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Abstract

Let Ω be an arbitrary bounded domain of Rn. We study the right invertibility of the
divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility
to a geometric characterization of Ω and to weighted Poincaré inequalities on Ω. We
recover, in particular, well-known results on the right invertibility of the divergence in
Sobolev spaces when Ω is Lipschitz or, more generally, when Ω is a John domain, and
focus on the case of s-John domains.
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1 Introduction

Let n ≥ 2. Throughout this paper, Ω will denote a nonempty bounded domain (i.e. an open
connected subset of Rn), and, for all p ∈ [1,+∞], Lp

0(Ω) stands for the subspace of L
p(Ω) made

of functions having zero integral on Ω.
Let 1 ≤ p ≤ +∞. Does there exist a constant C > 0 such that, for all f ∈ Lp

0(Ω), one can find
a vector field u ∈ W 1,p

0 (Ω,Rn) such that div u = f in Ω and

‖Du‖Lp(Ω,Rn) ≤ C ‖f‖Lp(Ω)?

This problem arises in various contexts. In particular, it plays a key role (for p = 2) in the
analysis of the Stokes problem by finite elements methods ([8], Chapter 10). It is also involved
in the study of Hardy-Sobolev spaces on strongly Lipschitz domains of Rn ([3]).
When p = 1 or p = +∞, the problem has no solution in general, even in W 1,p(Ω) (see [9] when
p = 1 and [18] when p = +∞).
When 1 < p < +∞ and Ω is Lipschitz, the question receives a positive answer. A reformulation
of this result is that the divergence operator, mapping W 1,p

0 (Ω,Rn) to Lp
0(Ω), has a continuous

right inverse.
Several approaches can be found for this theorem in the literature. It can for instance be proved
by functional analysis arguments (see [3, 19]), or by a somewhat elementary construction ([7]).
In dimension 2 and when Ω is smooth (or is a convex polygon), it can be solved via the
Neumann problem for the Laplace operator on Ω ([4, 8, 14, 17]). This approach can also be
adapted to the case when Ω is a non-convex polygon, relying on suitable trace theorems ([2]).

A different and more explicit construction, valid in star-shaped domains with respect to a ball
and for weighted norms, was developed in [6] and in [13]. The idea of this construction is to
integrate test functions on segments included in Ω, which yields a somewhat explicit formula
for u. This approach was extended to John domains in [1], replacing segments by appropriate
rectifiable curves included in Ω.

However, there exist domains Ω such that div : W 1,p
0 (Ω) → Lp

0(Ω) has no continuous right
inverse. A counterexample, originally due to Friedrichs, can be found in [1] and is, actually, a
planar domain with an external cusp of power type. In the present paper, we investigate the
solvability of div u = f on arbitrary bounded domains, with estimates in weighted Lebesgue
or Sobolev spaces.
More precisely, we consider the following question: does there exist an integrable weight w > 0
on Ω such that the divergence operator, acting from Lp

(
Ω, 1

wdx
)
to Lp(Ω, dx), has a continuous

right inverse ? When p = +∞, we give a necessary and sufficient condition on Ω for this
property to hold. This condition says that the geodesic distance in Ω to a fixed point is
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integrable over Ω. Under this assumption, the previous divergence problem is also solvable in
Lp norms for all p ∈ (1,+∞).
The proofs rely on two key tools: first, we extend the method developed in [6, 13, 1] to the case
of an arbitrary bounded domain, using adapted rectifiable curves inside the domain. Then, we
show that the solvability of the divergence problem in Lp is equivalent to a weighted Poincaré
inequality in Lq with 1

p
+ 1

q
= 1.

When the divergence problem is solvable in Lp spaces, we also solve it in weighted Sobolev
spaces on Ω. This extends to the case of arbitrary bounded domains the previously cited
theorems when Ω is Lipschitz or, more generally, is a John domain. A key tool for this,
interesting in itself, is a kind of atomic decomposition for functions in Lp(Ω) with zero integral.
We also obtain interesting and new results for the invertibility of the divergence on Sobolev
spaces in the class of s-John domains and, among these domains, in the sub-class of strongly
hölderian domains. It should be noted that solvability results in weighted Sobolev spaces for
some hölderian planar domains had already been obtained by the first author and F. Lopez
Garcia in [12].
In the case when p = 1, as we said, it is impossible to solve div u = f when f ∈ L1(Ω) with
u ∈ W 1,1(Ω) in general. However, if f is supposed to be in a Hardy space on Ω instead of
belonging to L1(Ω), then, under suitable assumptions on Ω, it is possible to solve in appropriate
Hardy-Sobolev spaces, considered in [3]. We will come back to this issue in a forthcoming paper.

Here is the outline of the paper. In Section 2, we establish the equivalence between the
solvability of the divergence in L∞ spaces and the integrabilty of the geodesic distance to a
fixed point. Section 3 is devoted to the solvability in Lp spaces and the equivalence with Lq

Poincaré inequalities. In Section 4, we investigate the solvability of the divergence in weighted
Sobolev spaces. Finally, in Section 5, we focus on the case of s-John domains and, in particular,
on the class of strongly hölderian domains.

Acknowledgments: This work was supported by the bilateral CNRS/CONICET linkage
(2007-2008): Equations aux dérivées partielles sur des domaines peu réguliers / Partial Differ-
ential Equations on non-smooth domains.
The research was conducted at the University of Buenos Aires and the University of La Plata
in Argentina, and at the Laboratoire d’Analyse, Topologie et Probabilités at the Faculté des
Sciences et Techniques de Saint-Jérôme, Université Paul Cézanne, Marseille in France.
Some results of this work were presented by the first author in the fourth international sym-
posium on nonlinear PDE’s and free boundary problems, dedicated to Luis Caffarelli, in Mar
del Plata, March 17th-20th 2009.

