
An approach for supporting distributed user interface orchestration
over the Web

Sergio Firmenich a, Gustavo Rossi a, Marco Winckler b,n, Philippe Palanque b

a Universidad Nacional de la Plata and CONICET, Argentina
b ICS-IRIT, Université Paul Sabatier, France

Keywords:

Distributed user interfaces

Task and process modeling

Web application

Web augmentation

Collaborative Web tasks

a b s t r a c t

Currently, a lot of the tasks engaged by users over the Web involve dealing with multiple Web sites.

Moreover, whilst Web navigation was considered as a lonely activity in the past, a large proportion of

users are nowadays engaged in collaborative activities over the Web. In this paper we argue that these

two aspects of collaboration and tasks spanning over multiple Web sites call for a level of coordination

that require Distributed User Interfaces (DUI). In this context, DUIs would play a major role by helping

multiple users to coordinate their activities whilst working collaboratively to complete tasks at different

Web sites. For that, we propose in this paper an approach to create distributed user interfaces featuring

procedures that are aimed to orchestrate user tasks over multiple Web sites. Our approach supports

flexible process modeling by allowing users to combine manual tasks and automated tasks from a

repertoire of patterns of tasks performed over the Web. In our approach, whilst manual tasks can be

regarded as simple instructions that tell users how to perform a task over a Web site, automated tasks

correspond to tools built under the concept of Web augmentation (as it augments the repertoire of tasks

users can perform over the Web) called Web augmenters. Both manual and automated tasks are usually

supported by specific DOM elements available in different Web sites. Thus, by combining tasks and DOM

elements distributed in diverse Web sites our approach supports the creation of procedures that allows

seamless users interaction with diverse Web site. Moreover, such an approach is aimed at supporting the

collaboration between users sharing procedures. The approach is duly illustrated by a case study

describing a collaborative trip planning over the Web.

1. Introduction

Currently, many tasks users engage over the Web involve

dealing with different Web sites; for example, planning a simple

trip would require the visit of a first Web site for booking a hotel, a

second one for booking flights and many more for finding inter-

esting sightseeing places at the destination… Despite the fact that

users would consider such Web navigation as being part of the

same task (i.e. planning a trip) most Web sites will run indepen-

dently with little support to the actual users' concern (Firmenich

et al., 2010). Moreover, although Web navigation was regarded in

the past as a solitary activity, a large proportion of users are

nowadays engaged in collaborative activities (Morris, 2008); for

example sharing with colleagues the results of a search for cheap

hotels, explaining to friends how to book a seat next to yours in a

flight, outsourcing tasks such as asking the community to suggest

nice sightseeing places at the destination… For a motivating

example, in Fig. 1 we illustrate a scenario for collaborative trip

planning to attend a conference. For accomplishing this common

goal, two users need to gather general information about a

conference such as the conference dates and location, buy flights,

book hotel, etc. Each user can perform the required tasks indivi-

dually. However, if users want to travel together, some coordina-

tion and communication will be required for booking the same

flights, hotels etc. Moreover, users might decide to share the work,

for example one user can book for both participants. In the

scenario presented by Fig. 1 it is possible to notice the many

Web sites that will be visited by users. As we shall see, despite the

fact that there is dependency between the information provided,

Web sites are not integrated. While building service-based soft-

ware such as mashups can be a solution for combining data and

information from different providers, many times this approach

might have limitations as they can hardly integrate all possible

opportunistic tasks that users might have in mind; for example,

checking the traffic situation on the way to the airport, booking

the preference users' restaurant at the destination, etc.

We argue that there is a huge set of processes and tasks (such

as planning a trip collaboratively) performed nowadays over the

http://dx.doi.org/10.1016/j.ijhcs.2013.08.014

n Corresponding author. Tel.: þ33 5 61 55 62 58.

E-mail address: winckler@irit.fr (M. Winckler).



Web which requires a level of coordination that can only be

achieved by Distributed User Interfaces (DUI). Distributed User

Interfaces (DUI) has been recently defined as a “user interface

whose components are distributed across one or more of the

dimensions input, output, platform, space and time” (Gallud et al.,

2011). The example shown by Fig. 1 highlights two important

aspects of user activity over the Web that appeal for distributed

user interfaces: (i) users tasks are distributed at multiple applica-

tions, i.e. Web sites, that are not directly connected to each other;

(ii) users working collaboratively share information to accomplish

a common goal (i.e. travel together).

In this paper we propose an approach to building distributed

user interfaces that aim at ensuring a smoother user interaction

whilst users are performing their tasks across multiple Web sites.

Our approach combines individual user tasks to create procedures

that seek to orchestrate user tasks over multiple Web sites. Such

an approach is aimed at: (i) allowing flexible tasks modeling so

that users can create ad-hoc processes for describing how to

accomplish tasks in different Web sites; (ii) helping users to share

such processes with friends and colleagues who might benefit of

the guidance provided by prior task planning; (iii) support a

seamlessly integration between data available over Web pages

and the actual tasks performed by users across different Web sites;

(iv) support the automation of user tasks by the means of Web

augmentation tools that are aimed at helping users in their tasks;

(v) mediate user interactions with the Web site via the execution

of the so-called Web augmentation tools.

Our approach is built upon the concept of Web augmentation

(Bouvin, 1999; Brusilovsky, 2007; Brusilovsky et al., 2007) that

defines strategies for implementing tools that can extend the set of

elementary tasks users can do whilst navigating the Web. For that,

we have developed a dedicated framework called Context Sensi-

tive Navigation (CSN) (Firmenich et al., 2010) which implements a

set of Web augmentation tools called augmenters (Firmenich et al.,

2011). These augmenters are the basic building blocks for extract-

ing information and DOM elements from diverse Web sites for

creating distributed user interfaces. In Section 2 we revise the

main concepts that are necessary to understand how our proposal

is related to the state of the art on DUIs. Section 3 describes the

CSN framework and individual augmenters. Later on in Section 4

we properly present an overview of our approach for building

DUIs by composing individual augments and a Domain Specific

Language (DSL) that formalizes the composition of procedures

made of the assembly of individual tasks (Section 4.2). The section

about the approach ends with the description of the correspond-

ing tool support (Section 4.3). Section 4.4 presents a case study of a

DUI for collaborative trip planning using the tool support that

demonstrates the feasibility of our approach. Section 6 reports the

preliminary results of a usability testing with 11 participants. In

Section 2.4 we discuss the contributions of our approach to the

research in distribute user interfaces (DUI). Finally, Section 7

presents conclusion, lessons learned and future work.

2. Related work

The field of Distributed User Interfaces is broad and spans over

the development of Web applications. For the sake of conciseness

Fig. 1. Distributed user interaction for planning a trip including information sharing between users.



we will concentrate on those research works involving Web

applications which are close to our intent.

2.1. Collaborative work on the Web

There are many tasks that users can perform collaboratively in

small groups (i.e., colleagues, family, or friends) such as research-

ing group projects or reports, arranging joint travel, or planning

shared entertainment opportunities. With the advent of Web

2.0 paradigm, several Web applications implement tools that allow

users to interact and collaborate with each other in a social media

(Morris, 2008). The collaboration using Web 2.0 technology is

often focused a single Web site where the context of the task they

allowed to do is defined by the Web site (e.g. edit a document,

annotate page, upload images, etc.); a popular Web 2.0 tool is

Google Docs (docs.google.com) where multiple users can edit

collaboratively a single document.

However, more recent tools extended the concept of collabora-

tion for supporting distributed user interfaces over multiple

devices. As discussed by Paul and Morris (2009), most of these

tools support awareness features (e.g., sharing of group members'

query histories, browsing histories, and/or comments on results)

and division of work features (e.g., chat systems, the ability to

manually divide search results or URLs among group members,

and/or algorithmic techniques for modifying group members'

search results based on others' actions).

There is strong evidence that people frequently share the

results of their searching of the Web (Melchior et al.; Morris,

2008; Schmid et al., 2012). In the last years much attention has

been focused on collaborative Web search (Rädle et al., 2012).

Several tools, such as CoSearch (Amershi and Morris, 2008),

SearchTogether (Morris and Horvitz, 2007), CoSense (Paul and

Morris, 2009) and Twister-Search (Rädle et al., 2012), support

collaborative activities of searching over the Web. CoSearch

(Amershi and Morris, 2008) features a specialized browser that

implements a queue of queries performed by the group and users

can associate notes to individual Web pages. Users can share the

work by downloading distinct subsets of search results to their

mobile phones. SearchTogether (Morris and Horvitz, 2007) is a

prototype that enables remote users to synchronously or asyn-

chronously collaborate when searching the Web by implementation

mechanisms for awareness (people can see the activities of other

participants), division of labor (search can be split among indivi-

duals), and persistence (results are available for later use). Search-

Together is so far a tool for supporting the investigation of

sensemaking (which means how people value or give a meaning

to information) in collaborative search. In order to investigate more

precisely how sensemaking activities occur in Web navigation,

Amershi and Morris (2008) have specifically designed the tool

CoSense. CoSense supports collaborative searching as active discus-

sion among participants around the results found by the group.

2.2. Web augmentation and data integration tools

After having found useful information over the Web, it is very

likely that information will be used to accomplish other tasks.

