BASE SPLINE WAVELET CON DERIVADA ORTOGONAL APLICADA A LA RESOLUCIÓN NUMÉRICA DE ECUACIONES DIFENCIALES

Calderón Lucila^{†‡}, Martín María T.[‡] y Vampa Victoria[†]

[†]IUDET Matemática Aplicada, Departamento de Ciencias Básicas, Fac. de Ingeniería, Universidad Nacional de La Plata. Calle 1 y 47 La plata (1900), lucila.calderon@ing.unlp.edu.ar [‡]Departamento de Matemática, Fac. Ciencias Exactas, Universidad Nacional de La Plata.

Resumen: En los últimos años los métodos wavelet-Galerkin se han utilizado con éxito en la resolución numérica ecuaciones diferenciales y conducen a resolver sistemas de ecuaciones lineales. Para obtener matrices ralas y con buen condicionamiento, la elección de la base wavelet es muy importante. En este trabajo proponemos una base B-spline wavelet con derivada ortogonal que generan un Análisis Multirresolución (AMR) sobre el intervalo. La base está formada por wavelets interiores que se obtienen de las traslaciones y dilataciones de una wavelet madre que satisface condiciones de ortogonalidad; y se definen wavelets de borde especiales. Para diferentes niveles de resolución, las derivadas de las funciones de la base son ortogonales. Se obtienen matrices ralas y diagonales por bloques, con número de condición uniformemente acotado. Para mostrar estas propiedades presentamos dos ejemplos numéricos.

Palabras clave: B-spline, ortogonalidad, wavelets.

1. INTRODUCCIÓN

Las propiedades de las bases wavelets son bien conocidas y han dado lugar a los métodos wavelet-Galerkin. A partir de la formulación variacional se obtiene un sistema de ecuaciones lineales. A fin de garantizar eficiencia en los cálculos y elevada precisión en las aproximaciones, es importante que la matriz asociada al sistema, conocida como matriz de rigidez, sea rala o esparcida con número de condición pequeño. Con lo cual, la elección de la base wavelet a utilizar y los requerimientos sobre la misma, son importantes para determinar las bondades del método.

Existen varias construcciones recientes de bases spline sobre el intervalo, por ejemplo Prims [1], Černá y *col.* [2] construyeron bases spline wavelet biortogonales, Jia y *col.* [3] propusieron bases multiwavelets de Hermite adaptadas al intervalo [0, 1] con derivada ortogonal. Combinando enfoques presentados por Jia y *col.* [3] y Černá y *col.* [2] definiremos una base spline wavelet con derivada ortogonal a partir de la función de escala B-spline cúbica.

2. ANÁLISIS MULTIRRESOLUCIÓN B-SPLINE

Un Análisis Multirresolución (AMR) es una sucesión de subespacios encajados $\left\{V_j^{[0,1]}\right\}_j$ que satisfacen determinadas condiciones. En este trabajo consideramos la estructura AMR sobre $L_2[0,1]$ que generan los espacios B-splines cúbicos definidos en [2] y [4]. Una base para estos subespacios $V_j^{[0,1]}$, $j \ge 1$, es

$$\Phi_j = \Phi_j^{int} \cup \Phi_j^{bord},\tag{1}$$

donde

$$\Phi_j^{int} = \left\{ \varphi_{j,k}(x) = 2^{j/2} \,\varphi(2^j x - k + 3), \, k = 3, 4, \dots, 2^j - 1 \right\}.$$
⁽²⁾

es el conjunto de *funciones de escala interiores*, que son traslaciones de la función φ (B- spline cúbica); y

$$\Phi_j^{bord} = \left\{ \varphi_{j,1}, \varphi_{j,2}, \varphi_{j,2^j}, \varphi_{j,2^j+1} \right\}$$
(3)

es el conjunto de funciones de escala de borde, con

$$\varphi_{j,1}(x) = 2^{j/2} \varphi_{b_1}(2^j x), \qquad \varphi_{j,2}(x) = 2^{j/2} \varphi_{b_2}(2^j x),$$
(4)

$$\varphi_{j,2^{j}}(x) = 2^{j/2} \varphi_{b_{2}}(2^{j}(1-x)), \quad \varphi_{j,2^{j}+1}(x) = 2^{j/2} \varphi_{b_{1}}(2^{j}(1-x)), \tag{5}$$

donde φ_{b_1} y φ_{b_2} son funciones de borde definidas en [5]. Las funciones $\varphi_{j,k}$ esta normalizadas por $\| \varphi'_{j,k} \|_{L_2[0,1]} = 1$.

