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INTRODUCTION
The extension of game theory concepts [1] to the quantum world [2-12] has recently been the subject of much attention. 

Quantum games are interesting because classical game theory (CGT) is a well understood discipline (with many applications 
in economy, psychology, and biology [13,14]). Thus, quantizing it has provided rewarding insights. Many physics' problems can be 
regarded as games. An example is quantum cryptography, easily cast as a game between individuals who wish to communicate 
and those who wish to eavesdrop [2]. An area of much interest, quantum cloning, has been recast in terms of a physicist playing a 
game against nature [3]. Most importantly, the measurement process itself may be viewed in such manner. Meyer [5] has pointed 
out that algorithms devised for quantum computers can be regarded as games between classical and quantum agents. Other 
games are expressed in terms of a quantum computer and its operator. As stated by Benjamin and Hayden [7], against this 
background, it is natural to seek a unified theory of games and quantum mechanics".

We will reformulate elementary notions of game theory (GT) in the parlance of quantum theory, which may be also thought 
of as an interpretation of a physical process in GT-terms. We will focus attention on the semi classical case that has a long history.

Semi classical approximations to quantum mechanics constitute an indispensable tool. Even with the present computer 
technology, exact numerical solutions for the Schrodinger equation are unattainable in most cases and exist mostly for problems 
with a few degrees of freedom. Moreover, the semi classical approximation facilitates an intuitive understanding usually hidden 
in brute-force numerical solutions of the Schrodinger equation. The semi classical field is continuously evolving. There still exist 
many open problems in the mathematical aspects of the approximation as well as in the search for new ways to apply it to physical 
systems [15,16].

The picture we have in mind was developed [11]: an open quantum system corresponding to a biophysical Hamiltonian is 
regarded as a quantum game, although our subject is very different. We view the temporal evolution of a semi classical system 
as a game and the concomitant associated process is transcribed in terms of strategies involving players that look for ways to 
optimize their chances.
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ABSTRACT

Recent work on classical-quantum games is reviewed. We present in 
game-theory terms the physics associated to the interaction between matter 
and a single-mode of an electromagnetic field within a cavity, introducing 
a game admitting of both classical and quantal players. Strategies are 
determined by the initial conditions of the associated dynamical system, 
whose time evolution is characterized by the existence of attractors that set 
the possible results of the game. Two types of quantum states are considered; 
perfectly distinguishable or partially overlapping ones. 
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 From the study by Kowalski and Plastino [17] we toyed with the idea de expressing physical model in game-theory parlance 
by considering the interaction between matter and a single-mode of an electromagnetic field. The associated game admits both 
classical and quantal players and strategies are determined by the initial conditions of the pertinent dynamical system. More 
specifically, from the study by Kowalski and Plastino [17] we considered states in the way Meyer does [5] with regards to quantum 
coins. Instead, from the study by Kowalski and Plastino [18] we have looked at the same physical scenario, but limiting ourselves 
to orthogonal initial states, which is tantamount to saying that they are distinguishable. Remarkably enough it has been seen that 
this merely technical detail profoundly modifies the whole picture.

Basic notions

In a game we deal with 

• a finite set of N players plus a set of pure strategies si (i=1, 2…, N) available to those players. 

• pure strategies providing a complete definition of how a player will play. In particular, they determine the moves a player will 
make for any situation she could face. 

• a set of payoffs for each combination of strategies. Payoffs are numbers which rep- resent the motivations of players. 
Payoffs may represent profit, quantity, utility, or other continuous measures (cardinal payoffs), or may simply rank the desir-
ability of outcomes (ordinal payoffs). In all cases, the payoffs must reflect the motivations of the particular player.

Games admit as well mixed strategies that are combinations of probability assignments to each available pure strategy. If 
si={si1, …, sik}, a mixed strategy for player i is a probability distribution pi=(pi1,…, pik), where pi1 + .. + pik=1. The payoff Pi is here 
replaced by an average payoff<P>. 