Indeed, quite often the contents users need to accomplish their

goals are scattered around different Web sites. In more recent

years, several tools have been developed to support the integra-

tion of Web contents into a seamlessly user interface. By doing so,

the interface produced is “augmented” with respect to what users

can do at the original Web sites. We can identify two coarse-

grained approaches for developing such Web augmentation tools:

(i) mashing up contents or services in a new application and (ii)

augmenting the original application, generally by running adapta-

tion scripts on the client side. Mashups (Yu et al., 2008; Wong and

Hong, 2007) are an interesting alternative for final users to

combine existing resources and services in a new specialized

application. Most of the approaches aim at allowing users without

programming skills to produce these new applications. Visual and

intuitive tools such as (Daniel et al., 2009; Yahoo Pipes!, 2012)

simplify the development of these applications. Some of the

approaches are focused on UI integration, but others – such as

Yahoo Pipes! (Yahoo Pipes!, 2012) – are focused on data integra-

tion. One of the main problems about mashups is that they,

usually, are based on Web services. The fact is that most Web

applications do not provide Web services to access their function-

ality or information. In order to solve this problem, Han and

Tokuda (2008) propose an approach to integrate contents of third

party applications by describing and extracting these contents at

the client-side and then, using these contents later by generating

virtual Web services that allow accessing them.

As we said before, the goal of mashups tools is to integrate UI or

data in order to generate a new application. Clearly, this means

that Web applications are taken off their original versions, which

could not be desirable for many users; moreover Web applications

are really dynamic about functionalities or contents, for example,

news, special offers, etc. In contraposition, several tools for Web

augmentation exist which aim to modify the preferred Web sites

of users, while maintaining intrinsic features of these. Usually,

these tools are implemented as browser's plug-ins that allow users

to either install or generate scripts for modifying the Web pages

they visit; for example GreaseMonkey (Diaz et al., 2010;

GreaseMonkey, 2012; Pilgrim, 2005) and Scriptish (Scriptish,

2012). Nowadays, the most popular tool is GreaseMonkey, a

browser plug-in for client-side scripting. Basically GreaseMonkey

executes scripts (JavaScript files installed and created by users)

when a target Web page is loaded. Then the Web page DOM is

modified before it is shown to the user. Most of the GreaseMonkey

scripts adapt Web pages in a static way, i.e. that the adaptation

goals do not contemplate which is the user task or concern.

Although passing information among Web applications with

GreaseMonkey scripts is not so easy to achieve, this is not the

common goal of GreaseMonkey scripts.

However, there are other approaches for supporting users' task

in several ways. For example, MozillaUbiquity (MozillaUbiquity,

2012) – another Firefox plug-in – tries to improve user experience

by empowering his browser with commands for dispatching

operations related with his task. With MozillaUbiquity users

execute commands (developed by the community) for specific

operations; while some of them are more task-related (for

instance, to publish some text from the Web site he is navigating

in a specific social network) others can be addressed for adapting

the current Web page in some way (for example, highlighting

some text). MozillaUbiquity could be used even for building

mashups. These commands are executed under user demand,

and adaptations are not made automatically. Although MozillaU-

biquity allows users to develop and execute commands for making

shorter the distance between two distinct Web Applications,

moving information (and performing adaptations with this infor-

mation) from one of them to another is not fully exploited. A

similar tool is Operator (Operator, 2012). Operator is another

Firefox plug-in that performs this kind of operation by basing

the available ones in correspondence to the Microformats found in

the Web page the user is visiting. By finding a specific Micro-

format, Operator can use it for consuming Web services from

Flickr, Google Calendar or del.icio.us, in order to support users

with a specific task, for example, to add some event in Google

Calendar based on some Microformat about dates or events found

in any Web page.

Some tools have been specifically designed to automate

repetitive users' tasks over the Web; for instance, CoScripter



(Bogart et al., 2008) (another Firefox Plug-in developed by IBM)

allows users to record their interactions – Web pages visited, DOM

events like clicks over DOM elements, etc. – and then, they can

repeat the process automatically later. Although most of the

scenario recorded is rigid, the approach is a bit flexible because

it allows users to repeat the same scenario (Web sites, interactions,

etc.) while changing the information entered in form inputs when

the scenario was recorded. In this way, CoScripter is not useful

when users need to change slightly the process, for example by

changing one of the involved Web applications. This is not a minor

issue since it is normal that users utilize diverse Web applications

for the same goal (a clear example is booking a hotel room). While

CoScripter is more of a tool for supporting repetitive business

processes, we think that users' tasks cannot be only supported by

filling forms but that there may exist several kinds of DOMs

interventions for improving users' experience. CoScripter is not

the only “high level API” for supporting processes on the Web. For

example, ChickenFoot (Bolin et al., 2005) is a tool for programming

users scripts and it extends JavaScript by defining new commands

like “click()”, “enter()”, “find()”, etc., which make easier the

development of Web automation scripts. Although ChickenFoot

has a powerful and expressive language, it hardly contemplates

fine changes in the adaptation process and it prevents reuse of

scripts as these are really DOM-dependent. The tool Koala (Little

et al., 2007) proposes a more natural scripting language; for

example, the expression “click(‘search button’)” in ChickenFoot

would be equivalent to “Click ‘search button’” in Koala. Selenium

(Selenium, 2012) is another tool based on recording users inter-

actions. Although it was originally for performing UI tests, it is not

limited to that and, in the same way as ChickenFoot and CoScrip-

ter, it could be helpful for performing repetitive tasks.

Although these tools are really useful and we share the

philosophy behind them (in terms of putting the power on users

hands, trying to make as easy as possible the end-user develop-

ment, and trying to improve user experience), we think that the

use of the Web is not as rigid as these approaches need. All these

tools are based on registering all events (at least most of them)

that occur in the Browser in order to be able to repeat the same

sequence of events later. Anyway, behind each event that occurs in

the browser there is a user intend, concern or a task in mind. This

semantic weight behind each event is not taken into account, and

for us, it is important to do it in order to understand in a better

way which is the real user concern. In this way, we think that

these tools are more for automatic-use Web applications rather

than adapting them in order to add new contents (or adapt these),

functionalities (or adapt these), which could be useful in the

context of users tasks.

Moreover, we believe that it is necessary to go a step further in

those aspects which imply an integration of information among

several Web pages. In Firmenich et al. (2011) we showed how to

use the actual user concern (expressed in his navigational history)

as an additional parameter to adapt the target application. The

main constraint in our previous work was that the development of

the artifacts could be made only by experienced JavaScript

programmers. This is not only counterproductive for creating

new scenarios, but this mechanism is not good to analyze real

behavior of users on the Web.

2.3. Task and process modeling

Task analysis is widely recognized as one fundamental way to

focus on the specific user needs and to improve the general

understanding of how users may interact with a user interface to

accomplish a given interactive goal (Diaper and Stanton, 2004). In

the field of HCI many task model notations have been proposed for

capturing in models the various elements of user activity in

interactive systems Card et al. (1983).

In the last decades, several tasks notations have been devel-

oped as means to describe work carried out by users whilst

interacting with a system (Paternò et al., 1997). Despite the fact

that various specific task notations exist, they are mainly struc-

tured around two concepts: task decomposition (often repre-

sented as a hierarchy) and task flow (for showing the order in

which tasks are executed) (Limbourg et al., 2001). When ade-

quately combined, these concepts can provide an exhaustive and

complete representation of large quantity of information in a

single model. However, as discussed by Paternò and Zini (2004),

when applied to real-life systems, tasks notations end up in very

large, hard-to-manage models thus making task modeling a time-

consuming and sometimes painful activity.

More recent task model notations such as HAMSTERS (Martinie

et al., 2011) integrate structuration mechanisms such as modular-

ity in the tasks representation, reuse of sub-tasks elements, data

flow and communication features between task elements. These

features allows more flexibility in the organization of task-model

diagrams and allow us to envisage the use of tasks models for

describing complex interactive systems build upon the composi-

tion of individual tasks and their distribution into the user inter-

face (Luyten and Coninx, 2005).

However, the experience with task-model for building DUIs is

mainly driven but the construction of an application whose inter-

face is going to be distributed among different devices and plat-

forms (Luyten and Coninx, 2005; Manca and Paterno, 2011;

Melchior et al.). In order to integrate tasks that can be performed

in multiple Web sites, Daniel, Soi and Casati (Daniel et al., 2009)

propose the concept of user interface orchestration that is aimed

to describe how distributed user interfaces can be coordinated

around a single business process. These works are promising and

yet they demonstrate the value of tasks models for helping to

build complex distributed user interfaces.

2.4. Positioning the contribution with respect to the DUI paradigm

Systems which support the management of complex tasks and

of a huge amount of information usually require Distributed User

Interfaces (DUIs) for allowing multiple users to perform their tasks

in a (possibly) concurrent way. Several definitions of this kind of

interfaces co-exist and present interestingly complementary view-

points Vanderdonckt (2010).

In Lin et al. (2009), a UI distribution is defined as “the

repartition of one or many elements from one or many user interfaces

in order to support one or many users to carry out one or many tasks

on one or many domains in one or many contexts of use, each context

of use consisting of users, platforms, and environments”. This defini-

tion focusses on the notion of repartition of UI elements in several

locations. Another definition proposed by Elmqvist (2011) identi-

fies five dimensions for the distribution of UI components: input,

output, platform, space and time. This definition emphasizes the

fact that there is no need to distribute on all these dimensions to

be eligible for DUI paradigm. Demeure et al. (2008) also propose a

reference framework (called 4C) to analyze DUIs, which is com-

posed of four concepts: computation, coordination, communica-

tion and configuration. It builds on top of the design space

identified by Salber based on Production, Coordination and Com-

munication for groupware (Laurillau and Nigay, 2002).

In the contribution presented in this paper, we propose a tool-

supported architecture allowing information exchange and

dynamic tasks allocation between multiple distributed users

involved in a common task. This contribution heavily relies on

the exploitation of innovative Web technologies (as demonstrated

in the case study presented in Section 4.4). However, the proposed



framework could be transposed to any platform supporting multi-

user interactions. Indeed, the construction of a procedure (that

will be then allocated to a remote collaborator) is based on the

blending in one single entity of several user interfaces components

extracted from multiple Web sites. The same could be performed

in a similar way between multiple interactive applications.

