1	A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia
2	
3	Maria Eurídice Páramo-Fonseca ¹ ; José Patricio O'Gorman ^{2,3} Zulma Gasparini ^{2,3} Santiago
4	Padilla ⁴ and Mary Luz Parra Ruge ⁴
5	
6	¹ Departamento de Geociencias, Universidad Nacional de Colombia, Carrera 30 No 45-03, Bogotá, Colombia.
7	meparamof@.unal.edu.co
8	² División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque
9	s/n., B1900FWA, La Plata, Argentina.
10	³ CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
11	joseogorman@fcnym.unlp.edu.ar; zgaspari@fcnym.unlp.edu.ar.
12	⁴ Centro de Investigaciones Paleontológicas, Villa de Leiva, Boyacá, Colombia. <u>info@centropaleo.com;</u>
13	mlparra@centropaleo.com.
14	
15	Corresponding author: María Eurídice Páramo-Fonseca
16	
17	Declaration of interest: none
17	
18	
19	Abstract: A new genus and species of elasmosaurid, Leivanectes bernardoi gen. et sp.
20	nov., from the upper Aptian levels of the Paja Formation of Villa de Leiva (Boyacá,
21	Colombia) is described. The new elasmosaurid is characterized by a short mandibular
22	symphysis, bears only three alveoli (there are five in Callawayasaurus colombiensis), has
23	an enlarged premaxillary alveoli, and has a mandible that includes only seven alveoli in
24	each ramus anterior to the orbit (there are 11 in Callawayasaurus colombiensis). This new
25	elasmosaurid taxon has fewer and larger alveoli than any other presently described

Key words: Plesiosauria, Elasmosauridae, Lower Cretaceous, Aptian, Villa de Leiva,
Colombia.

31

26

27

28

32 1. INTRODUCTION

33 Colombia is one of the richest South American countries in Lower Cretaceous marine reptiles. This richness is not only evident in their taxonomic diversity but also in the 34 35 quantity and quality of the specimens (Páramo-Fonseca, 2015). The records are mainly 36 concentrated in the Lower Cretaceous beds of the Villa de Leiva area (Boyacá-central Colombia), where three-dimensionally preserved and often articulated remains of 37 38 plesiosaurians, ichthyosaurians and sea turtles are present (Gómez-Pérez and Nòe, 2017; 39 Maxwell et al., 2015; Páramo-Fonseca, 2015; Páramo-Fonseca et al., 2016). The 40 stratigraphic horizons in which these specimens are found are the Barremian and upper 41 Aptian units of the Paja Formation, which are informally referred to as "nivel de arcillolitas 42 abigarradas" (Etayo-Serna, 1968; Forero and Sarmiento, 1985). In addition to the exceptional preservation of most specimens, the successful preparation of many specimens 43 44 by means of chemical and manual techniques (Padilla et al., 2010) allow for more detailed 45 anatomical studies.

The plesiosaurs from Villa de Leiva are represented mainly by pliosaurids; however, some
remains of elasmosaurids have also been found (Páramo-Fonseca, 2015). Welles (1962)

48	described and named the first elasmosaurid from northern South America, which was found
49	in Villa de Leiva, was "Alzadasaurus" colombiensis, which subsequently was established
50	as a distinct genus, Callawayasaurus colombiensis, by Carpenter (1999). Fragments of a
51	skull and a mandible of a second elasmosaurid were also referred to as "Alzadasaurus"
52	colombiensis (Goñi and Gasparini,1983; these remains are currently under review by MEP-
53	F). A new elasmosaurid specimen (FCG-CBP-22) from Villa de Leiva was recently
54	prepared and is the subject of this study. It was donated by Mr. José Sierra to the Fundación
55	Colombiana de Geobiología in 1999 and is housed in the collections of the Centro de
56	Investigaciones Paleontológicas in Villa de Leiva.
57	Specimen FCG-CBP-22 comprises the anterior section of a skull, with the jaws preserved
58	in occlusion. It was collected from Loma La Cabrera, approximately 4 km west of Villa de
59	Leiva. The exact location of the discovery site is not known; however, specimen FCG-
60	CBP-22 was recovered from beds of the "nivel de arcillolitas abigarradas" of the Paja
61	Formation. A small ammonite conch (FCG-CBP-46) was found in the surrounding matrix
62	(Fig. 1C). The phase of tubercles development in this ammonite is comparable to that
63	which was observed in smaller individuals (up to 35 mm diameter) of Cheloniceras
64	(Epicheloniceras) carlosacostai Etayo-Serna, 1979 (cf. Etayo-Serna, 1979, pag. 34), which
65	characterize the upper Aptian in Colombia (Etayo-Serna, pers. comm.).