Fig 1: Funciones de la base del subespacio B-spline cúbico V_3 .

La dimensión de $V_j^{[0,1]}$ es $2^j + 1$. En la Fig.(1) se muestran las funciones de la base de V_j para j = 3. La colección de los subespacios B-splines cúbicos $\left\{V_j^{[0,1]}\right\}$ del AMR en $L_2[0,1]$ [1], implica la existencia de subpespacios wavelet $W_j^{[0,1]}$ tales que,

$$V_{j+1}^{[0,1]} = V_j^{[0,1]} \oplus W_j^{[0,1]}, \qquad j \ge 1.$$
(6)

De aquí se deduce que la dimensión de $W_i^{[0,1]}$ es 2^j .

En la siguiente sección, se construye una base wavelet para los subespacios $W_j^{[0,1]}$ con una condición de ortogonalidad sobre las derivadas.

3. BASE SPLINE WAVELET CON DERIVADA ORTOGONAL

Para obtener una base para $W_j^{[0,1]}$, se definen wavelets interiores y wavelets de borde. Las wavelets interiores son traslaciones de una wavelet madre ψ propuesta en el trabajo [4], cuya expresión es

$$\psi(x) = \sum_{k=0}^{6} d_k \varphi(2x - k), \quad x \in \mathbb{R}.$$
(7)

 $\mathrm{con} \; [d_0, d_1, ..., d_6] = [1, -28, 119, -184, 119, -28, 1] \; \mathrm{y} \; \mathrm{que} \; \mathrm{satisface} \; \mathrm{la} \; \mathrm{condición} \; \mathrm{de} \; \mathrm{ortogonalidad} \; \mathrm{de} \; \mathrm{de} \; \mathrm{ortogonalidad} \; \mathrm{de} \; \mathrm$

$$\langle \psi'(x), \varphi'(x-l) \rangle = 0, \quad \forall l \in \mathbb{Z}.$$
 (8)

El conjunto de wavelets interiores es,

$$\Psi_j^{int} = \left\{ \psi_{j,k}(x) := \frac{2^{-j/2}}{\|\psi_{j,k}'\|} \,\psi(2^j x - k + 3), \, k = 3, 4, \dots, 2^j - 2 \right\}.$$
(9)

Para las wavelets de borde se definen $\psi_{b_1}^{lc}$, $\psi_{b_2}^{lc} \in W_0^{[0,1]} \subset V_1^{[0,1]}$, entonces se pueden escribir combinación lineal de traslaciones y dilataciones adecuadas de φ , φ_{b_1} y φ_{b_2} definidas como funciones de borde en la Sección 2:

$$\psi_{b_1}^{lc}(x) = a_0\varphi_{b_1}(2x) + a_1\varphi_{b_2}(2x) + \sum_{k=2}^4 a_k\,\varphi(2x-k+2),$$

$$\psi_{b_2}^{lc}(x) = \tilde{a_0}\varphi_{b_1}(2x) + \tilde{a_1}\varphi_{b_2}(2x) + \sum_{k=2}^6 \tilde{a_k}\,\varphi(2x-k+2).$$

Imponemos dos condiciones para obtener los coeficientes de $\psi_{b_1}^{lc}$ y $\psi_{b_2}^{lc}$,

1. $\psi_{b_1}^{lc}$ y $\psi_{b_2}^{lc}$ satisfacen

$$\int_{\mathbb{R}} \psi_{b_1}^{lc}(x) \, dx = 0, \qquad \int_{\mathbb{R}} \psi_{b_2}^{lc}(x) \, dx = 0.$$
(10)