According to Elmqvist's definition of DUIs (Elmqvist, 2011) we

can position our work as follows:

" Input: user input is distributed amongst the various users

exploiting multiple Web sites.
" Output: in our approach, there is no specific contribution on

output beyond the fact that output is tightened to input (which

is distributed as explained above).
" Platform: even though the contribution does not address

explicitly the distribution over various platforms, there is a

high potential of distribution due to the close connection of the

contribution with Web technologies.
" Space: the choice of Web technologies was explicitly made to

support distribution of user and of their tasks in space. Indeed,

the contribution directly targets at supporting multiple remote

users involved in collaborative activities as demonstrated in the

case study.
" Time: the contribution here mainly focusses on asynchronous

collaborations as augmenters are meant to be “sent” to remote

users who will exploit them at their will. Synchronous mechan-

isms could be added to the framework to provide communica-

tion support for performing the tasks but this has not been

presented here.

3. Overview of an Web augmentation

Our approach for building distributed user interfaces is based

on the CSN framework (Firmenich et al., 2010) and it relies on the

existence of Web augmentation tools that can support users' tasks

that use contents frommultiple Web sites. Hereafter we show how

to use Web augmentation tools to support users' tasks whilst the

navigation over the Web. We introduce Web augmentation tools

and the CSN framework. Later, we describe how such Web

augmentation tools built with our framework can be combined

to feature distributed user interfaces that can support processes

performed by multiple users.

3.1. Web augmentation tools and the CSN framework

The concept of Web augmentation, as defined by Bouvin

(1999), is used to refer to a set of tools that extend tasks users

can usually perform on the Web. Several strategies for implement-

ing Web augmentation tools exist (Diaz et al., 2010; Firmenich

et al., 2010; GreaseMonkey, 2012; Pilgrim, 2005; Scriptish, 2012).

In our previous work (Firmenich et al., 2010) we have presented

our own framework called CSN that support the development of

such Web augmentation tools called augmenters. Augmenters

feature generic functions that can be executed on client-side (i.e.

on the Web browser) and perform adaptation of DOM elements.

Tasks supported by augmenters might include automatic filling in

forms, highlighting text…

Fig. 2 illustrates the execution of an augmenter called pocket.

This augmenter was implemented under the metaphor of a real

pocket; thus users can collect data into the pocket and then carry

on such data whilst navigating the Web. Data can be simple text

values (such as “Sagrada Familia”, “Barcelona”) or text values with

semantic meanings (such as like “PointOfInterest” or “City”). Fig. 2a

shows how the augmenter is activated from a contextual menu

over a Web page to create an instance of the concept PointOfIn-

terest for the previous selected text “Sagrada Família”. Once

collected, the augmenter modifies the Web page in the client by

creating a new DOM element featuring an electronic post-it to

display the information collected by the user, as shown in Fig. 2b.

Fig. 3 illustrates another augmenter called highlight that can be

activated directly from the information previously collected by the

users using the augmenter pocket. In Fig. 3a, we show how the

Highlight augmenter is triggered by right-click the target Pocket

element, which opens the contextual menu with all the augmen-

ters available. Fig. 3b shows the Web page already augmented,

after executing the augmenter. Note that the PointOfInterest was

collected fromWikipedia and is available on other Web sites. Since

the augmenter was executed with the concept PointOfInterest, all

its instances were contemplated for being highlighted. The aug-

menter can be executed only with one instance, for example “La

Rambla”.

Currently, a large set of augmenters are deployed with the

CSN framework. These augmenters are grouped in Table 1 accord-

ing to the following categories: data collectors (which at aimed to

help users to collect information from Web pages), filling forms

(which are focusing on users tasks involving Web forms), select

Fig. 2. Illustration of the use of an augmenter pocket. (a) Menu in the augmenter tool for collecting data whilst navigating a Web page. (b) Items collected with the

augmenter pocket as they appear on Web pages.



data (in the Web page by editing CSS properties), navigation

(which adds elements to Web pages for helping users to improve

navigation) and accessibility (which concerns edits on the Web

page that are aimed to improve the accessibility of the Web page).

It is interesting to notice that augmenters can be used in

combination for supporting sequences of tasks. Fig. 4 shows how

the augmenters ConceptInstanceCollector and IconifiedLink can be

executed in the sequence in a row to create navigation from Web

pages to the Google Maps site using data previously collected.

Augmenters can be used to support users or to automate tasks.

For example, the augmenter UntypedDataCollector, which is a

particular implementation of the augmenter pocket without

semantic meaning for the values collected, acts as a memo or

electronic post-it that follows users through his navigation on

different Web sites. This augmenter helps users to remember

important information whilst navigating the Web. Another exam-

ple is the CopyDataIntoInput that can be used to automatically fill

in form fields with data previously collected by any augmenter in

the category data collector. These two examples clearly show that

these augmenters are not only extending what users can do on

Web pages (e.g. create electronic post-its) but that user

performance can be improved by automating some of the user

actions (i.e. automatically fill-in forms). It is also interesting to

notice that augmenters provide users with an alternative for

performing the tasks. For example, users can type the information

previously collected into a form field or trigger the augmenter

CopyDataIntoInput to perform the same action. At some extension,

such augmenters allow distributed control over tasks that users

perform on Web sites.

So far, we have shown examples where only plain text is

collected. However, this is not the only kind of information that

may be moved from one application to another. Sometimes is

convenient to show several parts of the user interface from different

Web sites at one time, such as what Mashups or Web Integration

approaches do. In this work, users can manage DOM elements with

the same flexibility as plain text, i.e.: collect DOM elements into the

Pocket under some semantic label, and then performing adaptations

based on this semantic label using augmenters. As a first example, in

Fig. 5a we show how a user can collect a specific DOM element from

Booking.com and then insert it in other Web site. This could be made

by executing the corresponding augmenter UseForReplace that

replaces the element which is selected by the user with the collected

DOM element into the Pocket.

Fig. 5b shows the execution of this augmenter in the Airfrance.

comWeb site. The result of the adaptation is shown in Fig. 5c. Note

that although the augmenter can be executed from the concept

HotelInfo, and in this way the DOM element inserted may vary if a

different DOM element was collected under this semantic tag.

The example from Fig. 5 shows how to apply concern-sensitive

integration of UI components. Here, the user has finished the task of

booking a hotel room, and when he was going to buy flight tickets,

informations about the hotel (name, address, both check-in and check-

out dates, etc.) were available in other Web page. This kind of

integration allows users to interact with parts of the UI from an

external Web site in the current one. For example, if the collected

DOM element contains links or forms, then the user can interact with

this element when inserted in other existing Web page.

3.2. Users of the CSN framework

The CSN framework is supported by the means of a Firefox

plugin. A small set of basic Web augmenters are deployed with the

installation of the plugin including the before mentioned highlight

and pocket. However, it is possible to create and install additional

augmenters into the plugin. Therefore, there are two kinds of users

of the CSN framework:

(i) End-users who take advantage of existing augmenters

deployed with the CSN plugin; these users benefit of these

augmenters during navigating by “collecting” information to

be used when adapting the user interface.

(ii) Developers who create and distribute new augmenters that can be

played in the Web browser. Despite the fact that a large set of

augmenters already exist, creative developers can use the frame-

work to implement new augmenters at they will. With this

structure we can put the power on the crowd, allowing any

Web developer to create his own augmenter. Moreover, new

augmenters can be shared by other users of the tools implemen-

ted with the CSN framework. This crowdsourcing development

has been proved successful in other communities, for example

with those using GreaseMonkey scripts (GreaseMonkey, 2012).

3.3. Creating and describing a simple augmenter in the CSN

framework

This section shows how new augmenters can be created and

instantiated into the CSN Framework. Overall, there is no need to

Fig. 3. Illustration of the use of an augmenter highlight. (a) Triggering the

augmenter highlight. (b) Highlight effect on Web page.



create new augmenters to follow our approach for building

distribute user interface. However, the example below illustrates

the potential of the framework to create new behavior and user

interfaces that can be useful for building DUIs for the Web.

Generally speaking the CSN framework provides a template

that can integrate a file containing a JavaScript functions in which

a new object has to be defined inheriting from AbstractAugmenter,

as illustrated by Fig. 6. In order to create an augmenter the

following elements should be described: (i) Metadata information

used to identify the augmenters; (ii) a method getAugmenterIn-

stance which is used to get augmenter instances; (iii) a class

definition; in the example the class HighlightingAugmenter is the

new augmenter object. It is also necessary to provide a value to the

label instance variable; this value is used to create the menu

showing to users that the augmenter is available for use; and (iv)

an extension point of heritance: the last line from the example

shows how the new augmenter is a subclass of AbstractAdapter

(the extension point for augmenters).

By following the simple template above, developers can create

a huge set of augmenters to feature adaptations on the DOM of

the Web pages where the augmenter is triggered. The use of the

template ensures that the JavaScript functions are compatible

with other augmenters in the framework. Thus, a community of

developers can create augmenters and share them with all other

developers and end-users of the CSN plugin.

4. Building DUIs with Web augmenters

In this section we present how we have extended the CSN

framework to create distribute user interfaces.

4.1. The approach in a nutshell

The overall idea behind our approach is that it supports

collaboration between users that accomplish complex processes

through distributed interactions over many Web sites. Such

processes, called procedures here, are built by assembling basic

building blocks provided by the CSN framework, each augmenter

supporting a single user tasks. Different tasks in a procedure can be

performed in different Web sites but one augmenter is instantiated

to support the user interaction with a specific Web site. The user

interface of each augmenter features elements that are extracted

from the user interface of the Web site instantiated by the

augmenter. The corresponding user interfaces for the whole proce-

dure is thus a composition of elements that are originally distrib-

uted across different Web sites.