2 Invertibility of the divergence in L∞ spaces

Throughout this section, Ω denotes a bounded domain (connected open subset) of Rn, without
any assumption on the regularity of its boundary ∂Ω. We investigate how to invert the diver-
gence operator on L∞ spaces, asking the following question: does it exist a weight w, defined
on Ω, such that

i) w is integrable over Ω (i.e. w ∈ L1(Ω)),
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ii) for each f ∈ L∞(Ω) with
∫
Ω
f(x)dx = 0, there exists a vector-valued function u solution

of {
div u = f in Ω,
u · ν = 0 on ∂Ω,

(2.1)

satisfying the estimate ∥∥∥∥
1

w
u

∥∥∥∥
∞

≤ C ‖f‖∞ , (2.2)

where C > 0 only depends on Ω and the weight w?

We define u being a solution of (2.1) by demanding that

∫

Ω

u · ∇g = −
∫

Ω

fg (2.3)

for all g in the space E of those functions in L1(Ω) such that their distributional gradient is a
function and

‖u‖E =

∫

Ω

|g|+
∫

Ω

w |∇g| < +∞.

The integrability condition i) above ensures that D(Ω), the set of restrictions to Ω of test
functions in R

n, is embedded in E. Thus, equation (2.3) defines the meaning of both the
partial differential equation and the boundary condition in (2.1).

We say that the problem (div)∞ is solvable in Ω when this question receives a positive answer.

We introduce distΩ, the euclidean geodesic distance in Ω, defined by

distΩ(y, x) = inf l(γ),

where γ is any rectifiable path defined on [0, 1] such that γ(0) = y, γ(1) = x, and γ(t) ∈ Ω for
all t ∈ [0, 1], l(γ) being its length. We pick once and for all a reference point x0 ∈ Ω, and we
simply denote by dΩ(y) the number distΩ(y, x0).

Our main result is the following:

Theorem 2.1 The problem (div)∞ is solvable in Ω if and only if dΩ ∈ L1(Ω).

Notice that dΩ being integrable on Ω does not depend on the choice of the reference point x0.

To prove this theorem, assume first that (div)∞ is solvable in Ω. We will explain in the next
section that it is equivalent to various Poincaré inequalities, implying in particular the following
one: ∫

Ω

|f(x)| dx ≤ C

∫

Ω

w(x) |∇f(x)| dx

for all f ∈ W1,1
loc(Ω) which vanishes on a non negligible subset K of Ω, the constant C depending

on Ω and on the ratio |Ω|
|K|

.
We apply this inequality to

f(x) = (dΩ(x)− r0)+ ,
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where r0 is the radius of some fixed ball centered at x0 and included in Ω. Since

|dΩ(y)− dΩ(x)| ≤ |y − x|

for all close enough x, y ∈ Ω, we have |∇f(x)| ≤ 1 almost everywhere, so that

∫

Ω

w(x) |∇f(x)| dx ≤
∫

Ω

w(x)dx < +∞.

Thus f ∈ L1(Ω), which implies that dΩ is integrable on Ω, too.

Reciprocally we assume that ∫

Ω

dΩ(y)dy < +∞, (2.4)

and explain how to solve (div)∞ under this hypothesis. Our method will be constructive.

The starting point is a family of curves relying each point in Ω to x0. For the sake of simplicity,
the image of any path γ will be called γ, too.
We use a Whitney decomposition of Ω, whose properties we recall. It is, up to negligible sets,
a partition of Ω in closed cubes:

Ω =
⋃

j≥0

Qj ,

where the interiors of the Qj ’s are pairwise disjoint, and for all j ≥ 0, 2Qj ⊂ Ω while 4Qj∩Ωc 6=
∅. We denote by xj and lj the center and the side length of Qj (we may and do assume that
x0 is the center of Q0). A key observation of constant use is that, if x ∈ Ω, then

1

2
lj ≤ d(x) ≤ 5

√
n

2
lj

whenever x ∈ Qj . We denote by d(x) the distance from x to the boundary of Ω.
We select a path γj : [0, 1] 7→ Ω such that γj(0) = xj , γj(1) = x0, l(γj) ≤ 2dΩ(xj). When γj
intersects some Whitney cube Qk, we replace γj∩Qk by the segment joining its two endpoints.
In particular, we call [xj , x̃j] the segment γj ∩ Qj . The modified path is still denoted by γj.
We certainly have not increased its length, and moreover we have ensured that

l(γj ∩B(x, r)) ≤ Cr

for every x ∈ Ω and r ≤ 1
2
d(x), where C only depends on the dimension.

Finally, if y ∈ Qj for some j (when there are several such j’s, just arbitrarily select one of
them), we link y to x̃j by a segment, and then x̃j to x0 by γj. The resulting path linking y to
x0 is called γ(y), and its current point γ(t, y), where t ∈ [0, 1]. By construction, the following
properties hold:

(γ.a) for all y ∈ Ω and t ∈ [0, 1], γ(t, y) ∈ Ω, with γ(0, y) = y, γ(1, y) = x0,

(γ.b) (t, y) 7→ γ(t, y) is measurable and γ(y) is rectifiable,
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(γ.c) there exists a constant C > 0, only depending on the dimension, such that for all x, y ∈ Ω

∀r ≤ 1

2
d(x), l(γ(y) ∩B(x, r)) ≤ Cr (2.5)

and
l(γ(y)) ≤ CdΩ(y), (2.6)

(γ.d) for all ε > 0 small enough, there exists δ > 0 such that

∀y ∈ Ωε, γ(y) ⊂ Ωδ,

where by definition Ωs = {z ∈ Ω; d(z) > s}.