Nash Equilibrium

  Suppose that the theory makes a unique prediction about the strategy each player will choose. In order for this prediction 
to be correct, it is necessary that each player be willing to choose the strategy predicted by the theory. Thus, each player's 
predicted strategy must be that player's best response to the predicted strategies of the other players. Such a prediction could 
be called strategically stable, because no single player would want to deviate from her predicted strategy. This situation is called 
Nash equilibrium. The mixed strategies (p*

1,…, p*
N ) attain Nash equilibrium if, for each player i, pi is player i's best response to the 

mixed strategies specified for the N-1 remaining players, (p*
1,…, p*

i-1; p
*

i+1 ,...,p
*

N ). Thus,
* * * * * * * * *
1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., ),i i i i N i i i i NP p p p p p P p p p p p− + − +< > ≥< >                                                                                         (1)

for every feasible strategy pi.

In quantum games expected payoffs will be calculated now via a density matrix ρ,

Tr (ρ Pi),

where Pi standing for a convenient “payoff” operator associated to each player (quantum and classical) and in general a 
mixed density matrix

| |,j j j
j

Q p Qρ = > <∑
Where 1j

j
p =∑ . We will call “classical” those players who choose probabilities pj (mixed strategies). “Quantum players”, 

instead, select quantum states |Qj>as their strategies.

The players need not be human beings. They are basically sets de strategies and payoffs. Our interest here lies in casting 
physical problems in game-theoretic terms. In particular, our focus is the one described below.

Two level systems

We consider now the following two-level boson Hamiltonian [19,20].
2 2 † †

1 1 2 2 1 2 2 1( ) ( ),
2 XH E N E N P X X a a a aω γ= + + + + +                                                                                                  (4)

that represents matter interacting with a single-mode of an electromagnetic field within a cavity. One has 
†

1 1 1N a a=
and

†
2 2 2N a a= , the population operators corresponding to the levels one and two, respectively, and we assume E2>E1. Here

†
1a

, a1 and 
†
2a a2, a2, are the creation and annihilation operators of a boson in the levels one and two, respectively. The electromagnetic field, 

regarded as classical, is represented by the variables (classical) X and PX (X's conjugate momentum) [21,22].

The dynamical equations for the associated quantal variables are the canonical ones [19,23], i.e.,

[ , ]d O i H O
dt
〈 〉

= 〈 〉


                                                                                                                                                                          (5)

Additionally, classical variables obey dissipative equations. We set [19,20]

=
X

dX H
dt P

∂〈 〉
∂

,                                                                                                                                                                                      (6a)
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( )=X
X

dP H P
dt X

η∂〈 〉
− +

∂
 .                                                                                                                                                                   (6b)

The energy is taken here to coincide with the quantum expectation value of the Hamiltonian. Consequently, the classical 
equations of motion to be used here are well-defined one [20]. Taking the set † † † †

2 1 1 2 2 1 1 2 2 1{ , ( ), ( )}N N N O i a a a a O a a a a− +∆ = − = − = + , where 
we have introduced the population difference operator ∆N, and applying (5) we obtain ( 1)= the following Bloch-like equations

=2d N X O
dt

γ −
〈∆ 〉

〈 〉                                                                                                                                                                         (7a)

0= 2d O X N O
dt

γ ω−
+

〈 〉
− ∆ + 〈 〉                                                                                                                                                                  (7b)

0=d O O
dt

ω+
−

〈 〉
− 〈 〉                                                                                                                                                                           (7c)

with 0 2 1( )E Eω = − . The mean value O−〈 〉 represents a “current” vector and O+〈 〉 is

the expectation value of the quantal factor of the interaction potential. For the classical variables we obtain

X
dX P
dt

ω=                                                                                                                                                                                       (8a)

( )X
X

dP X O P
dt

ω γ η+= − + 〈 〉 +                                                                                                                                                               (8b)

Each level's population, 1N〈 〉 and 2N〈 〉 , can be obtained in the fashion:

2
1( ) ( ( ))
2

N t n N t〈 〉 = + 〈∆ 〉 ,                                                                                                                                                               (9a)

1
1( ) ( ( ))
2

N t n N t〈 〉 = − 〈∆ 〉 .                                                                                                                                                               (9a)

Where ( )N t n〈 〉 = , with n the total number of particles, as N=N1 + N2 is an motion-invariant of the system. We can also define 
the Bloch-like quantity IB as

( )1/22 2 2
BI N O O− += ∆ + 〈 〉 + 〈 〉 ,                                                                                                                                                                       (10)

which is also an invariant of the motion.

