’ of broadband signals and a presumed lack of spectral 
stereotypy (not so, see above re C. nigropleurum’s spectrum), encourage the view that broadband 
spectra are a mere effect (Otte 1974). But band spectra are very common in tettigoniids. “The 
songs of most bush crickets are of this general type” (Bennet-Clark 1998) and band spectra 
are the rule in the largest tettigoniid subfamily, Phaneropterinae (Heller & Hemp 2014). We 
suggest that band spectra are not effects, but adaptive in distance ranging of rivals and mates 
and further, that species in the tribe Conocephalini, to which X. amplipennis belongs, seem to 
have specialized in this adaptation.

The genus Conocephalus is speciose: 100+ names are available (Eades et al. 2015). Only a 
small fraction of Conocephalus species have had their spectral features analysed and published, 
but all these, as well as several species, recorded but unpublished by GKM, have ultrasonic band 
spectra (Morris 1965, Morris & Pipher 1967, Morris & Fullard 1983, Guerra & Morris 2002). 
Known Conocephalus songs share a “noisy spectrum of carrier frequencies, continuous from the 
low audio to beyond 100 kHz…[incorporating] a more intense energy band between 28 and 50 
kHz” (Morris & Fullard 1983).

Habitats of Conocephalus spp. are often moist low fields or wetlands, e.g., swamps, swales, 
fens, marshes, bogs -- places filled with dense herbaceous plants such as grasses, sweet flag, 
rice cutgrass, rushes, sedges etc. Males typically perch and sing within this dense vegetation, 
using a sound channel that is occluded and cluttered. Sounds at shorter wavelengths will be 
increasingly poorer at transiting such vegetation. And where territory and spacing are important 
short ultrasonic wavelengths could create a steeper more effective indicator of trespass. Densities 
can be very high in Conocephalus spp.: a large population of Conocephalus nigropleurum in upper 
New York State were monitored in 1966 in sedge habitat; at season peak 327 singers occurred 
in 780 m2  a density of 42 per 100 m2 (Morris 1965). We suppose that among Conocephalus 
spp., Orchelimum spp., Odontoxiphium etc. and of course X. amplipennis, selection has favoured 
signalling distance to conspecifics.

Good physiological evidence that broadband spectra change within vegetation with distance 
is provided via the European katydid Tettigonia viridissima (Römer & Lewald 1992). Its broadband 
spectrum (Fig. 3.5 of Römer 1998) changes shape dramatically between 5 m and 30 m. Using 
a portable omega interneuron preparation, Römer and Lewald showed: “sound attenuation in 
excess of the attenuation due to geometrical spreading alone, increased with increasing frequency, 
distance between sender and receiver, and decreasing height [of the sound source] within the 
vegetation”. Diffraction (scattering) by vegetation and air turbulence produces excess attenuation 
of sound, advancingly so for upward ultrasonics. The singer’s habitat, the “transmission channel 
acts essentially as a low-pass filter” (Römer 1998).

Coding for distance by degradation is not the only basis for band-spectrum adaptiveness. 
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Broadband spectra can be a way of overcoming noise: they will buffer against “variability in the 
received signal” (Römer & Lewald 1992). Using multiple frequencies can reduce the chance of 
signal loss due to the many environmental attenuating and degrading factors (wind, signals of 
other species, refraction, scattering etc.); band spectra increase the chance that some frequencies 
will get through. Tettigoniid songs are also so redundantly structured in the time domain as to 
enable signal averaging (Scheidt 1973) – an hypothesis that awaits its tests.
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