We now define a weight ω on Ω (implicitly depending on the family of paths γ) by

ω(x) =

∣∣∣∣
{
y ∈ Ω; distΩ(γ(y), x) ≤

1

2
d(x)

}∣∣∣∣ , (2.7)

where distΩ(γ(y), x) is the distance in Ω from the path γ(y) to the point x. We first prove
that:

Lemma 2.2 ∫

Ω

ω(x)d(x)−n+1dx < +∞. (2.8)

Proof: Let y be such that there exists t0 satisfying distΩ(γ(t0, y), x) ≤ 1
2
d(x), which

here is the same as |γ(t0, y)− x| ≤ 1
2
d(x). Then we have |γ(t, y)− x| < 3

4
d(x) whenever

|γ(t, y)− γ(t0, y)| < 1
4
d(x). This implies that

d(x) ≤ 4l(γ(y) ∩B(γ(t0, y),
1
4
d(x))

≤ 4
∫ 1

0
|γ̇(t, y)|1|γ(t,y)−x|< 3

4
d(x)dt,

and therefore that
∫

Ω

ω(x)d(x)−n+1dx ≤ C

∫

Ω

∫

Ω

∫ 1

0

|γ̇(t, y)|1|x−γ(t,y)|< 3

4
d(x)d(x)

−ndtdydx.

In the integral above, d(x) is comparable with d(γ(t, y)) uniformly in x, t and y. Integrating
first with respect to x, this observation leads to

∫
Ω
ω(x)d(x)−n+1dx ≤ C

∫
Ω

∫ 1

0
|γ̇(t, y)| dtdy

= C
∫
Ω
l(γ(y))dy,

and the proof is ended thanks to the hypothesis (2.4) and the estimate (2.6).

The key result is then the following, that we state in full generality for further use:
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Lemma 2.3 Assume that Ω fulfills(2.4). Let γ = {γ(y), y ∈ Ω} be any family of paths satisfy-
ing properties (γ.a) to (γ.d), and ω defined by (2.7). For each f ∈ L∞(Ω) with

∫
Ω
f(x)dx = 0,

there exists a vector-valued function u solution of

{
div u = f in Ω,
u · ν = 0 on ∂Ω,

(2.9)

satisfying the estimate ∥∥∥∥
dn−1

ω
u

∥∥∥∥
∞

≤ C ‖f‖∞ , (2.10)

where C > 0 only depends on Ω and the choice of the family γ.

Proof: it relies on a representation formula, which goes back (in its earlier version) to [6].
A first generalization, applicable to John domains, was designed in [1]. Here, we still generalize
it to the case of an arbitrary domain.

By dilating and translating Ω, we may and do assume that x0 = 0 and d(0) = 15. We
choose a function χ ∈ D(Ω) supported in B(0, 1) and such that

∫
Ω
χ(x)dx = 1. For each y ∈ Ω,

let τ(y) be the smallest t > 0 such that γ(t, y) ∈ ∂B(y, 1
2
d(y)) (if there is no such t, just choose

τ(y) = 1). We define a function t 7→ ρ(t, y), t ∈ [0, 1], by:

ρ(t, y) = α |y − γ(t, y)| if t ≤ τ(y),
ρ(t, y) = 1

15
d(γ(t, y)) if t > τ(y),

where α is so chosen that ρ(·, y) is a continuous function. This means that

α =
2

15

d(γ(τ(y), y))

d(y)
,

and the reader may check that α ≤ 1
5
. By construction, we always have

ρ(t, y) ≤ 1

5
d(γ(t, y)) (2.11)

so that
γ(t, y) + ρ(t, y)z ∈ Ω

for every t ∈ [0, 1] and z ∈ B(0, 1). This comes from the fact that, if t ≤ τ(y), then
|y − γ(t, y)| ≤ 1

2
d(y), which implies ρ(t, y) ≤ α

2
d(y) and d(y) ≤ 2d(γ(t, y)).

Let us start with ϕ ∈ D(Rn), y ∈ Ω and z ∈ B(0, 1). We have

ϕ(y)− ϕ(z) = −
∫ 1

0

(γ̇(t, y) + ρ̇(t, y)z) · ∇ϕ(γ(t, y) + ρ(t, y)z)dt.

Multiplying by χ(z) and integrating, we get

ϕ(y)−
∫

Ω

ϕχ = −
∫

B(0,1)

∫ 1

0

(γ̇(t, y) + ρ̇(t, y)z) · ∇ϕ(γ(t, y) + ρ(t, y)z)χ(z)dtdz.
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Since
∫
Ω
f = 0, this implies

∫

Ω

fϕ = −
∫

Ω

∫

B(0,1)

∫ 1

0

f(y)(γ̇(t, y) + ρ̇(t, y)z) · ∇ϕ(γ(t, y) + ρ(t, y)z)χ(z)dtdzdy.

Changing z into x = γ(t, y) + ρ(t, y)z, this formula becomes

∫

Ω

fϕ = −
∫

Ω

∫

Ω

∫ 1

0

f(y)

(
γ̇(t, y) + ρ̇(t, y)

x− γ(t, y)

ρ(t, y)

)
·∇ϕ(x)χ

(
x− γ(t, y)

ρ(t, y)

)
1

ρ(t, y)n
dtdxdy.

(2.12)
If x, y ∈ Ω, we define the vector-valued kernel G by

G(x, y) =

∫ 1

0

[
γ̇(t, y) + ρ̇(t, y)

x− γ(t, y)

ρ(t, y)

]
χ

(
x− γ(t, y)

ρ(t, y)

)
dt

ρ(t, y)n
.

Thanks to the support condition on χ, we must have

|x− γ(t, y)| < ρ(t, y)

for the integrated term to be non zero. Hence G(x, y) is well defined as soon as x 6= y. We
moreover have

Lemma 2.4 There exists a constant C > 0, depending on Ω and on the paths γ only, such
that

∀x ∈ Ω,

∫

Ω

|G(x, y)| dy ≤ Cω(x)d(x)−n+1. (2.13)

Let us admit this statement for the moment and finish the proof of Lemma 2.3. We define u
by

u(x) =

∫

Ω

G(x, y)f(y)dy.