66

67 **2. METHODS**

68 Specimen FCG-CBP-22 was prepared by one of the authors (MLPR), using mechanical and
69 chemical techniques. To maintain the integrity of the fossil, a special treatment was

70	implemented to eliminate acidic and saline residues after acid preparation. The chemical
71	procedure included immersions in 2% sulfamic acid followed by washes under running
72	water for two days and submersion of the fossil into deionized water in a hermetic
73	container. This process was repeated until a stable pH measurement was obtained. A
74	detailed description of the method is found in Padilla et al. (2010).
75	The new specimen FCG-CBP-22 is an incomplete skull with the mandible preserved in
76	occlusion. Because of its distinctively large alveoli, a comparison with other elasmosaurids
77	focused on mesodistal measurements of alveolar size. The nomenclature used for alveoli
78	measurements follows that of Smith and Dodson (2003: fig. 7).
79	FCG-CBP-22 was added to the Plesiosauria data set of O'Gorman and Coria (2016), which
80	is based on that of O'Gorman (2016a), which in turn is based on Benson and Druckenmiller
81	(2014). The character states of the new specimen are shown in Appendix I. Four OTUs
82	were also incorporated to the data set: Eromangasaurus australis (Sachs, 2005),
83	Zarafasaurus oceanis Vincent, Bardet, Pereda Suberbiola, Bouya, 2011, and Nakonanectes
84	bradti Serratos, Druckenmiller and Benson, 2017, following the scoring of Serratos et al.
85	(2017: supplemental data), and Lagenanectes richterae Sachs, Hornung and Kear, 2017,
86	following the scoring of Sachs et al. (2017: supplemental data). The scoring of Styxosaurus
87	snowii (Williston, 1890) was modified according to Sachs et al. (2018: appendix). Mesquite
88	Software (Maddison and Maddison, 2011) was used to compile the new data, which
89	comprises 95 OTUs and 276 characters, from which the phylogenetic analysis was carried
90	out. All characters were considered to be unordered. The cladistic analysis was run on TNT
91	(v1.5) (Goloboff and Catalano, 2016). A heuristic search with the TBR algorithm (tree
92	bisection reconnection) recovering 20,000 trees was performed. An initial exploration for a

93	search of the shortest trees islands used Wegner trees (1000 random-addition sequence
94	replicates, 1000 saved trees per replication and three random seeds). The resulting subset of
95	most parsimonious trees (MPTs) was used as the initial group of trees for a TBR search. A
96	strict consensus was applied, and the IterPCR algorithm was run to determine and prune the
97	unstable OTUs in the consensus (Pol and Escapa, 2009). The consistency (CI) and retention
98	(RI) indexes (Farris, 1989) were calculated, and Bremer support values (Bremer 1994) were
99	computed for some nodes in the reduced consensus cladogram.
100	2.1 Institutional Abbreviations
101	BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany; FCG-
102	CBP, Fundación Colombiana de Geobiología, Centro de Investigaciones Paleontológicas;
103	ICNMHN, Instituto de Ciencias Naturales, Universidad de Colombia, Bogotá, Colombia;
104	KUVP, Kansas University, Vertebrate Paleontology, United States; NPC, National
105	Paleontological Collection, Lower Hutt, New Zealand; NSM, National Science Museum,
106	Tokyo, Japan; OCP, Office Chérifien des Phosphates, Khouribga, Morocco; QM,
107	Queensland Museum, Brisbane, Australia; RSM, Royal Saskatchewan Museum, Regina,
108	Saskatchewan, Canada; SMUSMP Southern Methodist University, Shuler Museum of
109	Paleontology, Dallas, USA; UCPM, University of California Museum of Paleontology,
110	California, USA; UNSM, University of Nebraska State Museum, Lincoln, USA.
111	2.2 Unique digital ZooBank registration identifier:
112	