Physical problems as games

Equation (6b) guarantees the existence of attractors [19,20]. Such a fact allows us to think of a game whose results are in 
correspondence with the end-points of the trajectories that eventually reach one of these attractors. Bets are placed on which 
attractor will “prevail”. One assumes that players are aware of the details of the underlying dynamical process, i.e., they are 
cognizant of (4). Thus, the only freedom of choice refers to the initial conditions for the system given by (7) and (8). A pivotal role 
is then played by the initial version of the density matrix given by Equation (3).

We face here a complete-information game. Each player knows all possible strategies and payoffs. These strategies and 
payoffs can be made following specified rules, each distinct set of rules leading to a different game, all of them for the same 
Hamiltonian. In the Literature quantum players make use of qubits and classical ones of bits [4,5,7]. In particular, Meyer [5] considers 
density matrices of the type (3). Moves that reflect quantum strategies are represented by unitary operators and classical 
strategies are of a mixed character. Expected payoffs are calculated via the density matrix (3) using the expression (2). The 
necessary calculations are performed at the attractors' locations for the pertinent initial values, as detailed below in Sect. IV.

We consider the five-dimensional space determined by ( , , , , )Xu N O O X P− += 〈∆ 〉 〈 〉 〈 〉 . The fixed points or equilibrium points 
(labeled by the sub index f) of our system of non-linear equations can be classified as being of type A or B, respectively, according 
to whether its

X-value vanishes or not. Using the invariant IB we obtain [19,20].

Type A:
0
22fN ωω

γ
〈∆ 〉 = −                                                                                                                                                                             (11a)

0fO−〈 〉 =                                                                                                                                                                                              (11b )
2 2

2 1/20
4( )

4f BO I ω ω
γ+〈 〉 = ± −                      (11c)
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f fX Oγ
ω += − 〈 〉                                                                                                                                                                             (11d)

0X fP =                                                                                                                                                                                          (11e)

if 2
0( ) / 2 BIωω γ < .

f BN I〈∆ 〉 = ±                                                                                                                                                                             (12a)

0fO−〈 〉 =                                                                                                                                                                                            (12b)

0fO+〈 〉 =                                                                                                                                                                                          (12c)

0fX =                                                                                                                                                                                       (12d)

0X fP =                                                                                                                                                                                            (12e)

Studying the stability of these fixed points we can ascertain that those of Type A are stable [19,20], while those of Type B are 
stable only when 2

0( ) / 2 BIωω γ ≥ together with f BN I〈∆ 〉 = − . The stable fixed points are the only attractors of the system (see the 
detailed investigation of) [19]. In this stability-instance, the final population distribution is originated by a flux from the upper to the 
lower level, independently of the initial conditions, and of the values of the H-parameters. Instead, for the unstable solution, the 
ux runs towards the upper level, but for this to happen we need that at the initial time the system has to be already found at the 
fixed point, where of course it remains forever.

Type B points minimize the quantum energy as well as the total energy. Instead, for Type A only the total energy is minimized, 
allowing for the quantum energy part to be either increased or not, depending on the initial conditions and on the parameter-
values. This fact allows for the final boson-number of the upper level to be greater than the initial one, i.e.

0
2 2 2

1(0) (0) 0
2 2fN N N ωω

γ
 

〈 〉 − 〈 〉 = − ∆ + ≥ 
 

,                                                                                                                                    (13)

which can happen for

0
2 (0)

2
Nωω

γ
< −∆ .                                                                                                                                                                         (14)

with (0) 0N∆ < .