The estimate (2.13) shows that this is meaningful and that

|u(x)| ≤ C ‖f‖∞ ω(x)d(x)−n+1. (2.14)

Thus (2.10) is satisfied. Then, it follows from (2.12) and Fubini theorem, which we may apply
thanks to Lemma 2.2 and (2.13), that

∫

Ω

u · ∇ϕ = −
∫

Ω

fϕ; (2.15)

this is (2.3) for ϕ ∈ D(Ω).
Let us now take g ∈ E. If ε > 0 is small enough, we define

fε = f1Ωε

and

uε(x) =

∫

Ω

G(x, y)fε(y)dy.
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We have uε(x) → u(x) for all x ∈ Ω, and

|uε(x)| ≤ C ‖f‖∞ ω(x)d(x)−n+1, (2.16)

by Lemma 2.4. Because of property (γ.d) there exists δ > 0 such that Supp uε ⊂ Ωδ. Moreover,
there exists C(δ) satisfying

∀x ∈ Ωδ

1

C(δ)
≤ ω(x)d(x)−n+1 ≤ C(δ).

Hence, we may use a standard approximation argument to deduce from (2.15), applied to fε
and uε, that ∫

Ω

uε · ∇g = −
∫

Ω

fεg.

We conclude by using (2.16) and the dominated convergence theorem to obtain:

∫

Ω

u · ∇g = −
∫

Ω

fg

for all g ∈ E.

We turn to the proof of Lemma 2.4. Since ρ is defined according to two different cases, we
decompose

G(x, y) = G1(x, y) +G2(x, y)

with

G1(x, y) =

∫ τ(y)

0

[
γ̇(t, y) + α

γ̇(t, y) · (y − γ(t, y))

|y − γ(t, y)|

]
χ

(
x− γ(t, y)

α |y − γ(t, y)|

)
1

αn |y − γ(t, y)|ndt,

and

G2(x, y) =

∫ 1

τ(y)

[
γ̇(t, y) + [γ̇(t, y) · ∇d(γ(t, y))]

x− γ(t, y)

d(γ(t, y))

]
χ

(
15

x− γ(t, y)

d(γ(t, y))

)
15n

d(γ(t, y))n
dt.

(2.17)

We first estimate
∫
Ω
|G1(x, y)| dy. When χ( x−γ(t,y)

α|y−γ(t,y)|
) is non zero, we have

|x− y| ≤ (1 + α) |y − γ(t, y)|
≤ 1+α

2
d(y)

≤ 1+α
1−α

d(x)
(2.18)

and
|x− γ(t, y)| ≤ α |y − γ(t, y)|

≤ α
1−α

|x− y| .
Therefore we obtain

|G1(x, y)| ≤ C
∫ τ(y)

0
|γ̇(t, y)|1|x−γ(t,y)|≤ α

1−α
|x−y|dt |x− y|−n

≤ C |x− y|−n l(γ(y) ∩B(x, α
1−α

|x− y|)).
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Since α ≤ 1
5
, we deduce from (2.18) that α

1−α
|x− y| ≤ 3

8
d(x). We may therefore apply property

(γ.c), which gives
|G1(x, y)| ≤ C |x− y|−n+1 .

Applying (2.18) again, we see that

∫

Ω

|G1(x, y)| dy ≤ Cd(x).

By definition of ω there is a constant c depending on the dimension such that ω(x) ≥ cd(x)n,
since B(x, 1

2
d(x)) ⊂ {y; distΩ(γ(y), x) ≤ 1

2
d(x)}. Thus the analog of inequality (2.13) is satis-

fied by G1.
We now estimate

∫
Ω
|G2(x, y)| dy. We have from (2.17):

|G2(x, y)| ≤ C

∫ 1

τ(y)

|γ̇(t, y)|1|x−γ(t,y)|< 1

15
d(γ(t,y))

dt

d(γ(t, y))n
.

On the domain of integration, the ratio d(x)
d(γ(t,y))

is bounded from above and below by 16/15

and 14/15. This implies the estimate

|G2(x, y)| ≤ Cd(x)−nl(γ(y) ∩B(x,
1

14
d(x))),

so that, by property (γ.c), we have

|G2(x, y)| ≤ Cd(x)−n+1

uniformly in x, y, and G2(x, ·) is supported in the set {y; d(γ(y), x) < 1
14
d(x)}. We therefore

obtain the analog of inequality (2.13) for G2 as well, concluding the proof of Lemma 2.4.

3 Invertibility of the divergence in Lp spaces

The present section is devoted to the proof of the following Lp-type result:

Theorem 3.1 Let p ∈ (1,+∞] and Ω ⊂ R
n be an arbitrary bounded domain. Assume that

the function dΩ is integrable on Ω. Then, if f ∈ Lp(Ω) with
∫
Ω
f(x)dx = 0, there exists a

vector-valued function u solution of

{
div u = f in D′(Ω),
u · ν = 0 on ∂Ω,

(3.1)

satisfying the estimate ∥∥∥∥
dn−1

ω
u

∥∥∥∥
p

≤ C ‖f‖p , (3.2)

where C > 0 only depends on Ω and the choice of the paths γ.
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Let us clarify the meaning of (3.1). Define q ∈ [1,+∞) by 1
p
+ 1

q
= 1 and let

Eq(Ω) :=

{
g ∈ Lq (Ω) ;

∫

Ω

|∇g(x)|q
(

ω(x)

dn−1(x)

)q

< +∞
}
,

equipped with the norm

‖g‖Eq(Ω) := ‖g‖Lq(Ω) +

∥∥∥∥
ω(x)

dn−1(x)
|∇g|

∥∥∥∥
Lq(Ω)

.

By (3.1), we mean that ∫

Ω

u · ∇ϕ =

∫

Ω

fϕ

for all ϕ ∈ Eq(Ω).

The proof of Theorem 3.1 goes through a family of Poincaré inequalities, which we present
now. If 1 ≤ q < +∞, say that Ω supports a weighted Lq Poincaré inequality if and only if, for
all function g ∈ Eq(Ω),

‖g − gΩ‖Lq(Ω) ≤ C
∥∥∥ ω

dn−1
|∇g|

∥∥∥
Lq(Ω)

, (Pq)

where

gΩ :=
1

|Ω|

∫

Ω

g(x)dx.

