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An analytical solution of Fick’s diffusion equation for the formation of a 2D solid-phase involving a growing
front (Stefan problem) position changing at a constant linear velocity is proposed. This solution comprises a
first diffusion term that includes an exponential correction factor, and a second constant advection term that
depends on the front velocity, and it predicts a kinetic transition from a diffusion to an advection-dominated
mass transfer control in going from t f 0 to t f ∞. The validity of the analytical solution is tested using
potentiostatic cathodic current transient data for silver electrodeposition in a quasi-2D rectangular cell with
an initially plane plate cathode. Theoretical and experimental data fulfill a dimensionless correlation after
experimental data are properly corrected for the effective cathode area.

1. Introduction

Convective diffusion differential equations have been solved
for a number of cases in which the coordinates of the interfacial
front remain constant.1,2 This situation, however, does not apply
to solid/fluid interfaces in which a moving front is involved.3-6

Situations of this type occur in a diversity of converging
phenomena in the areas of physics, chemistry, biology, and
related subjects, in which the solution of those differential
equations depends on the moving boundary conditions.

Mathematical solutions of moving boundary problems for heat
transfer have been studied since about a century ago,7-13 a
typical example being the displacement of icebergs. In contrast,
scarce attention has been paid to the relevance of moving
boundary problems in mass transport phenomena.14-16 These
problems are often called Stefan problems, irrespective of the
driven force.12

In general, diffusion equations can be solved by considering
(i) a fixed boundary, (ii) a moving boundary, and (iii) a free
boundary of either an explicit or an implicit type. Case (i) is
found for mass transfer phenomena between different phases
in which a steady boundary is involved, and then equations for
each phase at their fixed spatial domain are considered.
Conversely, the spatial domains are time-dependent in cases
(ii) and (iii). For case (ii) the moving front fulfills a displacement
law that is known a priori. In contrast, for case (iii) the boundary
velocity equations of spatial domains are unknown and,
therefore, new boundary conditions for solving the problem have
to be found. These conditions would depend on the physical
description of each problem. The explicit situation, in contrast
to the implicit one, implies that the front velocity equation is
available.

The Stefan problem appears for a process involving the
growth of a solid material with a moving boundary under
diffusion control. Such a process results in either the growth of
the solid phase when impinging particles from a fluid phase
are incorporated into the phase, or its disappearance when

detaching particles move outward into the fluid phase. For the
simplest one-dimensional description, the front displacement
occurs perpendicularly with respect to the initial surface
(substrate), that is, either negatively for a growing front or
positively for a dissolving front.3,11 In this description it is
assumed, as a first approach, that changes in the macroscopic
roughness of the moving boundary and convective effects from
density gradients can be disregarded.

This paper reports a solution of the Stefan problem at a
moving boundary of a growing metal deposit under mass
transport rate control. The proposed solution is reasonably
fulfilled by data resulting from silver electrodeposition from a
conventional plating solution using a quasi-2D-electrochemical
cell.17-18

2. Theoretical Approach

2.1. Mathematical Solution. A 1D (y-direction) diffusion
process of species i perpendicular to a plane plate of infinite
dimensions is expressed by Fick’s equation

where Di and ci are the diffusion coefficient and the concentra-
tion of species i in the fluid phase, and t is the time counted
from the initiation of the process. The advance direction of the
solid-phase front (y-direction) is perpendicular to the plane plate.
Equation 1 is solved with the following boundary conditions,

s(t) being the front displacement coordinate at time t, and â the
advance velocity of the moving front. Condition (2a) corre-* e-mail address: ajarvia@inifta.unlp.edu.ar; fax 54-221-425-4642.
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sponds to the initially uniform reactant concentration in the
plating solution. The initial silver growth front surface is equal
to that of the inert substrate (y ) 0) upon which the growth of
the silver phase commences (t ) 0). Condition (2b) indicates
that the silver ion concentration just in front of the growing
front is null for t > 0, as expected from the mass transfer control
of the electrochemical process. Condition (2c), usually called
the Stefan condition, indicates the position of the silver front.
Solving eq 1 with boundary conditions (2a-d), the explicit
expression for ci(y, t) results in

Equation 3 fulfills boundary conditions (2a) and (2b).
Let us consider the electrodeposition of a metal i from a silver

plating solution on a plane plate silver substrate under mass
transport control. For metal electrodeposition under diffusion
control the instantaneous rate equation given in terms of the
cathodic current density jc(t) is

zi, ci, and F being the electric charge per reacting silver ion
(zi ) 1), the silver ion concentration in the plating solution,
and the Faraday constant, respectively. Then,

The first right-hand-side (rhs) term in eq 5 is the product of
the diffusion term for a fixed plane plate, and the exponential
factor that produces a decrease in jc(t) faster than that predicted
by the solution of Fick’s equation for fixed boundary, whereas
the second rhs term increases jc(t) even for t ) 0. In eq 5, the
relative contribution of the first term becomes more remarkable
for t f 0. The limit of eq 5 for t f 0 is

The second term for t f ∞ leads to a steady regime that
corresponds to advection control. The limit of eq 5 for t f ∞
is

Equation 7 corresponds to the advection limit to the mass
transport process.