Not all user tasks are (yet) supported by a specific augmenter;

so that the user interface might include instructions for the user to

perform certain tasks manually using the functions already sup-

ported by the Web browser. For that purpose we use the defini-

tions made in previous works (Byrne et al., 1999; Heath, 2010) that

describe what users can do on a Web browser. These tasks, that we

call here “primitive tasks” include actions such as “go to a Web

page”, “locate information”, “configure the Web browser”, “fill in a

form”, etc. The primitive tasks used in our approach are heavily

inspired by the work of Byrne et Ali (Byrne et al., 1999). However

we assume that, according to new features implemented by most

recent Web browser, the set of primitive tasks could be extended

in the future. Fig. 7 provides a view at glance of the approach.

The composition of the user interface is done by creating a

sequence of individual tasks, which is formalized by a Domain

Specific Language (DSL) and stored as a XML file. A tool called

procedure player is able to parse that XML file and reconstruct the

procedures on the Web browser. It includes functions for support-

ing the collaboration between users. As we shall see, the approach

includes three phases, as follows:

" Definition of Primitive and augmentation tasks: it concerns the

inclusion of augmenters in the CSN framework. This phase required

a highly skilled Web developer who is able to program augmen-

ters. Whilst this task is demanding, the work should be done once

and it will benefit many more users. The development of new

augmenters is out of the scope of this paper. Nonetheless, the

Table 1

Set of augmenters currently deployed with the CSN framework.

Augmenter Category Description Execution

mode

UntypedDataCollector Data collector Quickly add some data into the pocket without semantic weight User/system

ConceptInstanceCollector Data collector Add conceptualized data into the pocket, for example, for the concept “City”“ collect the text

“Barcelona”

User/system

DOM Element Collector Data collector Collect a specific DOM element into the Pocket User/system

Remote Collector Data collector Collect data from a remote Web application (not the current Web site) System

RegularExpressionBasedCollector Data collector Add data into the pocket based in a regular expression, for example, for collecting e-mail addresses. System

MicroformatBasedDataCollector Data collector Add data into the pocket based in Microformats annotations. User/system

CopyDataIntoInput Filling forms Copy a value form the Pocket to the select input User/system

AnnotateInputWithMicroformat Filling forms Annotate the Web forms inputs with Microformats User/system

MicroformatFormFiller Filling forms Based in the Microformats found in the current Web page User/system

Highlight Select data Highlight selected data from pocket in the current Web pages User/system

Remove Select data Delete selected element from the current Web page User/system

WikiLinkConvertion Navigation Convert selected data into links to the corresponding Wikipedia article User/system

IconifiedLink Navigation Add links to Google Maps and Flickr User/system

PopUpMessage Navigation Shows a Popup Message, under certain circumstances, where is suggested to the user some links for

being followed.

System

NewNavigationMenu Navigation Add new navigational menu System

ConvertPocketIntoMenu Navigation Transform each Pocket element into a Link relevant for the current application or user concern System

DOM Inject Integration Inject the selected element of the Pocket (only DOM Instance elements) as a child of the selected

element

User/system

Replace DOM element Integration Replace an element of the current Web page for the selected element of the Pocket (only DOM Instance

elements)

User/system

Add floating DOM element Integration Insert as a floating UI component the selected element of the Pocket (only DOM Instance elements) User/system

ReplaceImageWithAltText Accessibility Replace all Images an put in place the alt text System

IncreaseTextSize Accessibility Increase the size of the target text System



approach is delivered with a large set of tasks, so that users do not

need to create new augmenters to create their procedures.
" Composition refers to the definition of procedures by composit-

ing tasks available in the repository. Users have to select a task

from the repository to create a sequence of tasks. This sequence

is stored in the factory by the means of a DSL describing all

tasks in the procedure; this step is repeated until the composi-

tion is finished.

Fig. 4. Combined use of augmenters ConceptInstanceCollector and IconifiedLink. (a) Collecting ‘Points of interest’. (b) Applying the augmenter IconifiedLink over collected

‘Points of Interest’. (c) Result of the augmenters IconifiedLink over the previously collected point of the interest. At the left, a Web page augmented with the icons that feature

a link to the Google Map Web site. At the right, the corresponding navigation which integrates the previously collected ‘Points of interest’ as an entry point for Google Maps.



Fig. 5. Collecting DOM elements with DOMElementCollector augmenter and using the element in other Web page. (a) Collecting DOM element from Booking.com.

(b) Execution of UseForReplace augmenter. (c) Result of applying Use For Replace augmenter.



" Execution: this phase features a player that is concerned by the

execution of the procedure previously encoded by the DSL.

As shown in the figure above, procedures provide an alter-

native for the interaction with Web sites by automating users'

tasks but they do prevent users from interacting directly with

Web. Thus the user input is shared (or distributed) between the

procedure player and the Web sites.

It is important to say that procedure player integrate functions

that also support the collaboration between users, according to the

policies for task synchronization described by the means of a

Domain Specific Language (DSL).

4.2. A DSL for describing composition of users tasks on Web

applications

In this section we provide a view at glance about the DSL that

we have developed to specify the procedures and tasks in our

approach. Task composition is defined according with the DSL

metamodel shown in Fig. 8. This metamodel defines those ele-

ments contemplated by the DSL and their relations.

Basically, a procedure defined with our DSL is realized as an

XML file containing a list of tasks. For each task additional

properties can be added including preconditions, postconditions

and attributes. The DSL elements and the corresponding syntax

include the following:

" Primitive tasks: the tag oprimitivetask/4 describes

these tasks. The current list of primitive tasks supported is

based on Byrne et al. (1999).
" Augmenters: the tag oaugmentationtask/4 describes

these elements. The list of augmenters depends on what is

currently installed on the users' browser.
" Composed tasks: using the tag ocomposedtask/4, com-

posed tasks are used to group a set of subtasks (either

primitives or augmenters) in a single block.

Fig. 6. JavaScript template for building augmenters accordingly to the CSN framework.

Fig. 7. Overview of the process leading to the creation of DUIs using task composition and Web augmenters.



" Preconditions: preconditions are used to decide whether (or

not) tasks will be executed or not according to the information

is available. These are described in the DSL with the tag

oprecondition/4 which can be a:

○ Precondition about collected data: for conditioning the

execution of a task according to the collected data. For example

the precondition PocketHasInstanceOf() allows specifying that a

task will be executed if the Pocket has an instance of a

particular concept, for example, a PointOfInterest instance.

○ Precondition about navigational history: for conditioning

the execution of a task according to the Web applications

used. For example, WebApplicationUsed checks whether a

particular Web site (defined by a parameter: a URL) ever

appears in the browser navigational history.
" Post-conditions: post-conditions are specified to determine

the effect of executing a particular task, and the tag opost-

condition/4 is used for this purpose. As shown by Fig. 8,

there are four possible post-conditions. For example, AffectCur-

rent is used to specify that the execution will modify the

current Web site.
" Repetition, optional and automatic properties: both Primi-

tive and Augmentation tasks have three intrinsic properties.

A repetition property specifies if the task may be executed more

than once. The optional property allows skipping the execution

of the current task. If the property automatic is true, then the

player automatically triggers the task. In this case, all the

attributes needed by the tasks need to have an associated

value. Defaults values, false in the three cases, will be used if a

task definition does not provide a value. In addition to these

properties, each task can be set as synchronized.
" Attributes: refer to data required to accomplish tasks. Ex.: the task

Provide URL needs an attribute URL. Attributes, with their name

and values, must be defined for each task in their specifications.
" DUI component: this property, only valid for Augmentation tasks,

refers to DOM elements that may be extracted from Web sites and

then associated with the task. The DUI component may be a

specific DOM Element for static ones, and an xPath value in order

to get the DOM element dynamically when the tasks is executed.

4.3. Tool support

We have developed tools as a proof of concept for our

approach. Our tools help to edit, execute and synchronize the

execution of procedures performed by multiple users on multiple

Web sites. The tool presented hereafter is an extension of the

previously described CSN framework, which allows developers to

create and install new augmenters. The tools are delivered with a

set of basic augmenters plus a set of primitive tasks that can be

used in the composition of procedures. Fig. 9 shows the general

architecture of our tools which relies on two main components:

" A task repository is a cloud service hosted in a Web server

where users store tasks, augmenters, procedures and history

information about the execution of procedures; and,
" A browser plugin available to the client that supports both the

edition mode (allowing composing new sequences of tasks)

and the execution mode (play task sequences).

In Fig. 9 we show how the user 1 can use the tool (i.e. task

edition mode) in order to create a new procedure by composing

basic tasks. Once the procedure is created, he can play and share

his creation with other users. Once a procedure is created, the user

can upload it into the repository. Other users can then download

the procedure from the task repository and execute it in their Web

browser using the plugin (i.e. task execution mode). It is note-

worthy that the edition and execution of procedures are not

supported simultaneously by our tools; indeed, a user cannot

modify a procedure that is being executed by another user.

The synchronization between users, which is an important aspect

for supporting collaboration, is implemented and delivered as part of

the architecture of the tool. In the current implementation the user

who creates and publishes a procedure will be notified when another

user executes it. Usually, the synchronization between users will

always occur at the end of the execution of a procedure. Nonetheless,

tasks defined as synchronized will be updated in the task repository

immediately after their execution in the client. Users can at any

moment explore the task repository and check the current state of

execution of the procedures they have published there.

The task repository has several responsibilities, including:

" Managing user profiles: users profiles are needed since several

preferences and partners (other users with which usually

collaborate in procedures executions) may be specified.
" Storing augmenters: this is a repository from where users can

download and install new augmenters.
" Storing procedure: this is a procedure repository from where

users can get procedures defined by other users.

Fig. 8. The DSL metamodel.