The strategy of the proof of Theorem 3.1 is as follows: we first establish the general fact that,
for all p ∈ (1,+∞], the solvability of (3.1) for all f ∈ Lp(Ω) having zero integral with the
estimate (3.2) is equivalent to the validity of (Pq), with

1
p
+ 1

q
= 1. We then prove that (P1)

implies (Pq) for any q ∈ [1,+∞). It is then a consequence of Lemma 2.3 that, since dΩ ∈ L1(Ω),
(P1), and therefore (Pq), hold for all q ∈ [1,+∞) and Theorem 3.1 therefore follows again from
the equivalence with (Pq).
In the sequel, we will say that (divp) holds if and only if, for all f ∈ Lp(Ω) with zero integral,
there exists a vector-valued function u solution of (3.1) such that the estimate (3.2) holds with
a constant C > 0 only depending on Ω and the choice of the paths γ.

3.1 Solvability of the divergence and Poincaré inequalities

Let us prove the following equivalence:

Proposition 3.2 Let Ω ⊂ R
n be a bounded domain. Let 1 < p ≤ +∞ and 1 ≤ q < +∞ be

such that 1
p
+ 1

q
= 1. Then (Pq) holds if and only if (divp) holds.

Proof: Assume first that (divp) holds. Let f ∈ Eq(Ω) and g ∈ Lp(Ω) with ‖g‖p ≤ 1. Pick
up a solution u of {

div u = g − gΩ in Ω,
u · ν = 0 on ∂Ω

11



satisfying ∥∥∥∥
dn−1

ω
u

∥∥∥∥
p

≤ C ‖g‖p .

Then, by definition of u,
∣∣∣∣
∫

Ω

(f(x)− fΩ) g(x)dx

∣∣∣∣ =

∣∣∣∣
∫

Ω

(f(x)− fΩ) (g(x)− gΩ) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

∇f(x) · u(x)dx
∣∣∣∣

≤
∥∥∥ ω

dn−1
|∇f |

∥∥∥
q

∥∥∥∥
dn−1

ω
u

∥∥∥∥
p

≤ C
∥∥∥ ω

dn−1
|∇f |

∥∥∥
q
‖g‖p

≤ C
∥∥∥ ω

dn−1
|∇f |

∥∥∥
q
,

which proves that

‖f − fΩ‖q ≤ C
∥∥∥ ω

dn−1
|∇f |

∥∥∥
q
,

and this means that (Pq) holds.

Assume conversely that (Pq) holds and let f ∈ Lp(Ω) with zero integral. Define

Gq :=
{
v ∈ Lq

(
Ω,Rn,

ω

dn−1

)
; v = ∇g for some g ∈ Eq(Ω)

}
,

equipped with the norm of Lq
(
Ω,Rn, ω

dn−1

)
.

Define a linear form on Gq by

Lv =

∫

Ω

f(x)g(x)dx if v = ∇g.

Observe that L is well-defined since f has zero integral on Ω and that

|L(v)| =

∣∣∣∣
∫

Ω

f(x) (g(x)− gΩ) dx

∣∣∣∣
≤ C ‖f‖p

∥∥∥ ω

dn−1
|∇g|

∥∥∥
q

since (Pq) holds; this shows that L is bounded on Gq. By the Hahn-Banach theorem, L may
be extended to a bounded linear form on Lq

(
Ω,Rn, ω

dn−1

)
with functional norm bounded by

C ‖f‖p. Therefore, since 1 ≤ q < +∞, there exists a vector field u ∈ Lp
(
Ω,Rn, ω

dn−1

)
such

that, for all g ∈ Eq(Ω), ∫

Ω

u(x) · ∇g(x)dx =

∫

Ω

f(x)g(x)dx, (3.3)

with ∥∥∥∥
dn−1

ω
u

∥∥∥∥
p

≤ C ‖f‖p . (3.4)

Note that, for p = 1, this uses the fact that the measure ω
dn−1dx is finite (Lemma 2.2). The

identity (3.3) means that u solves (3.1), and (3.4) is exactly (3.2). This ends the proof of
Proposition 3.2.
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3.2 From an L1 to an Lq Poincaré inequality

We now prove the following fact:

Proposition 3.3 Assume that (P1) holds. Then, for all q ∈ [1,+∞[, (Pq) holds.

The proof mimics a usual procedure for Poincaré inequalities (see [16]) and we give it for the
sake of completeness. It relies on a very useful characterization of Poincaré inequalities:

Lemma 3.4 Let 1 ≤ q < +∞. Then, (Pq) holds if and only if there exists C > 0 with the
following property: for all measurable subset E ⊂ Ω with |E| ≥ 1

2
|Ω| and for all g ∈ Eq(Ω)

vanishing on E,

‖g‖q ≤ C
∥∥∥ ω

dn−1
|∇g|

∥∥∥
q
.

Proof of Lemma: assume first that (Pq) holds and let E and g be as in the statement of
the lemma. Notice that

|E| |gΩ|q =

∫

E

|g(x)− gΩ|q dx

≤
∫

Ω

|g(x)− gΩ|q dx

≤ C

∫

Ω

∣∣∣∣
ω(x)

dn−1(x)
∇g(x)

∣∣∣∣
q

dx,

which shows that

|gΩ| ≤ C ′

(
1

|Ω|

∫

Ω

∣∣∣∣
ω(x)

dn−1(x)
∇g(x)

∣∣∣∣
q

dx

) 1

q

.

Since ‖g‖q ≤ ‖g − gΩ‖q + |Ω| 1q |gΩ|, one gets the desired conclusion.

For the converse, take g ∈ Lq(Ω). Observe first that there exists λ ∈ R such that, if

Eλ := {x ∈ Ω; g(x) ≥ λ} and Fλ := {x ∈ Ω; g(x) ≤ λ} ,

then

|Eλ| ≥
1

2
|Ω| and |Fλ| ≥

1

2
|Ω| .

Indeed, for all λ ∈ R, set
µ(λ) := {x ∈ Ω; g(x) ≤ λ} .

The function µ is non-decreasing, right-continuous and satisfies

lim
λ→−∞

µ(λ) = 0 and lim
λ→+∞

µ(λ) = |Ω| .

