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“In a few years’ time we shall all wonder how 
we ever managed to do without them 
(computer models) in biological research”. 
Denis Noble, Science, 2002 

 
ABSTRACT 
The use of mathematical models in science has increased in the last decades, since it is 
clear that they constitute an essential tool for the progress of experimental research.  
The main goal of this review is to present to the experimental physiologists some 
background on the different steps that are usually followed to develop a model. 
Probably more important, we aim to provide some basic thoughts to highlight the 
importance and need of mathematical modeling for scientific discovery and progress. 
The review also recapitulates the evolution of myocyte and Ca2+ handling models, the 
parallel work done in the interpretation of cardiac force generation, the integration of 
myocyte and force models into mechano-electric representations, and the construction 
of multi-scale models by assembling ventricular models with the mathematical 
descriptions of the circulatory system. 
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Is Mathematical Modeling important? Why? 
 
By definition, a model is a simplified representation of a complex system or 
phenomenon; a hypothetical description of a real intricate entity or process. A 
mathematical model simulates these systems with equations that describe the 
relationship between the different components of the model structure and forecast their 
behavior under specific conditions. Modeling should not merely reproduce the results of 
the phenomenon being simulated, but serve to understand, predict and postulate the 
intimate processes or underlying mechanisms that cannot be experimentally assessed or 
simultaneously evaluated with existing tools. 
The usefulness of mathematical models can be fully appreciated through a very simple 
paradigm, which was wisely utilized in the pioneering work of Hodgkin and Huxley [1]: 
a mathematical model helps to interpret a given set of experiments and allows the 
generation of new hypotheses, which should be experimentally tested. The results from 
these experiments, provide, in turn, feedback to the model, i.e. it is the iterative 
interaction between experiment and simulation what matters. This process produces a 
virtuous circle in which the experiments feed the model with data and vice versa, the 
model supplies information guiding the research, reproducing experimental results, 
answering questions posed by study observations, identifying the most important 
players of a given mechanism (and consequently preventing unnecessary and redundant 
studies) and predicting new results that have to be validated experimentally (Figure 1). 
Moreover, the ability of simulations to concurrently explore several parameters provides 
possible physiological explanations that cannot be simultaneously observed in a single 
experiment.  

Figure 1. Main steps in cardiac 
modeling. A hypothesis originated 
from experimental observations is 
modeled by means of 
mathematical equations. Model 
validation is performed with 
selection of adequate parameter 
values by simulation of 
experimental results other than 
those from which the model was 
built. This process is iteratively 
repeated until model validation 
indicates that the model is 
acceptable for using to predict 
results based on the original 
hypothesis. The whole process is 
repeated for any new model 
change. 
 
 

The seminal study by Hodgkin and Huxley in 1952, describing the theory for action 
potential (AP) generation in the giant squid axon [1], is probably one of the first and 
best known applications of mathematical modeling to a biological event. This work, 
which is of paramount importance for the understanding of the mechanisms of AP 
generation, speaks by itself about how experiment and modeling should be used 
together to advance knowledge beyond what would be possible with either approach 
individually. But in addition, it constituted the starting point for innumerable 
experimental and modeling studies that helped to define the activation mechanisms in 
excitable cells from a wide range of systems. 
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Different steps in Mathematical Modeling 
 
The first step in mathematical modeling is a well-devised hypothesis to define a 
structure or mechanism (Figure 1). This hypothesis, which is based on experimental 
observations, is expressed by a set of mathematical equations formulating the essential 
components, pathways, reactions, etc. included in the model, whose complexity depends 
on the question being asked, and the degree of detail with which the different elements 
of the model are represented. A key assumption in model design is the number of steps 
necessary to depict a certain component or pathway. For example, in the cardiac cell, 
the Na+ channel current can be described by a single step of voltage-dependent channel 
conductance or involving numerous steps and compound states as in Markov models. If 
the aim of the model is to unravel Na+ channel behavior, this approach is valid. 
However, if the Na+ channel is one of the components participating in a more 
comprehensive mechanism, the need for an elaborate channel description should be 
evaluated and preferably simplified to clarify the performance of the overall response 
under analysis. The second step is the selection of model parameter values (channel 
conductances and reaction rates) associated to ion or chemical compound 
concentrations, based on direct experimental measurements or estimated through fit of 
observed data. In the case of simple models it is easier to assess whether model 
parameters represent physiological situations, whereas this is more demanding when 
numerous steps with many parameters are involved to represent a single component. 
Moreover, the effect of parameter changes on model performance is more 
straightforward the simpler the modeling framework is, and hence the interpretation of 
modeling predictions. The third step is model validation. This compares model output 
with experimental results other than the ones used to build the model and evaluates 
whether the modeling hypothesis matches the real phenomenon. Model changes are 
then performed to improve the simulation of the observable events, by adjusting the 
basic structure, the mathematical representations or the parameter values. These steps 
are iteratively repeated to optimize the model, making it ready for application as a 
suitable interpretation of a certain physiological mechanism [2]. In these steps it is of 
utmost importance to consider that equations and parameters must represent structural 
components and/or physiological behaviors, and not merely reproduce experiments, in 
order to preserve model consistency. Its final acceptance as a reliable tool for further 
research is the final step of model consolidation. 
 