Expected payoffs

On the basis of (13) we dene a game with two options and two players: the populations of each level either increase or 
decrease, with the following expected payoffs:

2 2 2 (0)fP N N= 〈 〉 − 〈 〉                                                                                                                                                                   (15a)

1 1 1 (0)fP N N= 〈 〉 − 〈 〉                                                                                                                                                                        (15b)

that can be recast in the form (2) as [ ( ( ) (0))]i i iP Tr N t Nρ= →∞ −  [20]. Using (9) we have  

2 1 (0)fP P N N= − = 〈∆ 〉 − 〈∆ 〉 ,                                                                                                                                          (16)

so that we face a zero-sum game, whose physical counterpart is boson-number conservation. Henceforth we need to x 
attention only on P2. According to the stable point character (A or B) we get

Type A

0
2 2

1 (0)
2 2

P N ωω
γ

 
= − ∆ + 

 
                                                                                                                                                                 (17)

if 2
0( ) / 2 BIωω γ < < IB. Of course, 2 0P ≥ , if (14) is verified.

Type B

( )2
1 (0)
2 BP N I= − ∆ + ,                                                                                                                                                          (18)

if 2
0( ) / 2 BIωω γ ≥ . In the last case we always have 2 0P ≤ . We remark that, of course,

if initially the system is at any fixed point, including those unstable of the type B, it will remain there and P2=P1=0. Also, the 
validity-ranges and the payoffs do not depend on the values of the classical variables X and PX. We proceed next to determine 
under which initial conditions the system ends-up in one or the other of the two attractors.
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Initial conditions' role

The density matrix (3) may represent a game played i) by classical players if we keep fixed the |Qj>-states), ii) between 
quantum players if p1=1 and the remaining pj vanish, and iii) between both classical and quantum players. If there are several 
players, the probabilities pj are expressed as products (of probabilities) and the states |Qj>as tensor products of quantum states.

We now specialize (3) to the case of the two levels-system (Cf. Eq. 4). We consider the illustrative instance in which a classical 
C-player and a quantum Q-one play with two different strategies: a mixed one for player C and a quantum strategy for player Q. 
Matrix (3) expresses a situation in which C-players support with probability pj (o reject with probability 1pj) the |Qj >-strategy.

For this scenario, Meyer's approach [5] regarding quantum coins was applied in [17] In Meyer's setting; a coin was placed within 
a box, heads-up initially. The coin is manipulated in three (alternate) occasions by the two players. By C just once. The Q-player 
wins if the penny is heads up when the x is open for all to see. C supports Q's strategy with probability p \leave the coin untouched" 
and 1 p \reverse the coin state" [5]. The above setting was slightly generalized in (17), as follows: Let the general initial state be

0
| | ,

n

i
i

Q n i iα
=

>= − >∑ ,                  (19)

with *

0
1

n

i i
i

α α
=

=∑ . Vectors |n-i, i>, represent states with n-i bosons downstairs and i particles in the upper level. They constitute 

a basis in the pertinent Fock-space. If Q chooses the strategy 1| |Q Q>≡ >  of (19), the alternative strategies are given by the set 
of vectors

| |j jQ Qπ>= > ,                   (20)

with jπ  operators that, acting on |Q >, produce all possible permutations among the i, generating ( 1)!n + quantal strategies. 
These operators can be written as j lm

lm

eπ =∏ , with the lme  being “elemental” operators that exchange lα with mα . We are led to

(
( 1)!

1
| |

n

j j j
j

Q p Qρ
+

=

= > <∑                                   (21)

with
( 1)!