Therefore, λ := inf
{
t ∈ R; µ(t) ≥ 1

2
|Ω|
}
satisfies the required properties.

Observe that (g − λ)+ ∈ Eq(Ω) (this can be proved by approximation arguments analogous
to those used in the theory of usual Sobolev spaces). Since (g − λ)+ vanishes on Fλ, the
assumption yields

‖(g − λ)+‖q ≤ C
∥∥∥ ω

dn−1
|∇g|

∥∥∥
q
.

13



Similarly, since (g − λ)− vanishes on Eλ,

‖(g − λ)−‖q ≤ C
∥∥∥ ω

dn−1
|∇g|

∥∥∥
q
,

and we therefore obtain
‖g − λ‖q ≤ C

∥∥∥ ω

dn−1
|∇g|

∥∥∥
q
,

from which (Pq) readily follows.

Remark 3.5 Lemma 3.4 extends straightforwardly to the case when E is any non-negligible
measurable subset of Ω, the constant C depending on the ratio |Ω|

|E|
.

Proof of Proposition 3.3: assume that (P1) holds, let q ∈ [1,+∞[ and g ∈ Eq(Ω) vanishing
on a subset E ⊂ Ω satisfying |E| ≥ 1

2
|Ω|. Again, it can be proved as for usual Sobolev spaces

that |g|q ∈ E1(Ω). Applying then (P1) to |g|q, which also vanishes on E, and using Lemma
3.4, we obtain

∫

Ω

|g(x)|q dx ≤ C

∫

Ω

ω(x)

dn−1(x)
|∇ (|g|q)| (x)dx

= Cq

∫

Ω

ω(x)

dn−1(x)
|g(x)|q−1 |∇g(x)| dx

≤ Cq

(∫

Ω

|g(x)|q dx
)1− 1

q
(∫

Ω

(
ω(x)

dn−1(x)

)q

|∇g(x)|q dx
) 1

q

,

which yields exactly (Pq) by Lemma 3.4 again.

4 Solvability of the divergence in weighted Sobolev

spaces

We now solve the divergence equation in weighted Sobolev spaces. For p ∈ (1,+∞), we define

W 1,p

(
Ω,

dn

ω

)
:=

{
g ∈ Lp

(
Ω,

dn

ω

)
; ∂ig ∈ Lp

(
Ω,

dn

ω

)
for all 1 ≤ i ≤ n

}

and W 1,p
0

(
Ω, dn

ω

)
stands for the closure of D(Ω) in W 1,p

(
Ω, dn

ω

)
.

Theorem 4.1 Let p ∈ (1,+∞). Then, for all f ∈ Lp
0(Ω), there exists u ∈ W 1,p

0 (Ω, dn

ω
) such

that
div u = f ∈ Ω

and
‖Du‖

Lp(Ω, d
n

ω )
≤ C ‖f‖Lp(Ω) , (4.1)

where the constant C > 0 only depends on Ω and p.
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In the statement of Theorem 4.1, by Du, we mean the matrix (∂iuj)1≤i,j≤n
, and the estimate

(4.1) means that ∑

1≤i,j≤n

‖∂iuj‖Lp(Ω, d
n

ω )
≤ C ‖f‖Lp(Ω) .

The proof of Theorem 4.1 goes through a decomposition of functions in Lp
0(Ω), interesting in

itself, which follows from the solvability of the divergence problem established in the previous
sections:

Proposition 4.2 Consider the Whitney decomposition of Ω already used in Section 2. Let
p ∈ (1,+∞) and f ∈ Lp

0(Ω). Then, the function f can be decomposed as

f =
∑

j

fj , (4.2)

where, for all j, the function fj satisfies the following three properties:

(i) fj is supported in 2Qj,

(ii)
∫
2Qj

fj(x)dx = 0,

(iii)
∑

j

∫
2Qj

|fj(x)|p
(

dn(x)
ω(x)

)p
dx ≤ C

∫
Ω
|f(x)|p dx,

for some C > 0 only depending on Ω, p and the choice of the paths γ.
If one furthermore assumes that there exists C > 0 such that the weight ω satisfies:

ω(x) ≤ Cdn(x) for almost all x ∈ Ω, (4.3)

then the conclusion of (iii) can be strengthened as

C−1

∫

Ω

|f(x)|p dx ≤
∑

j

∫

2Qj

|fj(x)|p dx ≤ C

∫

Ω

|f(x)|p dx. (4.4)

Proof: Let f ∈ Lp(Ω) with zero integral and, applying Theorem 3.1, pick up a vector field

u such that f = div u and
∥∥∥dn−1

ω
u
∥∥∥
Lp(Ω)

≤ C ‖f‖Lp(Ω). Let (χj)j≥1 be a partition of unity

associated with the Qj ’s, i.e. a sequence of D(Rn) functions satisfying
∑

j χj = 1 on R
n, such

that, for all j ≥ 1, χj = 1 on Qj , is supported in 2Qj and satisfies ‖∇χj‖∞ ≤ Cl−1
j . Setting

fj := div (χju)

for all j ≥ 1, one clearly has (4.2). It follows from the support property of χj that fj is
supported in 2Qj . That fj has zero integral on Ω follows by an integration by parts on 2Qj
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and the fact that χj = 0 on ∂Qj . Finally, since ω(x) ≥ cdn(x) for all x ∈ Ω,

∑

j≥1

∫

Ω

|fj(x)|p
(
dn(x)

ω(x)

)p

dx ≤ C
∑

j≥1

∫

2Qj

|χj(x)|p |f(x)|p
(
dn(x)

ω(x)

)p

dx

+ C
∑

j≥1

∫

2Qj

|u(x)|p |∇χj(x)|p
(
dn(x)

ω(x)

)p

dx

≤ C

∫

Ω

|f(x)|p dx+ C
∑

j≥1

l−p
j

∫

2Qj

|u(x)|p
(
dn−1(x)

ω(x)

)p

dx

≤ C

∫

Ω

|f(x)|p dx,

which is (iii).
Assume now that (4.3) holds. Then,

c ≤ dn(x)

ω(x)
≤ C,

and ∫

Ω

|f(x)|p dx ≤ C
∑

j

∫

2Qj

|fj(x)|p dx,

which completes the proof of Proposition 4.2.