Accordingly, eq 5 predicts a transition in the mass-transfer
electrodeposition process from a nonsteady to a steady regime.

To further explore the behavior of eq 5, let us define the
dimensionless current ratio F(τ)

The dimensionless time (τ) is expressed by

Then, by placing eq 5 and 7 into eq 8, after considering the
dimensionless time τ from eq 9, the result is

Obviously, eq 10 for τ f ∞ leads to F(τ) f 1. Values of F(τ)
resulting from eq 10 for different τ are assembled in Table 1.

2.2. Results from the Mathematical Solution. Equation 5
predicts a complex behavior of potentiostatic current transients
(Figure 1a) because the contributions of the diffusion and
advection terms both depend on the value of â. The diffusion
term in eq 5 decays faster than that predicted for pure diffusion,
the faster its decay the greater the value of â (Figure 1a).
Correspondingly, the greater the value of â the shorter the values
of t required for the advection regime. Likewise, for a constant
value of â, the longer the value of t the sooner the advection
regime is attained. In this case, a linear jc versus â dependence
is approached (Figure 1b) and the extent of the advection range
increases with â.

The linear dependence of jc on â from eq 7 contrasts with
the 〈â〉1/2 dependence that would result, in general, from laminar
flow1 and from forced convection due to flow impinging
perpendicularly on a plane plate electrode.19,20 The comparison
of these behaviors (Figure 1b) establishes a clear distinction
between the different hydrodynamic mechanisms.

3. Experimental Approach

3.1. Silver Electrocrystallization. The overall silver elec-
trocrystallization process that takes place in aqueous solutions
can be represented by the following reaction

For reaction 11, the exchange current density j0 is strongly
dependent on the distribution of crystallographic faces of the
substrate, and on the density number of surface defects.21-24

For stepped polycrystalline silver in aqueous 1 M silver sulfate
at 298 K, a value for j0 of 24 ( 5 A/cm2 has been reported.21

The estimated value of j0 for aqueous 2.4 × 10-2 M silver sulfate
at 298 K is 0.57 A/cm2. Accordingly, reaction 11 on this type
of surface can be considered as one of the fastest, most reversible
electrochemical processes. This explains why the rate of reaction
11 becomes diffusion controlled even at very low cathodic
overpotentials.

TABLE 1: Values of G(τ) and τ Calculated from Eq 9
F(τ) τ F(τ) τ

0 - 1.81818 1.100569
0.10101 1.47577 1.91919 1.00483
0.20202 1.25031 2.02020 1.00411
0.30303 1.16035 2.12121 1.00351
0.40404 1.11194 2.22222 1.003
0.50505 1.08211 2.32323 1.00257
0.60606 1.06221 2.42424 1.00221
0.70707 1.04823 2.52525 1.0019
0.80808 1.03806 2.62626 1.00164
0.90909 1.03044 2.72727 1.00141
1.01010 1.02461 2.82828 1.00122
1.11111 1.02008 2.92929 1.00106
1.21212 1.01651 3.03030 1.00092
1.31313 1.01366 3.13131 1.00079
1.41414 1.01137 3.23232 1.00069
1.51515 1.00951 3.33333 1.0006
1.61616 1.00798 3.43434 1.00052
1.71717 1.00673 3.53535 1.00046

ci )
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0
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(jc)adv

2 (6)

lim[jc(t)]tf∞ ) ziFci
0â ) (jc)adv (7)

F(τ) ) jc(τ)/(jc)adv (8)

τ ) â 2t/4Di (9)
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2[ 1

x(πτ)
exp(-τ) + erf(xτ) + 1] (10)

Ag+(aq) + e-(cathode) )
Ag+(crystal) + e-(conduction band) (11)
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Silver electrodeposition was performed using a quasi -2D
rectangular cell that consisted of two glass plates horizontally
placed separated by 0.025 cm. The cathode and the anode were
made of a silver foil (99.999% purity), 0.025 cm thick. The
cathode width was 1.4 cm. The cathode-to-anode distance was
2.3 cm. To avoid border effects and initially ensure a homo-
geneous primary current distribution on the cathode, a Teflon
mask 0.025 cm thick was symmetrically placed on both sides
of the cathode. The cell was mounted on a suspended table to
avoid the influence of spurious mechanical vibrations on the
electrochemical process.17,18

Aqueous 2.4 × 10-2 M silver sulfate + 0.5 M sulfuric acid
plating solution was prepared from Milli-Q* water and analytical
reagent-grade chemicals. This working solution was used under
purified nitrogen saturation. The excess of sulfuric acid behaved

as a supporting electrolyte to make the migration contribution
to the diffusion controlled process smaller than 10%.18 Runs
were made at 298 K.