" Storing procedure execution states: when users are collaborat-

ing in order to facilitate the procedure execution of each other,

they can upload the states of their own execution; then, other

users may take advantage of tasks which have been already

executed with concrete data.
" Allowing synchronization between users: this is achieved by

allowing users to share their procedures execution states with

specific partners.

The client-side plugin allows users to:

" Edit and create new procedures by combining tasks (edition

mode): this implies to modify the composition of tasks (both

augmentation and primitive tasks) and the information these

tasks are expecting to be executed.
" Execute a specific procedure (execution mode): by selecting

one of the procedures locally installed, users may run it and

then facilitate their tasks.
" Share both new procedures and information about execution

of these: in the middle of an execution, we allow users to

share the state of the procedure execution. Then, users may

share with their partners the information used for the

procedure.

The same client-side tool edits and executes procedures. Fig. 10

shows some screenshots of the tool in the edition mode. Each of

the three screenshots (a, b and c) show at the top the main menu

the buttons “run”, “save” and “export”, that correspond to com-

mands related to the whole procedure being edited. Just above the

main menu, Fig. 10a shows a vertical menu that is used to select a

task that will be used in the composition of a procedure. The

options: Primitive Task, which can be deployed in a second menu

as shown by Fig. 10b; and Augmentation Task, as shown by Fig. 10c.

These menus are built dynamically with the tasks locally available.

If Augmentation tasks installed locally are not enough to perform

some task, the user can install new augmenters. Once a particular

task is selected; it is included in a list that appears just below these

menus as shown by Fig. 11.

Using the tool in the edition mode, users can initialize tasks for

working with a specific Web site. For example, Fig. 11a shows how

the user edits the attribute “Provide a URL” task by accessing the

task's options from the contextual menu. In this case, the task

“Provide a URL” only has one attribute to be specified: the URL.

Note that in Fig. 11b the URL entered is a regular expression (notice

the “
n
”). This option is just for giving flexibility to the whole

procedure. With this value for the attribute, the task would be

considered completed once the user visits a Web site whose URL

matches with this regular expression. The execution mode is

illustrated by Fig. 11c. The tool shows five tasks, in which the first

two (i.e. “Provide a URL” and “ConceptInstanceCollector”) were

already performed; this is made visible by the different colors

used. In the case of “Provide a URL”, the value has been changed to

a specific Wikipedia article about Barcelona.

It is also possible to group sequences of tasks as shown in

Fig. 12. For that, users must select two or more tasks, and then an

option “Group tasks” on the contextual menu will appear. Simi-

larly, if tasks are grouped, an option will allow ungrouping them. It

is also possible to change the order of tasks in the list by selecting

the options “Move up” or “Move down”.

Once a procedure has been completed, users might share it

with friends and colleagues. This task can be done by selecting the

button “Export” as shown in Fig. 13. In edition mode (see Fig. 13a)

the user can decide to: upload the procedure into the repository,

send it via email to other users, or both. When the procedure is

uploaded into the repository, it becomes available in a Web server

for all users using the plugin. The option ‘share with’ is used when

a procedure is intended to be shared with a few users. Fig. 13b

shows the export window for the execution mode. In this mode,

share the procedure means to allow other users to see with which

information the user has executed the procedure. Since the user

could have used confidential data for performing the tasks, he can

choose from the list those tasks for which the attributes values

must not be shared. This is made by selecting the tasks with

private information from the list.

Finally, in Fig. 14 we show the main options to manage

procedures. On the one hand, the main menu allows users to

create a new procedure. On the other hand, by choosing “Manage

procedures” option, the user can manage the procedures already

installed in his browser. In Fig. 14, we show the only procedure

installed, named “Conference trip planning”. By selecting one of

the procedures listed, the user can execute it, edit it, or see the

previous executions made by himself and those executions shared

by his partners.

4.4. Distributing UI components inside of procedure tool

In this section we show how both the approach and the tools

support DUI by combining the use of some augmenters and some

properties contemplated in the DSL. For that we propose two

scenarios concerning (i) the inclusion of DOM elements into

Fig. 9. Overall architecture of the approach describing the composition of tasks in the DSL.



procedures and their corresponding interactors issued from the

original Web site; and (ii) user collaboration via interaction with

DUIs components embedded into procedures.

4.4.1. Embedding DOM elements into procedures

Users can use the procedure tool to collect graphical compo-

nents of Web sites that are encoded as DOM elements and embed

them into procedures. This operation is done from the window

task edition as shown in Fig. 15. From there, users can select the

option “Select DOM Element” and then explore the Web page to

pick the corresponding DOM element. DOM elements are auto-

matically detected by the tool and shown in highlight (in yellow)

when the user moves the mouse over then. The selection of the

DOM element is made by clicking on a highlighted area; this action

makes the corresponding DOM elements embedded into the

procedure tool as show by Fig. 15.

By collecting DOM elements, users are not only collecting

information but they are also capturing the inner behavior

necessary for interacting to the original Web site. Indeed, collected

DOM elements might contain anchors, links and other interactors

which users can use in the distribution of the user interface. Such

as interactors becomes available when users share their

procedures with other users. These elements are not only static

copies DOM elements. To illustrate this, we provide in Fig. 16 a

small scenario: let us assume a user wants to share for a while his

Gmail mailbox with a friend without providing his login and

password information. For that, the user creates a procedure

embedding the form fields for logging into Gmail as illustrated

by Fig. 16a. At first the user creates a task and associates the

corresponding DOM element that contains all the form fields for

performing a login into Gmail. The embedded DOM elements are

shown in Fig. 16b. Then, the user types his login information on

the procedure as shown in Fig. 16c. In the sequence, the user

records the procedure and sends it his friend.

Fig. 17 illustrates the user's friend view of the procedure in the

player mode. As we shall see, the procedure contains the DOM

elements (i.e. the login) required to access a Gmail account in

Spanish as this was the version of the Web site used for creating

the procedure. Indeed, the first user created the procedure under

an English version of Firefox running on Mac OS (Fig. 16) whilst his

friend plays the procedure under an English version of Firefox

running on Window 7 (Fig. 17). Assuming that the other user can

read Spanish, the only thing he needs to do to access his friend's

account is to click on the button “Acceder” (i.e. submit in Spanish)

which is embedded into the procedure as part of the login form

Fig. 10. Edition mode allowing task selection (either primitive tasks or augmenters). (a) Menu of tasks (primitive/augmenter). (b) Selection of primitive tasks. (c) Selection of

an existing augmenter.



shown in Fig. 17; this action will grant the access to Gmail (as

shown in the right side of Fig. 17) without knowing his friend's

password. This scenario might look artificial at first sight but it

illustrates how powerful our approach is with respect to the

distribution of the user interface.

5. Case study

This section illustrates our approach by the means of a case

study concerning a trip planning to attend a conference. Our main

concern here is to demonstrate the creation and execution of

complex procedures that combine both manual and automated

tasks. For that, let us assume that two friends named Peter and

John are planning to go together to a scientific conference. To

accomplish this goal they should visit the conference Web site for

getting general information (such as location, dates, etc.), collect

points of interest at the destination, book flights and hotels.

The first step is to define a sequence of minimal actions that

they should do to accomplish this goal. Then, they can share

informations during the process. Both Peter and John have

previously installed the plugin as described in Section 4.3.

Peter decided to create a procedure as it is shown at the left-

side of the browser window in Fig. 18. The procedure is built

incrementally while Peter is navigating the different Web sites

required to accomplish the task. As he collects data during his

navigation, it becomes recorded as part of the procedure itself. For

example, the first tasks in the list is “Provide a URL” where we can

read the parameter “URL¼http://www.interact2013.org” indicat-

ing the Web site visited by the user. We can also read that “Provide

a URL” is a primitive task, which means that users should inform

themselves which Web site they want to make part of the

procedure. Because users might have many browser windows

opened at the same time to perform different tasks, it is important

to let users inform whether or not a specific Web site been

visualized should be part of the procedure he has in mind. That

Fig. 11. Edition mode showing how to define properties of tasks (a and b) and execution mode (c). (a) Edition mode. (b) Edit task attributes. (c) List of tasks in the execution

mode. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 12. Grouping tasks.



is why this task is set as primitive and therefore performed

manually by the user.

As we shall see in Fig. 18, the second, third and fourth elements

in the list (lines 2–4) concern the augmenter ConceptInstanceCol-

lector that was used three times to collect data from the Web site;

respectively the destination, dateFrom and dateTo. For that, the only

thing Peter had to do is to point at information on the Web page

and trigger the augmenter, so that a copy operation is done. The

data became part of the procedure (see the parameters name and

value next to the augmenter definition). Moreover, these data

become available when Peter is visiting the Web site for booking

his flight at expedia.com (line nine). As that data is recorded as

part of the procedure Peter can reuse it when filling in the form for

booking the flight; moreover, Peter can configure the augmenter

CopyDataIntoInput to automatically fill in the form with the

appropriate data as described in line 10 of Fig. 18. The data used

for a procedure remain available during the entire execution.

Fig. 19 shows the manual tasks (i.e. primitive tasks) that are

defined to indicate what users have to do for the payment. We

assume that Peter has represented these tasks to provide con-

textual help for accomplish the whole tasks. Indeed, in some case

manual tasks do not need to be explicitly represented.

The whole procedure created by Peter is detailed in Table 2.

Notice that tasks have been grouped and that for the sake of clarity

the Web sites where tasks are performed have been included. The

numbers in the first column indicate the order of execution of

tasks. Preconditions and post-conditions have not been specified

for the case study (Figs. 20 and 21).

So far we have shown how Peter has created the planning trip

procedure. But then, he decides to share it with his friend John. For

Fig. 13. Using functions upload and sharing in the tool. (a) Edition mode. (b) Execution mode.