Remark 4.3 An analogous decomposition for functions in Lp(Ω) with zero integral was estab-
lished by Diening, Ruzicka and Schumacher in [10]. Actually, in their result, f can be taken
in Lp(Ω, w) where the weight w belongs to the Muckenhoupt class Aq for some q ∈ (1,+∞),
and (4.4) holds with the Lebesgue measure in both sides on the inequalities, but the authors
assume that Ω satisfies an emanating chain condition (whereas no assumption is made on Ω
in Proposition 4.2). The proof in [10] is direct, which means that it does not use the divergence
operator, but, as in the present paper, some consequences are derived for the solvability of the
divergence operator in Sobolev spaces.

Proof of Theorem 4.1: let f ∈ Lp(Ω) with zero integral and decompose f =
∑

fj
as in Proposition 4.2. For each j, there exists uj ∈ W 1,p

0 (2Qj) such that div uj = fj and
‖Duj‖Lp(2Qj)

≤ C ‖fj‖Lp(2Qj)
(see for instance [7], Section 7.1, Theorem 2). Define u :=

∑
j uj.

One clearly has div u = f . Moreover, by construction, there exist 0 < c < C with the following
property: for j ≥ 1, there exists ωj ∈ (0,+∞) such that, for all x ∈ Qj,

cωj ≤ ω(x) ≤ Cωj.
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As a consequence,
∫

Ω

|Du(x)|p
(
dn(x)

ω(x)

)p

dx ≤ C
∑

j

∫

2Qj

|Duj(x)|p
(
dn(x)

ω(x)

)p

dx

≤ C
∑

j

lnpj
ωp
j

∫

2Qj

|Duj(x)|p dx

≤ C
∑

j

lnpj
ωp
j

∫

2Qj

|fj(x)|p dx

≤ C

∫

2Qj

|fj(x)|p
(
dn(x)

ω(x)

)p

dx

≤ C

∫

Ω

|f(x)|p dx.

As a corollary of Theorem 4.1, we obtain:

Corollary 4.4 Let p ∈ (1, n) and set p∗ := np

n−p
. Then, for all f ∈ Lp

0(Ω), there exists

u ∈ Lp∗
(
Ω, dn

ω

)
such that

div u = f ∈ Ω

and
‖u‖

Lp∗(Ω, d
n

ω )
≤ C ‖f‖Lp(Ω) , (4.5)

where the constant C > 0 only depends on Ω and p.

Proof: consider again f ∈ Lp(Ω) with zero integral and let fj , uj and u be as in the proof of
Theorem 4.1. For all j ≥ 1, by the usual Sobolev embedding,

∫

2Qj

|uj(x)|p
∗

dx ≤ C

(∫

2Qj

|Duj(x)|p dx
) p∗

p

≤ C

(∫

2Qj

|fj(x)|p dx
) p∗

p

.

It follows that
∫

Ω

|u(x)|p∗
(
dn(x)

ω(x)

)p∗

dx ≤ C
∑

j

∫

2Qj

|uj(x)|p
∗

(
dn(x)

ω(x)

)p∗

dx

≤ C
∑

j

lnp
∗

j

ωp∗

j

∫

2Qj

|uj(x)|p
∗

dx

≤ C
∑

j

lnp
∗

j

ωp∗

j

(∫

2Qj

|fj(x)|p dx
) p∗

p

≤ C
∑

j

(∫

2Qj

|fj(x)|p
(
dn(x)

ω(x)

)p∗

dx

) p∗

p

≤ C

(
∑

j

∫

2Qj

|fj(x)|p
(
dn(x)

ω(x)

)p∗

dx

) p∗

p

≤ C

(∫

Ω

|f(x)|p dx
) p∗

p

,
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which ends the proof.

5 Examples

In this section we give various examples of domains Ω to which the preceding results apply
and for which we obtain an estimate of the weight w.
In their paper [1], the authors show how to invert the divergence for John domains, with
the weight w(x) = d(x) (note that the corresponding weighted Poincaré inequalities on John
domains were established in [11]). Our method gives a generalization to the so-called s-John
domains, that we will present first; then we will turn to a particular case which exhibits special
features, that of strongly hölderian domains.

5.1 The case of s-John domains

Let s ≥ 1 be a fixed parameter. Recall that Ω is an s-John domain when, x0 being a chosen
reference point, there exist a constant C > 0 and, for each y ∈ Ω, a rectifiable path γ(y)
included in Ω which links y to x0 and satisfies the estimate

∀τ ∈ [0, l(γ(y))] d(γ(τ, y)) ≥ Cτ s, (5.1)

where τ is the arc-length and l(γ(y)) the total length of the path γ(y). When s = 1, Ω is a
John domain. Using the same algorithm as in the proof of Theorem 2.1, we modify the initial
family γ so as to ensure properties (γ.a) to (γ.d). We let the reader check that property (5.1)
remains preserved. Here are explicit examples.

Example 1 Let Ω be the complement in B(0, 10) of the logarithmic spiral

Γ = {x = r(cos θ, sin θ); r = 0 or r ∈]0, 1] with r = e−θ}.

Then Ω is a John domain.

Example 2 Let Ω be the complement in B(0, 10) of the spiral

Γ = {x = r(cos θ, sin θ); r = 0 or r ∈]0, 1] with θ = r−a}

for some a > 0. Then Ω is an s-John domain if and only if a < 1, with s = 1+a
1−a

. Note, however,
that Ω fulfills (2.4) if and only if a < 3.