Myocyte models  
 
Computational models have been widely used to study cardiovascular physiology in 
more detail than any other organ system. In this review, we will briefly give an account 
of the evolution of cardiac models simulating action potential generation, contraction 
and Ca2+ handling in the heart. Mathematical models of the electrical activity of the 
heart applying the Hodgkin–Huxley equations began with Noble´s 1962 model [3]. His 
most influential contributions started with his 1960 Nature paper [4] introducing the 
first mathematical and computational model of a cardiac Purkinje fiber cell, and 
extended right through to his 2004 study, in collaboration with ten Tusscher and 
Panfilov, presenting a detailed model of human ventricular cardiomyocyte activity [5]. 
During this extensive period of more than 50 years, new experimental data supported 
the development of a more dynamic type of myocyte model, not only by incorporating 
the main sarcolemmal ion channels, pumps and exchange flow mechanisms but also 
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Force development models 
Since the postulation of the cross-bridge (XB) theory [15, 16], muscle 
models have been based on the representation of its elementary 
contractile unit: the sarcomere, where force is generated by the 
interaction between myosin (thick) and actin (thin) filaments through the 
myosin XB head. Cross-bridge attachment to the thin filament is enabled 
by binding of Ca2+ to troponin C within a regulatory unit (RU) [18] and 
each XB acts as an independent force generator. The interpretation of 
muscle contraction has given rise to different types of models, which 
may be classified into two main approaches: one in which XB kinetics 
does not include the Ca2+ activation process and another where Ca2+ 
activation is incorporated into the XB RU dynamic scheme. In the first 
approach postulated by Julian et al. [18], Ca2+-activated XBs could be in 
either of three states: detached, attached before the power stroke or 
attached after the power stroke. Using the same basic scheme, Razumova 
et al. [19] and later Tran [20] extended this model to cardiac cells where 
an imposed intracellular Ca2+ signal activated the RU but free Ca2+ 
concentration did not change as a result of its binding and unbinding to 
troponin C. It also included cooperativity, a mechanism favoring the 
process leading to force generation.  
The second approach to build cardiac contractile models contemplated 
Ca2+ binding to troponin C in the balance of intracellular Ca2+ 
concentration. This new perspective was based on the four-state RU 
system to represent force generation postulated by Peterson et al. [21], 
contemplating two force-developing states: one with Ca2+ bound and 
another without bound Ca2+ (A). This scheme was further developed 
including for the first time a XB mechanical structure, with sarcomere 
length-dependent affinity of XB attachment and XB dynamic behavior 
[22]. In this model, all attached XBs were represented by an equivalent 
XB (XBeq), whose elastic structure changed its elongation during 
muscle shortening or lengthening. Further model complexity with the 
incorporation of ATP and cooperativity allowed the respective 
reproduction of the effect of anoxia [23] and a wide range of steady state, 
like the sigmoidal shape of the force-Ca2+ relationship typical of muscle 
myofilaments (B) and twitch contraction experiments [24], enabling the 
integration of force models with myocyte representations.                            
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introducing for the first time 
intracellular Ca2+ regulation 
by the sarcoplasmic reticulum 
(SR) and Ca2+ buffers. The 
first most accepted 
representative of this new 
lineage of models was the Luo 
and Rudy (LR) model [6], 
which by the simultaneous 
representation of the AP and 
Ca2+ transient opened new 
possibilities in the 
interpretation of the molecular 
pathways involved in the 
physiological response of 
different normal and 
pathological conditions. 
Modeling complexity 
increased with the 
incorporation of a 
mitochondrial model to 
reproduce ATP generation 
[7], and other models were 
adapted to represent the 
human AP [5, 8, 9]. Parallel to 
new experimental findings, 
myocyte model structure was 
improved with the addition of 
intracellular CO2 regulation 
[10], CaMKII and PKA 
pathways [11]. 
Introducing either 
experimentally-based or 
model-fit changes to myocyte 
parameters, these more 
complete models were used to 
represent different normal or 
pathological conditions, as 
acidosis [10], post-acidotic 
arrhythmias [12], heart failure 
[13], or β-adrenergic 
stimulation [14]. The 
limitations of these models 
reside in part in the fact that 
they failed to represent 
myocyte force development. 
Force models (See box) 
evolved separately from 
electrical and Ca2+ handling 
representations, and although 
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some attempts were made to link all aspects involved in the physiology of the cardiac 
cell, until recently the intracellular Ca2+ transient resulting from Ca2+ management was 
not coupled to the mechanical activity, failing to provide an integrated interpretation of 
excitation-contraction coupling.   
The interaction of both models has been used as a more physiological approach to 
analyze simulated experimental results and the prediction of new hypotheses to be 
tested in the laboratory (Figure 2A). In this framework, the most significant link 
between myocyte and contractile models is Ca2+ utilization by the contractile apparatus, 
reproducing the influence of different types of contraction on the Ca2+ transient 
(mechano-electric coupling). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 