Fig. 14. Main menu and procedure manage window.



that Peter triggers the option “export” in the main menu, execu-

tion mode (see Fig. 13b) and then a dialog menu appears with the

list of tasks in that procedure. It is noteworthy that the procedure

contains all data used by Peter, including his credit card informa-

tion that he does not want to share with John (Fig. 20). So that

Peter cleans the values associated to these tasks whilst sending the

procedure to John.

John will be notified by email that a new procedure is made

available by his friend John. By clicking in the URL provided in the

email he can download that procedure that will appear in his

browser as shown in Fig. 21. Notice that John sees the procedure in

the execution mode of the tool. Most of the tasks contain

attributes with data previously provided by Peter, which makes

John's tasks easier to perform, except by data associated to tasks

that Peter decided do not share with John.

When John finishes his procedure he can share this information

with Peter. The procedure for sharing information is similar to that of

sharing a procedure. The data is sent to the task repository that will

notify Peter that John has being executing the procedure. By selecting

the combo box as shown in Fig. 22, Peter can see the values he has

used (Fig. 22a) and those provided by his friend John (Fig. 22b).

Note that, for example, the execution perform by John is not

finished (note the two visible tasks in the list, which appear as not

completed). Besides that, comparing both executions, we can see

that John has used different information in the tasks; for instance,

he has collected different Point of Interest.

6. Evaluation of the tools

The tools presented above are fully operational and they can be

used to coordinate distributed user interactions over the Web. In

order to highlight the contributions of these tools, we present in

this section a preliminary evaluation.

The evaluation concerns the procedure player. We assume that

user performance could be an important factor for adopting the tools

proposed in this paper. To investigate this, we have performed a user

testing experiment that was aimed at investigating whether users

perceive our tool as usable and whether they were able to perform

tasks faster using our tools than navigating individual Web sites. The

user testing basically consisted of observing users' performance and

comments whilst users accomplish tasks (Han and Tokuda, 2008).

The study was run in a controlled room equipped with a PC running

Unix and a Web browser Firefox 19 which integrates the procedure

tool and a full set of augmenters. A chronometer was used to record

user performance but sessions were not video-taped.

At first participants were asked to fill in a pre-questionnaire in

order to collect demographic data and their experience with Web

applications. Then, we have explained to the participants the goals

of the study and they were asked to think aloud during the testing

session. Participants were also introduced to our tools and get a

short explanation about how it works. In order to make sure that

all participants would receive the same information the instruc-

tions were provided by a 6 min video demonstrating the use of the

procedure player.

Then we have asked participants to envisage a professional

travel to the conference INTERACT with a colleague, named John,

who is keen to share his trip plan with him. The travelers had to

book a hotel in the city where the conference takes place. We

assume that John had found the cheapest hotel offers at the Web

site booking.com and that he was keen to share this hint. However,

the participants had to make the arrangements for the trip alone.

This general scenario encompasses the main tasks:

" Task 1 (T1): To get general information about the conference

and the cheaper hotel.
" Task 2 (T2): To search at booking.com for a room in the hotel

during conferences dates (check-in: first day of the conference;

check-out: last day of the conference).
" Task 3 (T3): To book and pay for the room.

In order to compare the value added by our approach, we have

asked participants to perform this trip planning with and without

our tools. Whilst not using our tools, the trip planning featured a

printed version of an email that contained all John's trip arrange-

ments; then the participant had to visit the Web sites indicated in

the email to perform the tasks. Whilst using our tools, the scenario

included the trip planning made by John using the procedure

editor; in this case John's email contained a link fromwhere it was

possible to download the procedure from the task repository.

Thus, to execute the procedure the participant should have to

perform the following additional task:

" Task 0: To import the procedure.

Fig. 15. DOM selection from Web site and later integration inside of procedure tool. (For interpretation of the references to color in this figure, the reader is referred to the

web version of this article.)



Fig. 16. Creation of a procedure embedding DOM element login using the procedure plugin in English version of Firefox for Mac OS, with Gmail in Spanish. (a) Inclusion of

DOM element: login form. (b) Embedded DOM. (c) Customizing DOM.



After performing every task, participants were asked to assess

from 1 to 5 the difficulty to perform the task (1 from very easy to

5 very difficult). In order to measure efficiency we took the time

consumed by each user task. Effectiveness was measured in terms

of the number of tasks users could finish.

At first they were asked to perform the tasks without the

tools. Then they were allowed to perform the tasks using the

procedure player. After accomplishing the tasks with and with-

out the procedure player, participants were asked to fill in a

form used to determine the satisfaction degree, including: what

they liked in the tools, what they did not like, whether they

experienced difficulties in activating the tools, which task were

difficult to perform, whether (or not) they were aware of the

actions using the tools. Finally, a System Usability Scale ques-

tionnaire (i.e. SUS (Brooke, 1996)) was used to determine tools

usability.

For this study about the usability of our tools, eleven partici-

pants (9 males and 3 females, aged from 20 to 33 years old,

Fig. 17. Running the procedure plugin under an English version of Firefox for Windows 7.

Fig. 18. A procedure for planning a trip as it is visualized when navigating the Web. At the left-side, the plugin with the list of tasks (including both primitive and

augmenters). At the right-site the current Web site.



Average¼27.64, SD¼3.79) were recruited at the University of La

Plata, Argentina. Among the participants we counted two PhD,

7 PhD students; the rest of them were undergraduate students.

All participants were experienced Web users (i.e. 45 years

using the Web) who browse the Web as a part of their daily

activities. The pool of users was selected by convenience and

it is not representative of the population of Web users. How-

ever, each user performed the manual task and used the

Fig. 19. Tasks related to payment in a procedure.

Table 2

Peter's procedure for planning a trip to attend a conference.

User tasks Web site Task (primitive/augmenter) Attributes

1. Visit conference Web site – Primitive task: provideURL url

2. Collect data about the conference www.interact2013.org ConceptInstanceCollector conference place

ConceptInstanceCollector destination

ConceptInstanceCollector dateFrom

ConceptInstanceCollector dateTo

3. Visit site for getting information about destination – Primitive task: provideURL url

4. Collect points of interest at destination www.interact2013.org nConceptInstanceCollector point of interest

5. Visit site for booking a flight – Primitive task: provideURL url

6. Search for flights www.expedia.com CopyDataIntoInput destination

CopyDataIntoInput dateFrom

CopyDataIntoInput dateTo

Primitive task: submitForm

7. Go to payment page www.expedia.com Primitive task: clickButton

8. Pay for flights booking www.expedia.com Primitive task: enterString card number

Primitive task: selectMenu card type

Primitive task: selectMenu Primitive task: selectMenu expiration month

Primitive task: enterString expiration year

Primitive task: submitForm card holder

9. Collect data about flight booking www.expedia.com ConceptInstanceCollector flights number

ConceptInstanceCollector flight set

10. Visit site for booking hotel – Primitive task: provideURL url

11. Search hotels www.booking.com CopyDataIntoInput destination

CopyDataIntoInput dateFrom

CopyDataIntoInput dateTo

Primitive task: submitForm

12. Pay for hotel booking www.booking.com Primitive task: enterString card number

Primitive task: selectMenu card type

Primitive task: selectMenu Primitive task: selectMenu expiration month

Primitive task: enterString expiration year

Primitive task: submitForm card holder

13. Collect data about hotel ConceptInstanceCollector link of hotel's Web page

Legend: –: task can be performed from any Web site; n: task can be performed one or more times.

–



procedure player, so it is still possible to compare the relative user

performance.

All participants in the study completed both manual tasks and

used the procedure player. Overall the users judged the tasks with the

procedure player easy to follow. In a scale from 1 to 5 (1 is very easy,

5 very difficult), the average score for tasks were: Task 0¼2.6, Task

1¼1.4, Task 2¼1.6, and Task 3¼1.18. As indicate in Fig. 23 the task

performance (except of the task 0) was improved using our tools.

All participants reported positive comments about the tools.

The overall the results provided by SUS were also positive with an

average SUS score of 75.2. However, three participants given score

below 70 points to the SUS (i.e. 50, 55 and 67.5) and a single user

gave 100 points to the procedure paper. Moreover, participants

provided several suggestions for improving the usability of the

tool such as providing explicitly mark for informing when the set

of tasks has been finished. In general participants think that the

tools help to navigate among the diverse siteWeb and they appreciate

the automation of tasks. Despite the fact that the user input was

distributed between the procedure player and the Web sites, none of

the participants raised comments about the fact that these two ways

of interacting with Web sites would be conflicting. However, some of

them (N¼5) mentioned they would be appreciate it if the tools could

automate the tasks without asking users to follow the list.

These results are rather preliminary. They do not take into account a

detailed analysis of the synchronization of tasks between the users.

Moreover, it only covers the execution of procedures. Yet it shows some

evidence of use for the tools and an initial positive feedback. Indeed,

the study shows that users can very easily perform collaborative tasks

in distributed Web sites. Users indeed appreciated the support for

planning tasks in an integrated manner. User performance was greatly

improved using the approach. However, further studies will be

required to investigate the usability of the tool with a larger population.

Fig. 20. Sharing a procedure with other users.

Fig. 21. Visualization of the procedure in the execution mode.



7. Conclusions, lessons learned and future work

In this paper we have presented a novel approach for building

Distributed User Interfaces (DUIs) aimed at helping users to

collaborate whilst navigating multipleWeb sites. These DUIs feature

a list of tasks that are constructed by assembling building blocks

from a repertoire of manual Web tasks (called primitive tasks here)

and a set of components calledWeb augmenters that automate user

tasks. By assembling these tasks, users can create their own

procedure. The composition mechanism can be described by a

dedicated DSL and supported by a tool featuring a plugin. The

distributed aspect of this interface is duly discussed in Section 7.