Returning to the general s-John domains, we now assume that Ω fulfills hypothesis (2.4).
Applying Lemma 2.3 and the preceding sections, we can invert the divergence on various Lp

spaces on Ω with the weight
w(x) = ω(x)d(x)−n+1,

where ω is defined by (2.7). We then have:

Lemma 5.1 ω(x) ≤ Cd(x)
n
s .
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Hence we recover the result of [15], Theorem 7, that on s-John domains the following
Poincaré inequality holds:

∫

Ω

|g(x)− gΩ| dx ≤ C(Ω)

∫

Ω

d(x)
n
s
−n+1 |∇g(x)| dx.

It is known, also, that n
s
− n+ 1 is the best possible exponent in the class of s-John domains

(see [5]). Let us, however, remark that the estimate in this Lemma may be of poor quality,
since it may happen for large values of s that

∫ +∞

0

d(x)
n
s
−n+1dx = +∞,

while we know that w ∈ L1(Ω). This reveals that, at least in some cases, the family of weights
d(x)α, α ∈ R, is not rich enough to accurately describe what happens.

The proof of Lemma 5.1 is elementary. Let x, y ∈ Ω such that distΩ(γ(y), x) ≤ 1
2
d(x). There

exists τ ∈ [0, l(γ(y))] verifying

|γ(τ, y)− x| ≤ 1

2
d(x),

and thus
τ s ≤ Cd(γ(τ, y)) ≤ Cd(x).

Since |y − x| ≤ τ + 1
2
d(x), we have y ∈ B(x, Cd(x)

1

s ), which implies ω(x) ≤ Cd(x)
n
s as desired.

5.2 The case of strongly hölderian domains

There is, however, a particular case where the above estimate can be improved as soon as
s > 1. This is when Ω, in addition to the preceding hypothesis, fulfills the requirements of the
following definition.

Definition 5.2 Say that Ω is a strongly hölderian domain when there exist α ∈]0, 1] and an
integer N ≥ 1, N functions Φj ∈ Cα(Rn−1), N + 1 domains Oj in R

n and N isometries ηj of
R

n such that

· Ω ⊂ ⋃N
j=0Oj,

· O0 ⊂ Ω,

· when x ∈ Oj, j ≥ 1, then x ∈ Ω if and only if x̃n < Φj(x̃′), where ηj(x) = (x̃′, x̃n), x̃′ ∈
R

n−1, x̃n ∈ R,

· there exists h > 0 such that, if x ∈ Oj ∩ Ω, j ≥ 1, and x̃n < Φj(x̃′)− h, then x ∈ O0,

· conversely, for any x ∈ Oj ∩Ω, j ≥ 1, there exists z ∈ O0 such that z̃′ = x̃′ and z̃n ≤ x̃n,

where ηj(z) = (z̃′, z̃n).
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We construct a family γ of paths satisfying properties (γ.a) to (γ.d) and adapted to the nature
of the boundary of Ω.
Choose x0 ∈ O0 and let y ∈ Ω. When y ∈ O0, we cover O0 by a finite number of Whitney
cubes associated to Ω and apply the algorithm described in the proof of Theorem 2.1 to obtain
a family of paths γ(y) which lie inside O0.
When y ∈ Oj, j ≥ 1, we assume for simplicity that ηj = Id (which is possible by rotating Ω).
Write y = (y′, yn) and select z = (y′, zn) ∈ O0 with zn ≤ yn. We link y to z by the vertical
segment {(y′, (1− t)yn + tzn); t ∈ [0, 1]}, and then z to x0 as described above.
The reader may check that the resulting family of paths satisfies properties (γ.a) to (γ.d), and
Ω is an s-John domain for s = 1

α
.

Let w be the associated weight, which allows to solve the problem (div)∞ in Ω thanks to
Lemma 2.3. We have the following improvement over the result of Lemma 5.1:

Lemma 5.3 There exists a constant C > 0 such that

∀x ∈ Ω, w(x) ≤ Cd(x)α.

Since dα is always integrable over Ω, this Lemma implies that, for this class of domains, the
problem (div)∞ is solvable with the weight dα.

Let us turn to the proof and take x, y ∈ Ω with distΩ(γ(y), x) ≤ 1
2
d(x). We may assume that

d(x) < δ for some δ > 0 to be chosen, since otherwise there is nothing to prove. If δ is small
enough, there exists j ≥ 1 such that x, y ∈ Oj. We again simplify the argument by assuming
ηj = Id. Write y = (y′, yn) and z = (y′, zn) as above. The distance from γ(y) to x is not
attained at a point lying in O0 provided δ is sufficiently small, so that there exists t ∈ [0, 1[
satisfying

|(y′, (1− t)yn + tzn)− x| ≤ 1

2
d(x).

Hence we have

|y′ − x′| ≤ 1

2
d(x) (5.2)

and (recall that zn < yn)

xn −
1

2
d(x) ≤ yn < Φj(y

′). (5.3)

We want to show that
|yn − xn| ≤ Cd(x)α. (5.4)

From (5.2) and the α-regularity of Φj , we deduce

|Φj(y
′)− Φj(x

′)| ≤ Cd(x)α

and
yn < Φj(x

′) + Cd(x)α. (5.5)

Let (u′,Φj(u
′)) be a point of ∂Ω at which d(x) is attained (such a point exists once δ is small

enough and j is appropriately chosen). We have |x′ − u′| ≤ d(x) and |Φj(u
′)− xn| ≤ d(x),

whence
|Φj(x

′)− xn| ≤ |Φj(x
′)− Φj(u

′)|+ d(x)
≤ Cd(x)α.
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From (5.3) and (5.5) we then have

xn −
1

2
d(x) ≤ yn ≤ xn + Cd(x)α,

which proves (5.4). With (5.2), this implies

ω(x) ≤ Cd(x)n−1+α,

and the proof is readily ended.
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et Cie, Eds., Paris; Academia, Editeurs, Prague 1967.

22


	Introduction
	Invertibility of the divergence in L spaces
	Invertibility of the divergence in Lp spaces
	Solvability of the divergence and Poincaré inequalities
	From an L1 to an Lq Poincaré inequality

	Solvability of the divergence in weighted Sobolev spaces
	Examples
	The case of s-John domains
	The case of strongly hölderian domains