2. $\psi_{b_1}^{lc}$ y $\psi_{b_2}^{lc}$ satisfacen la condición de ortogonalidad de las derivadas Ec.(8),

$$\left\langle \psi_{b_1}^{\prime \ lc}(x), \varphi^{\prime}(x-l) \right\rangle = 0, \quad \forall l \in \mathbb{Z}.$$
 (11)

$$\left\langle \psi_{b_2}^{\prime \ lc}(x), \varphi^{\prime}(x-l) \right\rangle = 0, \quad \forall l \in \mathbb{Z}.$$
 (12)

Para obtener los coeficientes a_k y $\tilde{a_k}$, se resuelve el sistema de ecuaciones que generan las condiciones 1 y 2. Así,

$$\begin{split} & [a_0, a_1, ..., a_4] \quad = \quad \left[\frac{-286}{49}, \frac{117}{14}, \frac{-1691}{392}, 1, \frac{-1}{28}\right], \\ & [\widetilde{a_0}, \widetilde{a_1}, ..., \widetilde{a_6}] \quad = \quad \left[\frac{3999}{121}, \frac{-2236}{49}, \frac{5837}{295}, 1, \frac{397}{98}, 1, \frac{-1}{28}\right]. \end{split}$$

 $\psi_{b_1}^{lc}$ y $\psi_{b_2}^{lc}$ tienen soporte en [0, 3] y [0, 4], respectivamente y satisfacen la condición de ortogonalidad Ec.(8).

A partir de estas funciones se define conjunto de wavelets de borde

$$\Psi_{j}^{lc} = \left\{ \psi_{j,1}, \psi_{j,2}, \psi_{j,2^{j}-1}, \psi_{j,2^{j}} \right\},$$

$$\psi_{j,1}(x) = \frac{2^{-j/2}}{\|\psi_{b_{1}}^{\prime lc}\|} \psi_{b_{1}}^{lc}(2^{j}x), \qquad \psi_{j,2}(x) = \frac{2^{-j/2}}{\|\psi_{b_{2}}^{\prime lc}\|} \psi_{b_{2}}^{lc}(2^{j}x),$$

$$\psi_{j,2^{j}-1}(x) = \frac{2^{-j/2}}{\|\psi_{b_{2}}^{\prime lc}\|} \psi_{b_{2}}^{lc}(2^{j}(1-x)), \quad \psi_{j,2^{j}}(x) = \frac{2^{-j/2}}{\|\psi_{b_{1}}^{\prime lc}\|} \psi_{b_{1}}^{lc}(2^{j}(1-x)).$$
(13)

Se define el subespacio wavelet $W_j^{[0,1]} = gen \Psi_j, j \ge 1$, donde

$$\Psi_j = \Psi_j^{int} \cup \Psi_j^{lc}.$$
(14)

En la Fig. (2) se muestran las funciones de la base de $W_j^{[0,1]}$ para j=3.

Teniendo en cuenta Ec.(6), $V_{j+1}^{[0,1]}$ es suma directa de $V_j^{[0,1]}$ y $W_j^{[0,1]}$, con lo cual,

$$V_{j+1}^{[0,1]} = V_{j_0}^{[0,1]} \oplus W_{j_0}^{[0,1]} \oplus W_{j_0+1}^{[0,1]} \dots \oplus W_{j}^{[0,1]}, \quad \text{para } j_0 \ge 3.$$
(15)

Definición 1 Dado $j_0 \ge 3$ y $J \ge j_0$, a partir de la descomposición dada en Ec.(15), una base wavelet con derivada ortogonal para los subespacios $V_{J+1}^{[0,1]}$ es,

$$\Psi_{j_0}^J = \Phi_{j_0} \cup \bigcup_{j=j_0}^J \Psi_j = \{g_1, g_2, ..., g_{2^{J+1}+1}\}, \quad donde,$$
(16)

- $g_l = \varphi_{j_0,l}$, para $l = 1, 2, ..., 2^{j_0} + 1$
- $g_{2^j+1+l} = \psi_{j,l}$, para $l = 1, 2, ..., 2^j$, $j = j_0..., J$

Utilizando la condición de ortogonalidad Ec.(8) se demuestra la siguiente propiedad.