Fig. 22. Visualization of values used in procedure. By selecting the user in combo box, Peter can compare his values with the values used John. (a) Values used by Peter to

accomplish the procedure. (b) Values used by John to accomplish the procedure.

Fig. 23. Average user performance for accomplishing tasks manually and with the procedure player.



The key aspect of this contribution is the fact that our approach

is able to include small pieces of software components, called Web

augmenters to support tasks users performing over the Web. By

assembling these elements in a list, we argue that we can create a

dedicated procedure featuring a distribute user interface that

helps users to accomplish a given goal. It is important to notice

that, to reach some goals, users still have to act on the Web

browser. For that, the approach allows the inclusion of primitive

tasks which are used in the composition to provide a kind of

contextual help, so that users will know what to do whilst

navigating a particular Web site. The DSL that is delivered as part

of our approach allows formalizing the task composition. It is

noteworthy that this is only possible because the repertoire of

tasks users can perform are limited by the number of actions users

can do on a Web browser. The elementary user tasks of a Web

browser are simple and very well known in the literature (Byrne

et al., 1999; Heath, 2010). Web augmenters can automate some of

these tasks and perform adaptations on Web pages to be visua-

lized in the Web browser. These new components let users

perform additional tasks that go beyond of traditional Web

users. Nonetheless, these are extensions that should be coded

by developers. The impact of the developer community in

developing scripts is known in the GreaseMonkey community

(GreaseMonkey, 2012) and motivates this kind of research.

Some of the aspects of procedure modeling and execution

discussed in this paper might resemble some techniques for end-

user programming (Lieberman et al., 2006; Lin et al., 2009). In the

past, experiments with mashups tools for end-user programming

(Lin et al., 2009) have demonstrated that some visual tools such as

CoScript (Bogart et al., 2008) could be used to create scripts

integrating data from many Web sites. Nonetheless, we consider

that a direct comparison would be unfair as the skill required to

compose procedures with Web augmenters is more close to what

we expect from Web developers than from ordinary Web users.

The current implementation is limited to the information

exchange between users and the tasks they have performed. In

the section case study, we have shown how two users can report

to each other the values they have used to accomplish a trip

planning. However, it would be possible to envisage a more fine-

grained collaboration on which users could distribute the tasks to

be performed in a procedure. We are currently working on our tool

to increase the level of interaction between tasks performed by

users. One of the aspects that we are investigating is to merge

procedures developed by two (or more) users, where each

procedure contains tasks that are performed by individuals in

order to reach a high level goal that is represented by the

combination of several procedures.

Given the fact that this approach is very new, the tools have

only been used by a limited number of users that were specially

recruited to an early trial. Nonetheless they seem enough to prove

the overall concept. Future work will include user testing of the

tools with a larger population. Such empirical study should

investigate in detail the usability of the tool in creation mode

and the synchronization aspects of tasks between users. Moreover,

we are planning to investigate how users perceive the introduc-

tion of new Web augmenters into the plugin.

In parallel we are working on the development of new

augmenters that could be supporting a higher level of automation

of user tasks. In the near future we are planning to make the tools

accessible for the public so that we can start investigating the

usability and the user experience with our tools. We are also

planning to integrate more function in our tools for supporting a

better communication between the users during the execution of

distributed procedure. In a long term run we want to investigate

the use of procedure descriptions as a support to the analysis of

the user activity over multiple Web sites; by doing so we hope that

we could optimize the processes used by users to accomplish their

tasks on multiple Web sites.

Rather than a definitive solution to the problem of integrating

data among multiple Web sites and supporting users collaboration

whilst navigating Web application, this work proposes new

challenges for the development of Distributed User Interfaces over

the Web. For example, how to model and describe user tasks that

can be scattered in multiple Web sites? How to help users perform

these tasks efficiently? How to automate user tasks over the Web?

How to build interfaces that help users to share information about

their activity over the Web with their friends and colleagues? How

many pieces of the user interface of Web sites can be extracted and

then rearranged to feature a new sequence of tasks? How to deal

with Web technology to provide better support to users' tasks on

multiple Web sites? Certainly much work remains to be done but

the results that we obtained with our approach are promising for

investigating these questions.

Annex. XSD Specification of the DSL

o?xml version¼“1.0”003F4

oxs:schema xmlns:xs¼“http://www.w3.org/2001/

XMLSchema”

ttargetNamespace¼“http://www.lifia.info.unlp.edu.ar”

xmlns¼“http://www.lifia.info.unlp.edu.ar”4

oxs:element name¼“procedure”4

oxs:complexType4

oxs:sequence minOccurs¼“1” maxOccurs¼“1”4

o!– SYNCHRONIZATION!–4

oxs:element name¼“configuration”4

oxs:complexType4

oxs:element name¼“server” type¼“xs:string”/4

oxs:element name¼“executionId” type¼“xs:

string”/4

o/xs:complexType4

o/xs:element4

o!– TASK DEFINITION!–4

oxs:element name¼“tasks”4

oxs:complexType4

oxs:sequence minOccurs¼“1”

maxOccurs¼“unbounded”4

oxs:element name¼“tasks”4

oxs:complexType4

oxs:all minOccurs¼“1”4

oxs:element name¼“primitiveTask”

minOccurs¼“0” maxOccurs¼“
n
”/4

oxs:complexType4

oxs:group ref¼“taskDefinition”/4

o/xs:complexType4

o/xs:element4

oxs:element ref¼“augmentationtask”

minOccurs¼“0” maxOccurs¼“
n
”/4

oxs:complexType4

oxs:group ref¼“taskDefinition”/4

o/xs:complexType4

o/xs:element4

o/xs:all4

o/xs:complexType4

o/xs:element4

o/xs:sequence4

o/xs:complexType4

o/xs:element4

o/xs:sequence4

o/xs:complexType4

o/xs:element4



oxs:group name¼“taskDefinition”4

oxs:sequence4

o!– PROPERTIES!–4

oxs:attribute name¼“id” type¼“xs:string”/4

oxs:attribute name¼“repetitive” type¼“xs:string”/4

oxs:attribute name¼“optional” type¼“xs:string”/4

oxs:attribute name¼“automatic” type¼“xs:string”/4

oxs:attribute name¼“synchronize” type¼“xs:string”/4

o!– ATTRIBUTES!–4

oxs:element name¼“attributes” minOccurs¼“0”/4

oxs:complexType4

oxs:all minOccurs¼“0” maxOccurs¼“
n
”4

oxs:element name¼“attribute”4

oxs:complexType4

oxs:attribute name¼“id” type¼“xs:string”/4

oxs:sequence4

oxs:element name¼“name” type¼“xs:

string”/4

oxs:element name¼“type” type¼“xs:

string”/4

oxs:element name¼“value” type¼“xs:

string”/4

oxs:element name¼“valueExample”

type¼“xs:string”/4

o/xs:sequence4

o/xs:complexType4

o/xs:element4

o/xs:all4

o/xs:complexType4

o/xs:element4

o!– PRECONDITIONS!–4

oxs:element name¼“preconditions” minOccurs¼“0”/4

oxs:complexType4

oxs:all minOccurs¼“0” maxOccurs¼“
n
”4

oxs:element name¼“precondition”4

oxs:complexType4

oxs:element name¼“type” type¼“xs:

string”4

oxs:simpleType4

oxs:restriction base¼“xs:string”4

oxs:enumeration

value¼“LastUsedWebApplicationIs”/4

oxs:enumeration

value¼“WebApplicationInUse”/4

oxs:enumeration

value¼“WebApplicationUsed”/4

oxs:enumeration

value¼“PocketHasInstanceOf”/4

oxs:enumeration

value¼“PocketIsNotEmpty”/4

o/xs:restriction4

o/xs:simpleType4

o/xs:element4

oxs:sequence minOccurs¼“1”

maxOccurs¼“
n
”4

oxs:element name¼“name” type¼“xs:

string”/4

oxs:element name¼“type” type¼“xs:

string”/4

oxs:element name¼“value” type¼“xs:

string”/4

o/xs:sequence4

o/xs:complexType4

o/xs:element4

o/xs:all4

o/xs:complexType4

o/xs:element4

o!– POSTCONDITIONS!–4

oxs:element name¼“postconditions”minOccurs¼“0”/4

oxs:complexType4

oxs:all minOccurs¼“0” maxOccurs¼“
n
”4

oxs:element name¼“postcondition”4

oxs:complexType4

oxs:element name¼“type” type¼“xs:

string”4

oxs:simpleType4

oxs:restriction base¼“xs:string”4

oxs:enumeration

value¼“AffectCurrent”/4

oxs:enumeration value¼“AffectAny”/4

oxs:enumeration

value¼“AffectSubset”/4

oxs:enumeration value¼“AffectAll”/4

o/xs:restriction4

o/xs:simpleType4

o/xs:element4

oxs:sequence minOccurs¼“1”

maxOccurs¼“
n
“4

oxs:element name¼“name” type¼“xs:

string”/4

oxs:element name¼“type” type¼“xs:

string”/4

oxs:element name¼“value” type¼“xs:

string”/4

o/xs:sequence4

o/xs:complexType4

o/xs:element4

o/xs:all4

o/xs:complexType4

o/xs:element4

o/xs:sequence4

o/xs:group4

o/xs:schema4

References

Amershi, S., Morris, M.R., 2008. CoSearch: a system for co-located collaborative web
search. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on
Human Factors in Computing Systems (CHI '08). ACM, New York, NY, USA, pp.
1647–1656. doi:10.1145/1357054.1357311. 〈http://doi.acm.org/10.1145/1357054.
1357311〉.

Bogart, C., Burnett, M., Cypher, A., Scaffidi, C., 2008. End-user programming in the
wild: a field study of CoScripter scripts. In: Proceeding of EEE Symposium on
Visual Languages and Human-Centric Computing. Germany, pp. 39–46.