1
1

n

j
j

p
+

=

=∑ . Here 1 Iπ = , the identity permutation (|Q1>=|Q>). Eqs. (19) and (20) state that quantum strategies are 

represented by qubits for n=1 (as in [5]), qutrits for n=2, and, in general, by qunits if we deal with n bosons. Neither Q nor 
C know what her rival plays. Although the game may be either of sequential or simultaneous nature, it is here more natural to 
regard it as sequential, with the Q-player making the first move. The matrix version of (21), in terms of the matrix versions of the 
operators jπ , reads

( 1)!
†

1

n

j j Q j
j

pρ π ρ π
+

=

= ∑ ,                   (22) 

Where Qρ  corresponds to the pure operator | |Q Q Qρ = >< . Matrices jπ  can in turn be cast in the fashion j lm
lm

eπ =∏ , i.e., 

in terms of the elemental matrices lme  that arise out of interchanging rows l and m in the identity matrix. Classical strategies 
(in) are represented by the choice of the ρ , together with the operations implied by the matrices jπ . The states (20) are not 
distinguishable, so that | 0i jQ Q< >≠ . We introduce next a one-boson game that involves distinguishable, i.e., orthogonal states 
and overlapping ones.

A bosonic game

Let us discuss in more detail the n=1-instance of one Q-player and one C-one, since this is already enlightening enough, as 
will be seen. The density operator is

1 1 1 2 2 2| | | |p Q Q p Q Qρ = >< + >< ,                                                                                                                                        (23)

with p1 + p2=1. |Q1>- |Q2>are n=1-qubit-states (20) (17)

1 0 1| | |1,0 | 0,1Q Q α α>= >= > + > ,                                                                                                                                       (24a)

2 1 0| |1,0 | 0,1Q α α>= > + > ,                      (24b)

where 2 2
0 1 1α α+ = . We have taken 0α  y 1α  to be real, without loss of generality. |1,0> stands for our particle being 

downstairs, and vice-versa for |0,1>. If we wish that our protagonists be orthogonal-states we need [18]

1 0 1| |1,0 | 0,1Q α α>= > + > ,                                                                                                                                                      (25a)

2 1 0| |1,0 | 0,1Q α α>= > − > ,           (25b)
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where 2 2
0 1 1α α+ =  (again, we have taken 0α  y 1α  to be real). Thus, the density matrix adopts here the appearance [18]

2 2
1 0 2 1 1 0 1 2 1 0

2 2
1 1 0 2 0 1 1 1 2 0

p p p p
p p p p
α α α α α α

ρ
α α α α α α

 + ±
=  

± + 
,                                            (26)

where the sign correspond to the states given by (24) and (25), respectively.

We assume now that the C-player places his bet on that the upper level will increase its population for t →∞ . This is a 
priori, the un-likeliest choice. The ensuing payoff will be P2. For P2>0 the C-player wins and vice-versa for P2<0. Using (26) we find, 
associated to the type of fixed point (A or B) under scrutiny, the pertinent payoffs (see (17)-(18)). For the states (24) one gets:

Type A       

2 0
2 0 1 2

1 (2 1)(2 1)
2 2

P p ωωα
γ

 
= − − − 

 
                                                                                                                                         (27)

If 2
0( ) / 2 BIωω γ < .

Type B

( )2
2 0 1

1 (2 1)(2 1)
2 BP p Iα= − − −                                                                                                                                              (28)

If. 2
0( ) / 2 BIωω γ ≥ . In this case the invariant IB reads    

( )1/22 2 2 2 2
0 1 0 0(2 1) (2 1) 4 (1 )BI pα α α= − − + − ,                                                                                                                            (29)

Now, if we consider instead the orthogonal states (25), we find

Type A

2 0
2 0 1 2

1 (2 1)(2 1)
2 2

P p ωωα
γ

 
= − − − 

 
                    (30)

if 0
1 2

1 (1 )
2 2

p ωω
γ

≤ − or 0
1 2

1 (1 )
2 2

p ωω
γ

≥ + ,             

Type B

( )2
2 0 1 1

1 (2 1)(2 1) | 2 1|
2

P p pα= − − − − (31)

if 0 0
12 2

1 1(1 ) (1 )
2 2 2 2

pωω ωω
γ γ

− < < + . Here IB=|2p1-1|.           