Proposición 1 Si $\varphi_{j_0,k} \in V_{j_0}^{[0,1]}$, $\psi_{j,k} \in W_j^{[0,1]}$ con $j \ge j_0$, se tiene que:

$$\langle \psi'_{j,k}, \varphi'_{j_0,k} \rangle = 0, \tag{17}$$

$$\langle \psi'_{j_1,k}, \psi'_{j_2,\tilde{k}} \rangle = 0, \qquad j_1 \neq j_2.$$
 (18)

4. APLICACIONES Y RESULTADOS NUMÉRICOS

Se considera un problema de segundo orden con coeficientes p y q constantes y condiciones de Dirichlet homogéneas,

$$L u(x) = -\frac{d}{dx} \left(p(x) \frac{d u}{dx} \right) + q(x) u(x) = f(x) \quad x \in (0, 1),$$

$$u(0) = u(1) = 0.$$
 (19)

A partir de la formulación variacional del problema y tomando como subespacios de aproximación a los subespacios $V_{J+1}^{[0,1]}$ definidos en la Sección anterior, se aplica el método de Wavelet-Galerkin para obtener una solución aproximada

$$u_{J+1} = \sum_{i=1}^{2^{J+1}+1} \alpha_i \, g_i \tag{20}$$

donde $g_i \in \Psi_{j_0}^J$ base spline wavelet de $V_{J+1}^{[0,1]}$, definida en Ec.(16).

Sustituyendo u_{J+1} en la la forma débil, se tiene el problema en forma matricial

$$\mathbf{K}_J \alpha = \mathbf{b},$$

siendo $\mathbf{b} = \langle f, g_i \rangle_{1 \le l \le 2^{J+1}+1}$ el vector del término independiente, K_J la matriz de rigidez del sistema,

$$\mathbf{K}_{J} := p \left\langle g_{i}', g_{l}' \right\rangle_{1 \le i, l \le 2^{J+1} + 1} + q \left\langle g_{i}, g_{l} \right\rangle_{1 \le i, l \le 2^{J+1} + 1},$$
(21)

y $\alpha = (\alpha_i)_{1 \le i \le 2^{J+1}+1}$ el vector de $2^{J+1}+1$ incógnitas. La dimensión de la matriz K_J es $N_J = (2^{J+1}+1)$.

Fig 3: Estructura de la matriz \widetilde{K}_J del Ejemplo (1).

 K_J es matriz rala, simétrica y definida positiva. Además el número de condición de la matriz K_J , en norma 2, que está dado por $cond(K_J) = \frac{\lambda_{max}}{\lambda_{min}}$ está uniformemente acotado.

En los siguientes ejemplos, se analizaron los errores relativos de las aproximaciones, utilizando la seminorma en L_2 , $||v||_{L_2} = \left(\sum_{k=0}^{2^j} |v(k/2^j)|^2\right)^{1/2}$. Sea u la solución exacta y u_J la solución numérica con una escala de nivel J.

- El error relativo de la aproximación se calcula $e(J) := \frac{\|u u_{J+1}\|_{L_2}}{\|u\|_{L_2}}$ para $J \ge 0$.
- El error relativo interior denotado por e_{I'}(J), donde se calcula el error relativo en un intervalo I' = (0 + ε, 1 − ε) con ε > 0.

Ejemplo 1 Sean p = 1 y q = 0 en Ec.(19),

$$L u(x) = -u''(x) = f(x), u(0) = u(1) = 0,$$

donde $f(x) = (70 \pi)^2 \sin(70 \pi x) - \pi^2 \cos\left(\pi x + \frac{\pi}{2}\right)$. La solución exacta de esta ecuación diferencial es $u(x) = \sin(70 \pi x) - \cos\left(\pi x + \frac{\pi}{2}\right)$.

Como consecuencia de la condición de ortogonalidad requerida (8), la matriz $\widetilde{\mathbf{K}}_J := \langle g'_i, g'_l \rangle_{1 \le i,l \le 2^{J+1}+1}$ es rala, diagonal por bloques y cada bloque es una matriz banda (Fig. 3). Esta estructura es muy conveniente para la resolución del sistema planteado, porque cada bloque puede tratarse por separado, resolviendo cada subsistema. Además \widetilde{K}_J está bien condicionada ya que su número de condición se mantiene acotado al aumentar la escala J (ver Tabla 1).