Myocyte models A. The electro-mechanical model depicts sarcolemmal and intracellular ion flows, and 
myofilament Ca2+ management (see box). B. Normal and β-adrenergic simulations of voltage, Ca2+ 
transient and force in a rabbit myocyte model (adapted from Negroni et al. [26] using Shannon´s myocyte 
rabbit model [34]). The model mimics action potential shortening, increased intracellular free [Ca2+] and 
the positive inotropic and lusitropic effect produced by β-adrenergic stimulation. C: Experimentally-
observed post-acidotic arrhythmias simulated in the ten Tusscher human myocyte model [12] The model 
simulates the arrhythmias [spontaneous action potentials (SAP) and delayed afterdepolarizations (DADs) 
(arrows)] that occur when normal pH is restored after a period of acidosis.  
 
Therefore, inclusion of myofilament Ca2+ utilization is not only crucial for modeling 
force generation by the myocyte but is also important for realistic representation of 
cytosolic Ca2+ transients and Ca2+ cycling, particularly in the simulation of pathological 
situations, such as heart failure, in which the reduced myofilament Ca2+ sensitivity 
increases Ca2+ overload. This requires balancing intracellular free Ca2+ by incorporating 
myofilament Ca2+ utilization as another cytoplasmic Ca2+ buffer. Most cardiac models 
have used Ca2+ to activate myofilaments but without the effect of Ca2+ utilization on the 
intracellular free Ca2+ generated by the action potential [19], while others have modified 
their troponin Ca2+ buffer equations to express this aspect [7, 25]. On the other hand, a 
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more direct approach takes into account the fact that the buffer capacity of troponin C 
changes according to the type of contraction (force generation or shortening), 
influencing the dynamic of Ca2+ transient [23, 26]. Moreover, the relevance of 
mechano-electric coupling can be appreciated when modeling is used to unravel the 
interplay between myocyte ion flows and the contractile machinery in situations when 
both are affected by a certain intervention, as in β-adrenergic stimulation. This is the 
case of a recent study integrating the Soltis-Saucerman myocyte model [11] with the 
Negroni-Lascano contraction model [12] to analyze the relative contribution of different 
phosphorylation targets to the overall mechanical response driven by β-adrenergic 
stimulation (Figure 2B). This model was able to show that the decrease in myofilament 
Ca2+ sensitivity produced by β-adrenergic stimulation is compensated by the increase in 
intracellular Ca2+, partially recovering Ca2+ binding to Troponin C. It also highlights the 
essential role of the enhanced cross bridge (XB) cycling in the β-adrenergic increase 
contractile response [26]. Another mechano-electrical model,- using the modified ten 
Tusscher human myocyte model coupled to the contractile Negroni-Lascano 
representation,- was able to reproduce and explain the generation of postacidotic 
arrythmias observed in isolated rat hearts [12] (Figure 2C). However, these model are 
still unable to reproduce several steps of excitation-coupling in detail, for instance the 
regulation of RyR2, by Ca2+ and Ca2+ buffers and proteins inside the SR or the 
representation of diastolic events, like arrhythmogenic Ca2+ waves propagation.  
 