In order to gain intuitive understanding we would need to consider the game's version that uses only pure strategies [1]. The 
first player bets on one of the two levels and places a particle there. A third party (referee) asks the second player (who ignores 
what choice has been made before) whether she wishes to change or support her partner's bet. Afterwards, the system evolves 
and ends up in one of the two levels. If the first player bet on level 1, his payoffs would be 1, -1, or 0 according to whether the 
boson has descended, climbed, or remained in the original place. Since strategies (mixed ones) can be followed using betting- 
probabilities, these lead to an appropriate expected payoff [1]. Now, if first player follows a Q-strategy, in the n=1 instance this 
strategy is represented by a qubit and we are led to the expected payoff computed according to (2) which leads to either (27) or (28).

Some interesting results

Some results concerning the just discussed issues are illustrated in Figures 1 and 2. We chose as independent parameters 
2
0α  and p1. Since we wish for the existence of the two types of fixed points for n=1, one needs that 2

0 / (2 ) 1ωω γ < . We set
2

0 / (2 ) 1/ 2ωω γ = .

In Figure 1 we display results for the states (24). The regions corresponding to each type of fixed point (A and B) are 
separated by the curve 2

0 / (2 )BI ωω γ=  (solid), with IB given by (29). Zones in which the Q-player either wins or loses are also 
well-delimited [24,25]. The payoffs

P2 are given by Equations (27) or (28), for Types A or B, respectively. The dotted curve is in this case a “separator”, being 
given by

2 0
0 1 2(2 1)(2 1) 0

2
p ωωα

γ
− − − = ,                            (32)

     that one gets by setting P2=0 in (27).
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Figure 1. Classical probability p1 vs. quantum probability 2
0α  for the states (24). We set 2

0 / ( ) 1/ 2ωω γ = . Regions corresponding to 
the fixed points of types A and B are separated by solid lines representing the curve 2

0 / (2 )BI ωω γ= ,with BI  given by (29). Regions 
corresponding to the zones in which the C-player either wins or loses are separated by dotted lines (where P2=0) given by Eq. (32). 
The payoffs P2 are given by Eq. (27) or (28), for Type A or B, respectively. We also can observe a single Nash equilibrium point for 

1 1/ 2p = y 2
0 1/ 2α =  (denoted as N).

 

Figure 2. Classical probability p1 vs. quantum probability 2
0α , as in Figure 1, but for the states (25). We set 2

0 / (2 ) 1ωω γ = . Regions 
corresponding to the fixed points of types A and B are separated by solid lines representing the curves 2

1 0(1/ 2)(1 / 2 )p ωω γ= −  and
2

1 0(1/ 2)(1 / 2 )p ωω γ= + . Regions corresponding to the zones in which the C-player either wins or loses are separated by dotted lines 
(where P2=0) given by Eq. (32), as in Fig 1. The dotted line 1 1/ 2p = corresponds to P2=0. The payoffs P2 are given by Eq. (30) or (31), 
for Type A or B, respectively. This second plot is simpler than that illustrated by Fig. 1. In this case we observe a continuum of Nash 
equilibrium points for 1 1/ 2p = and 2 2 2

0 0 0(1/ 2)(1 / 2 ) (1/ 2)(1 / 2 )ωω γ α ωω γ− ≤ ≤ +  (denoted as N).

Of outstanding importance is the existence of a unique Nash equilibrium point regarding classical/quantal best responses: 
p1=1/2 and 2

0 1/ 2α = , respectively (denoted as N). This result mimics the one found for a classical Meyer game of “Penny Flip over” 
[5], after two rounds. The C-player bets with equal probability on both the Q-strategy and its opposite one. At the same time, the 
Q-player's strategy (unknown to the C-one) bets evenly on the two alternative options of placing the particle up- or downstairs [26].