J	N_J	$cond(K_J)$	$e(J)^{lc}$	$e(J)^{C}$	$e_{I'}(J)^{lc}$	$e_{I'}(J)^C$
5	65	219	6.140e - 1	6.140e - 1	5.864e - 1	5.535e - 1
6	129	219	1.434e - 2	1.632e - 2	1.223e - 2	1.287e - 2
7	257	219	4.703e - 4	8.234e - 3	3.995e - 4	5.146e - 4
8	513	219	3.975e - 5	8.224e - 3	1.979e - 5	3.021e - 4
9	1025	219	3.208e - 5	8.224e - 3	1.183e - 6	3.014e - 4
10	4097	219	3.202e - 5	8.224e - 3	2.997e - 7	3.013e - 4

Tabla 1: Resultados del Ejemplo (1).

En la Tabla (1) se muestran que los errores relativos obtenidos utilizando la base propuesta en este trabajo (denotado por $e(J)^{lc}$ y $e_{I'}(J)^{lc}$) son mejores que los obtenidos con la base propuesta en [5] $(e(J)^C$ y $e_{I'}(J)^C$).

Ejemplo 2 Si p = 1, q = 1 en Ec.(19),

$$L u = -u''(x) + u(x) = \left((53.7\pi)^2 + 1 \right) \operatorname{sen}(53.7\pi x) + \left((2.3\pi)^2 + 1 \right) \operatorname{sen}(2.3\pi x),$$
$$u(0) = u(1) = 0,$$

con solución exacta, $u(x) = \operatorname{sen}(53.7 \,\pi \, x) + \operatorname{sen}(2.3 \,\pi \, x).$

J	N_J	$cond(K_J)$	e(J)	$e_{I'}(J)$
6	129	503	3.637e - 3	3.506e - 3
$\overline{7}$	257	503	1.486e - 4	1.423e - 4
8	513	503	1.454e - 5	1.064e - 5
9	1025	503	1.206e - 5	7.198e - 6
10	4097	503	1.200e - 5	7.168e - 6

Tabla 2: Resultados del Ejemplo (2).

La matriz correspondiente a este problema $K_J = D_J + G_J$, donde

$$D_J = \langle g'_i, g'_l \rangle_{1 \le i, l \le 2^{J+1} + 1} \qquad G_J = \langle g_i, g_l \rangle_{1 \le i, l \le 2^{J+1} + 1}$$

sigue siendo una matriz rala y por bloques debido a la propiedades ortogonalidad de la derivadas y semiortogonalidad de las funciones de escala B-splines cúbicas.

En la Tabla (2) se muestran los errores relativos y se observa que el número de condición de K_J está uniformemente acotado.

5. CONCLUSIONES

En este trabajo se ha presentado una construcción de una base wavelet con caraterísticas especificas de ortogonalidad. Estas bases presentan muy buenas propiedades: la matriz de rigidez involucrada es diagonal por bloques, su número de condición se mantiene acotado al aumentar la escala. Con esta propuesta se obtuvieron muy buenos resultados de convergencia a la solución.

REFERENCIAS

- [1] M. PRIMBS, New stable biorthogonal spline wavelets on the interval, Result. Math 57, (2010), pp. 121-162.
- [2] D. ČERNÁ AND V. FINĚK, Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions, Int. J. Wavelets Multiresolut. Inf. Process. 13(3), (2015), article No. 1550014.
- [3] R.Q. JIA AND S.T. LIU, Wavelet bases of Hermite cubic splines on the interval, Adv. Comput. Math. 25, (2006), pp. 23–39.
- [4] L.CALDERÓN, M.T. MARTÍN AND V. VAMPA Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems. Applications of Wavelet Multiresolution Analysis, Applications of Wavelet Multiresolution Analysis. SEMA SIMAI Springer Series, vol 4. (2021), pp. 23–40.
- [5] L.CALDERÓN, M.T. MARTÍN Y V. VAMPA Bases de wavelets B-splines en el intervalo con condiciones de Dirichlet homogéneas. V Jornadas de Investigación, Transferencia y Extensión de la Facultad de Ingeniería, La Plata, (2019), pp. 235–240.