Multiscale models 
 
A further step in cardiac modeling has been the development of ventricular 
representations based on different myocyte and myofilament dynamic models to address 
specific basic science or pathological questions at the organ level. In purely ventricular 
mechanical models driven by simple schemes to develop intracellular Ca2+ transient, 
different geometrical force-length to pressure-volume transformations have been 
adopted to represent ventricular function, although it should be borne in mind that these 
descriptions are elementary approaches to an actual ventricle, constrained in the type of 
cells and their orientation to develop ventricular pressure. These models, however, have 
been able to demonstrate that ejecting pressure compared with isovolumic pressure, 
depends not only on the number of attached XBs (governed by sarcomere length) but 
also on their elongation (responsible for XB developed force), as shown both in 
simulated [27, 28] and in experimentally model-fitted ejecting pressure from open-chest 
dogs [27] (Figure 3A). Numerous other models have coupled a mechanical with an 
electrical component giving rise to multiscale models of the heart. The mechanical 
component is based on a myofilament model activated by Ca2+ to produce contraction 
of the whole organ interpreted as an orthotropic elastic material described by equations 
of continuum mechanics. In this model construction, the electrical component is 
represented by a cardiac myocyte generating a wave of depolarization propagating 
throughout the heart according to the conductivity arising from its organization into 
fibers or laminar sheets. Simulation studies using these more comprehensive models of 
the heart have been important in revealing the mechanical effects of altered electrical 
activity and arrhythmogenesis (for review see Trayanova and Rice [29]). 
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Figure 3. Multisacale models. A.  Simulations using a ventricular model resulting from force-pressure 
and length-volume transformation [27]. Left: Pressure volume relationship and single beat loop 
simulations. Right: Time course of experimental pressure in open-chest dog (thin line), model fit of 
ejective pressure (thick line) and simulation of isovolumic pressure (dotted line). B. Multiscale model 
depicting left and right ventricular chambers (LV, RV), with pulmonary and systemic circulatory circuits, 
represented by a resistive (R)-capacitive Windkessel structure (adapted from Santamore and Burkhoff 
[30]), where PV, TV, MV and AoV are pulmonary, tricuspid, mitral and aortic valves, Rcp, Rap, Rvp, are 
pulmonary characteristic, arterial and venous resistances and Cap and Cvp are pulmonary arterial and 
venous capacitances, and Rvs, Ras, Rcs, Cas and Cvs their systemic counterparts.  
 
The final step in cardiac modeling is the integration of ventricular representations into a 
model of the cardiovascular system to analyze the impact of molecular changes at the 
myocyte level on the hemodynamic behaviour of the circulatory system, and in turn that 
of the peripheral circulation on the heart. In this type of multiscale models the heart acts 
as a pump responsible for blood flow through a closed-loop circulatory system 
consisting of a series of resistances and capacitances [30] (Figure 3B). Based on this 
principle, recent multiscale models have been developed to obtain mechanistic insight 
into the load dependence of the end-systolic pressure-volume relationship [31], the 
prediction of atrial or ventricular heart chamber behaviour [31], or the understanding of 
the electrical, mechanical and hemodynamic interaction in pathological conditions such 
as heart failure [32].  
The ultimate goal of these multiscale representations is the conversion of generic into 
patient-tailored models to create a diagnostic and therapeutic support for the 
cardiologist [33]. Using patient-specific data as model input, they would be useful to 
predict drug effects on the cardiovascular system before their administration to the 
patients, aiding in the decision-making process of patient care.  

A

B

A

B
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Conclusions 
In this Mini Review we have attempted to emphasize the importance of modeling in the 
interpretation and prediction of biological data. As an example, we succinctly reviewed 
the major steps in the development of cardiac models, ending in the multiscale models.  
Although the incorporation of biophysical cell models into whole organ models is still 
emerging, it is important to understand that development of these models is critical for 
understanding complex phenomena, as following with the example of the heart, atrial 
and ventricular arrhythmias.  
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