Bolin Michael, Webber Matthew, Rha Philip, Wilson Tom, C. Miller Robert, 2005.
Automation and customization of rendered web pages. In: Proceedings of the
Eighteenth annual ACM Symposium on User Interface Software and Technology
(UIST '05). ACM, New York, NY, USA, pp. 163–172. http://dx.doi.org/10.1145/
1095034.1095062.

Bouvin, N.O., 1999. Unifying strategies for web augmentation. In: Proceedings of the
10th ACM Conference on Hypertext and Hypermedia.

Brooke, J., 1996. SUS: A ‘Quick and Dirty’ Usability Scale. In: Usability Evaluation in
Industry. Taylor and Francis, London.

Brusilovsky, P., 2007. Adaptive navigation support. The adaptive web: Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl (Eds.). Lecture Notes In Compu-
ter Science,vol. 4321, Springer-Verlag, Berlin, Heidelberg, pp. 263–290.

Brusilovsky P., Kobsa A., Nejdl W., 2007. The Adaptive Web: Methods and Strategies
of Web Personalization, vol. 4321, Springer-Verlag LNCS, Berlin, Heidelberg.

Byrne, M.D., John, B., Wehrle, N., Crow, D., 1999. The tangled Web we wove: a
taskonomy of WWW use. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: the CHI is the Limit (CHI '99). ACM, New York,
NY, USA, pp. 544–551. doi:10.1145/302979.303154. 〈http://doi.acm.org/10.1145/
302979.303154〉.

Card, S., Moran, T., Newell, A., 1983. The Psychology of Human–Computer Interac-
tion. Lawrence Erlbaum Associates, Hillsdale, NJ. (448 pp).



Daniel, F., Casati, F., Soi, S., Fox, J., Zancarli, D., Shan, M., 2009. Hosted universal
integration on the web: the mashArt platform. In: Proceedings of ICSOC/
ServiceWave. Stockholm, pp. 647–648.

Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Ganneau, V., Vanderdonckt, J., 2008.

The 4C reference model for distributed user interfaces. In: Proceedings of the
International Conference on Autonomic and Autonomous Systems, IEEE

Explore, Piscataway, pp. 61–69.
Diaper, D., Stanton, N.A. (Eds.), 2004. The Handbook of Task Analysis for Human–

Computer Interaction. Lawrence Erlbaum Associates, Mahwah, New Jersey,
USA.

Diaz, O., Arellano, C., Iturrioz, J., 2010. Interfaces for scripting: making greasemon-
key scripts resilient to website upgrades. In: Proceeding of ICWE2010. Springer,

Vienna, pp. 233–247.
Elmqvist, N., 2011. Distributed user interfaces: state of the art. In: Gallud, J.A., et al.

(Eds.), Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, Human–Computer Interaction Series. Springer-Verlag, Berlin, Hei-

delberg, pp. 2011–2012.
Firmenich, S., Rossi, G., Urbieta, M., Gordillo, S., Challiol, C., Nanard, J., Nanard, M.,

Araujo, J., 2010. Engineering concern-sensitive navigation structures. Concepts,
tools and examples. Journal of Web Engineering 9 (2), 157–185.

Firmenich, S., Winckler, M., Rossi, G., Gordillo, S., 2011. A crowdsourced approach
for concern-sensitive integration of information across the web. Journal of Web

Engineering (JWE) 10 (4), 289–315.
Gallud, J.A., Tesoriero, R., Penichet, V.R.M. (Eds.), 2011. Distributed User Interfaces

Designing Interfaces for the Distributed Ecosystem. Human-Computer Interac-
tion Series. Springer, Berlin, Heidelberg.

GreaseMonkey, 2012. 〈http://www.greasespot.net/〉 (last accessed 13.07.12).
Han, H., Tokuda, T., 2008. A method for integration of web applications based

on information extraction. In: Proceedings of ICWE. Springer, New York,

pp. 189–195.
Laurillau, Y., Nigay, L., 2002. Clover architecture for groupware. In: Proceedings of

the 2002 ACM Conference on Computer Supported Cooperative Work (CSCW
'02). ACM, New York, NY, USA, pp. 236–245.

Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., Kandogan, E., 2007. Koala: capture,
share, automate, personalize business processes on the web. In: Proceedings of

the Conference on Human Factors in Computing Systems, CHI. ACM, San Jose,
California, April 2007, pp. 943–946.

Limbourg, Q., Pribeanu, C., Vanderdonckt, J., 2001. Towards uniformed task models
in a model-based approach. In: Johnson, Chris (Ed.), Proccedings of the 8th

Workshop on Interactive Systems: Design, Specification, and Verification (DSV-
IS '01). Springer-Verlag, London, UK, pp. 164–182.

Luyten, K., Coninx, K., 2005. Distributed user interface elements to support smart
interaction spaces. IEEE Symposium on Multimedia. Irvine, California, USA,

December 12-14, 2005.
Lieberman, Paternò, Wulf, (Eds.), 2006. End User Development. Series: Human–

Computer Interaction Series, vol. 9, XVI, Springer, 492 Berlin, Heidelberg.
Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A., 2009. End-user programming of

mashups with vegemite. In: Proceedings of the 14th International Conference
on Intelligent User Interfaces (IUI '09). ACM, New York, NY, USA, pp. 97–106.

Manca, M., Paterno, F., 2011. Distributed user interfaces with Maria. In: Gallud, J.A.,

Tesoriero, R., Penichet, V.R.M. (Eds.), Distributed User Interfaces Designing
Interfaces for the Distributed Ecosystem. Human-Computer Interaction Series.

Springer, Berlin, Heidelberg, pp. 33–40.

Martinie, C., Palanque, P., Winckler, M., 2011. Structuring and composition mechan-
isms to address scalability issues in task models. In: Proceedings of INTERACT
(3). Springer LNCS, pp. 589–609.

Melchior, J., Vanderdonckt, J., Van Roy, P., 2011. A model-based approach for
distributed user interfaces. In: Proceedings of the 3rd ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS '11). ACM, New York, NY,
USA, pp. 11–20. http://dx.doi.org/10.1145/1996461.1996488.

Morris, M.R., Horvitz, E., 2007. Search together: an interface for collaborative web
search. In: Proceedings of the UIST '07, October 7–10, 2007, ACM Press,
Newport, Rhode Island, USA, New York, USA. pp. 3–12.

Morris, M.R., 2008. A survey of collaborative web search practices. In: Proceedings
of the 26th SIGCHI Conference on Human Factors in Computing Systems (CHI
'08). ACM Press, pp. 1657–1660. doi:10.1145/1357054.1357312. 〈http://doi.acm.
org/10.1145/1357054.1357312〉.

MozillaUbiquity, 2012. At: 〈http://mozillalabs.com/ubiquity/〉 (last accessed
13.07.12).

Operator, 2012. 〈https://addons.mozilla.org/en-US/firefox/addon/operator/〉 (last
accessed 13.07.12).

Paternò, F., Mancini, C., Meniconi, S., 1997. Concur task trees: a diagrammatic
notation for specifying task models. In: Proceedings of Interact'97. Chapman &
Hall, Sydney, Australia, pp. 362–369.

Paternò, F., Zini, E., 2004. Applying information visualization techniques to visual
representations of task models. In: Proceedings of TAMODIA '04. ACM, New
York, NY, USA, pp. 105–111.

Paul, S.A., Morris, M.R., 2009. CoSense: enhancing sensemaking for collaborative
web search. In: Proceedings of the 27th International Conference on Human
Factors in Computing Systems (CHI '09). ACM, New York, NY, USA, pp. 1771–
1780. http://dx.doi.org/10.1145/1518701.1518974.

Pilgrim, M., 2005. Greasemonkey Hacks – Tips and Tools for Remixing the Web
with Firefox. O'Reilly.

Rädle, R., Jetter, H.-C., Reiterer, H., 2012. TwisterSeacrh: a distributed user interfac
fro collaborative Web search. In: Proceedings of the 2nd Workshop on
Distrubuted User Interfaces (in conjunction with CHI 2012). Austin, Texas,
USA, May 5th 2012.

Selenium, 2012. Available at: 〈http://jroller.com/selenium/〉 (last accessed 14.07.12).
Schmid, O., Masson, A.L., Hirsbrunner, B., 2012. Collaborative web browsing:

multiple users, multiple pages, concurrent access, one display. In: Proceedings
of the fourth ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS '12). ACM Press, New York, USA, pp. 141–150.doi:10.1145/
2305484.2305508.o〈http://doi.acm.org/10.1145/2305484.23055084 .

Scriptish, 2012. 〈http://scriptish.org/〉 (last accessed 14.07.12).
Tom, Heath, 2010. A Taskonomy for the Semantic Web. Semant. web 1, 1,2 (April

2010), pp. 75–81.
Vanderdonckt, J., 2010. Distributed user interfaces: how to distribute user interface

elements across users, platforms, and environments. In: Garrido, J.L., Paterno, F.,
Panach, J., Benghazi, K., Aquino, N. (Eds.)Proceedings of XIth Congreso Inter-
nacional de Interacción Persona-Ordenador Interacción 2010 (Valencia, 7–10
September 2010). AIPO, Valencia, 2010, pp. 3–14, Keynote address.

Wong, J., Hong, J.I., 2007. Making mashups with marmite: towards end-user
programming for the web. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '07); ACM, New York, NY, USA, pp. 1435–1444.

Yu, J., Benatallah, B., Casati, F., Daniel, F., 2008. Understanding Mashup Develop-
ment. IEEE Internet Computing 12, 44–52.

Yahoo Pipes!, 2012. 〈http://pipes.yahoo.com/〉 (last accessed 13.07.12).