3.2. Interpretation and Discussion of Experimental Data.
The polarization curves (Figure 2) were obtained at 0.1 V/s to
diminish the influence of the surface roughness of silver
electrodeposits on the current response. They were plotted as
Ic versus either ∆Ec-a, the cathode-to-anode potential difference,
or ∆E′c-a, the value of ∆Ec-a after ohmic drop correction. These
polarization curves exhibited well-defined cathodic limiting
(jc,lim) currents from -0.25 to -1.75 V that coincide with those
expected for an electrochemical reaction under mass-transport

Figure 1. (a) Plots of eq 5 for different values of â, which are indicated
in the figure. The height of the advection plateau is directly proportional
to â. (b) jc versus â plots for different times (values of time are indicated
in the plots).

Figure 2. Cathodic polarization curves for silver electrodeposition from
0.024 M silver sulfate + 0.5 M aqueous sulfuric acid run at 0.1 V/s at
298 K. Rectangular pseudo-2D rectangular cell, working electrode area
0.0375 cm2. Full trace: without ohmic drop correction. (0): after ohmic
drop correction.

Figure 3. Experimental potentiostatic current transients for silver
electrodeposition as indicated in Figure 1, at different values of ∆Ec-a
and for different front displacement velocity. â ) 4.3 µm s-1, ∆Ec-a
) -0.400 V; â ) 6.8 µm s-1, ∆Ec-a ) -0.430 V; â ) 8.0 µm s-1,
∆Ec-a ) -0.450 V; â ) 10.1 µm s-1, ∆Ec-a ) -0.520 V; â ) 10.1
µm s-1, ∆Ec-a ) -0.520 V; â ) 26.2 µm s-1, ∆Ec-a ) -0.650 V.
Values of â are indicated in the plot.
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rate control.1,2 In our potentiostatic experiments, the values of
∆Ec-a were set within the potential range of the cathodic limiting
current.

The experimental potentiostatic current transients (Figure 3)
were run in the range 100-1200s, that is, in the range of charge
density 0.240-13 C cm-2. These transients depict a complicated
behavior principally due to the simultaneous contribution of the
diffusion and advection, and to a lesser extent, to the roughness
of quasi-2D silver electrodeposits (Figure 4). The correction
for the latter was made considering the surface of the rough-
growing front accessible for diffusion. The corresponding
roughness factors were evaluated from the cross-section analysis
of the electrodeposit photographs considering the average
diffusion layer thickness resulting from (jc,lim). Depending on
the value of â, these roughness factors were between 1.2 and
1.4. These figures are consistent with the dependence of the
morphology of electrodeposits on the rate of displacement of
the growing front that was recently reported.17,18 After the
accessible surface area correction, data fulfill reasonably well
the jc versus 〈â〉 plot predicted by the advection term in eq 5
(Figure 5).

Furthermore, in terms of the dimensionless eq 10 a good
correlation of experimental and theoretical data was also
established (Figure 6). Data scattering, in this case, can be easily

explained by the time dependence of the roughness factors that
is involved in the jc(τ)/(jc)adv ratio. However, considering the
small values of the roughness factors affecting the average
diffusion layer thickness, their influence on the jc(τ)/(jc)adv ratio
tends to cancel, resulting in a surprisingly good prediction for
the dimensionless correlation.

4. Conclusions

An analytical solution for Fick’s equation for 1D solid-phase
growth kinetics with a moving front whose position changes at
a constant linear velocity is advanced.

The analytical solution involves a first diffusion term that
includes an exponential correction factor, and a second constant
advection term that depends on the front velocity.

The analytical solution also predicts a kinetic transition from
diffusion dominated to advection dominated mass transfer
control in going from t f 0 to t f ∞.

The validity of the solution was tested using potentiostatic
cathodic current transient data for silver electrodeposition in a
quasi-2D rectangular cell with an initially plane plate working
electrode.

Experimental results from different silver electrodeposition
conditions fulfill the prediction of the theory for at least about
one order of magnitude in the value of â. This agreement is
summarized in a dimensionless plot of data after correction for
the effective area associated with diffusion.
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