In Figure 2 we display results corresponding to states (25). Regions corresponding to the xed points of types A and B 
are separated by solid lines representing the curves 2

1 0(1/ 2)(1 / 2 )p ωω γ= − and 2
1 0(1/ 2)(1 / 2 )p ωω γ= − , respectively. Regions 

corresponding to the zones in which the C-player either wins or loses are separated by dotted lines (where P2=0), given by Eq. 
(32), as in Figure 1. The dotted line p1=1/2 also corresponds to P2=0. The payoffs P2 are given by Eq. (30) or (31), for Types A or 
B, respectively. This second plot is simpler than that illustrated by Figure 1 [27-29].

Remarkably enough, a continuum of Nash points emerges now for the best classical response p1=1/2 and the best quantal 
responses corresponding to 2 2 2

0 0 0(1/ 2)(1 / 2 ) (1/ 2)(1 / 2 )ωω γ α ωω γ− ≤ ≤ − , respectively.

In Figures 1 and 2, the region corresponding to P2>0 is smaller than that for P2<0, but the first one grows (in both cases) also 
as 2

0 / (2 )ωω γ diminishes. The same happens when considering the Type A-region [30]. If 2
0 / (2 ) 0ωω γ =  one finds, for both kinds 

of states (24) and (25), the situation represented in Figure 3. Equal areas are apportioned to the regions (P2<0 and P2>0). Here 
we encounter only Type A-Fixed Points and a single Nash equilibrium-point at p1=1/2 and 2

0 1/ 2α = , both for (24)-states and for 
(25)-ones. This is a very peculiar instance in which either 0ω = , an extreme situation for which the field exhibits a free-particle 
dynamics, γ →∞  (extremely “large” coupling) [31,32].
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Figure 3. Classical probability p1 vs. quantum probability for the special case 2
0 / (2 ) 0ωω γ = . This plot corresponds to the two type’s 

state, (24) and (25). Equal areas are apportioned to the regions (P2<0 and P2>0). Here we encounter only Type A - Fixed Points, and 
a single Nash equilibrium-point at 1 1/ 2p = and 2

0 1/ 2α = , both for (24)-states and for (25)-ones.

We also verify (see Figures 1 and 2) that the strategy corresponding to selecting p1 in such a manner that

0 0
12 2

1 1
2 4 2 4

pωω ωω
γ γ

− ≤ ≤ + ,                                                                                                                                                        (33)

Guarantees that the q-player will win, independently of the classical strategy for both distinguishable and un-distinguishable 
quantum states. Moreover, if p1=1/2, this holds for any choice of parameters' values. Such “happy” circumstances do not exist for 
the C-player, no matter what its strategic choice is [33-35].

SUMMARY
Our goal has been that of translating aspects of nonlinear dynamics' problems into Games' Theory language, in the hope 

of getting some degree of enlightenment. Indeed, we have expressed the physics of the semi-classical Hamiltonian (4) in terms 
of Game Theory [17]. This model represents the interaction between matter and a single-mode of an electromagnetic field within 
a cavity. The interaction-role is represented as a game between classical and quantum players who bet on initial conditions. The 
associated dynamics, via the physical system's attractors, is expressed in terms of the game's payoffs [17]. In the present context 
the boson-number conservation is cast in the guise of a zero-sum game, a result that can be generalized for Hamiltonians other than (4).

No actual human beings need play our game. Any matrix density given by (3) is associated to a mixed strategy that, in turn, 
implies a classical player. Likewise, any state (3) is associated to a quantum strategy, and thus to a quantum player. Initial states 
play a critical role, as they represent our quantum player's strategies. Here we have dealt with initial states  of the type (24) [17], 
following Meyer's approach [5], or with orthogonal states given by (25) [18], that are distinguishable on that account.

Surprising insights ensue after comparison of the pertinent results that have been pointed out in the preceding Section. 
Here we remark on the existence of a continuum of Nash points for orthogonal initial states instead of the single Nash point 
attached to partially overlapping initial states.

Note that our game is not a mere abstraction. Given that it represents a physical interaction, we can speak of a \real" game 
(as far as a physical model can be considered real). In this context, any experimentalist can be viewed as a classical player.
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