- 113 **3. SYSTEMATIC PALEONTOLOGY**
- 114 SAUROPTERYGIA Owen, 1860

- 115 PLESIOSAURIA de Blainville, 1835
- 116 PLESIOSAUROIDEA Welles, 1943
- 117 ELASMOSAURIDAE Cope, 1869
- 118 Leivanectes gen. nov.
- 119 *LSID*:
- 120 Type and only species: *Leivanectes bernardoi* sp. nov.
- 121 **Diagnosis:** For type and only known species.
- 122 **Derivation of name**: From Villa de Leiva, which is the locality where the holotype was
- 123 collected, and Greek *nektos*, swimmer.
- 124 Leivanectes bernardoi sp. nov.
- 125 *LSID*:
- Holotype: FCG-CBP-22. Anterior half of the skull comprising the rostrum, part of theorbital area and anterior half of the mandible.
- 128 **Type locality and horizon**: Loma La Cabrera, Villa de Leiva, Department of Boyacá,
- 129 central Colombia. Upper section of the "nivel de arcillolitas abigarradas" of the Paja
- 130 Formation (Etayo-Serna, 1968), upper Aptian (Etayo-Serna, pers. comm.) (Fig. 1).
- 131 Derivation of name: In honor of Dr. Carlos Bernardo Padilla, who is recently deceased and
- 132 who dedicated part of his life to the rescue and preservation of fossils mainly from the area
- 133 of Villa de Leiva. Dr. Carlos Bernardo Padilla is the founder, along with his brother

134 Santiago Padilla, of the prestigious Centro de Investigaciones Paleontológicas in the town135 of Villa of Leiva, Colombia.

136 **Differential diagnosis:** Elasmosaurid with the following combination of features: 137 premaxilla without dorsal medial ridge, differing from Callawayasaurus colombiensis, 138 Eromangasaurus australis, and Late Cretaceous elasmosaurids; meso-distal measurement 139 of the third and fourth premaxillary alveoli approximately 14% of the preorbital length, 140 differing from the smaller alveoli that was recorded for *Callawayasaurus colombiensis*, 141 *Tuarangisaurus keyesi* and aristonectines; three alveoli pairs adjacent to the mandibular 142 symphysis, a feature shared with *Terminonatator ponteixensis*; five premaxillary alveoli, 143 which differs from that of *Elasmosaurus platyurus* (6+) and *Eromangasaurus australis* (3-4); vomers lacking a posterior medial V-shaped notch near the internal nares to 144 145 accommodate the pterygoids, which differs from that of Lagenanectes richterae and 146 Morturneria seymourensis; seven mandibular alveoli anterior to the orbit, which differs from Callawayasaurus colombiensis (~11), Futabasaurus suzukii (~12), Libonectes 147 morgani (~10), Styxosaurus spp (9+), Terminonatator ponteixensis (~10), Thalassomedon 148 149 haningtoni (~10), and Tuarangisaurus keyesi (~10); absence of a dentary ventral elaboration along the mandibular symphysis, which differs from that of *Callawavasaurus* 150 151 colombiensis, Eromangasaurus australis, Lagenanectes richterae and Zarafasaurus 152 oceanis; and elliptical external nares, which differs from the cordate external nares of 153 Nakonanectes bradti.

154

155 **4. DESCRIPTION**

156 **4.1 Cranium**

176

FCG-CBP-22 is an incomplete skull with its mandible preserved in occlusion. The most
anterior part of the specimen including the rostrum and mandibular symphysis is well
preserved and undeformed. The interorbital part of the skull roof is dorsoventrally crushed
(Fig. 2).

161 **Premaxilla**: Both premaxillae are well preserved and form almost the entire rostrum. The 162 rostrum is wide and dorsally convex in the cross section. The premaxilla lacks a medial ridge, as it does in Futabasaurus suzukii Sato, Hasegawa and Manabe, 2006, L. richterae 163 164 and basal plesiosauroids (Benson and Druckenmiller, 2014; Sachs et al., 2017; Sato et al., 165 2006; Serratos el al., 2017). The midline suture is visible along the entire premaxillary 166 length, with the exception of its anteriormost tip. The premaxilla forms the anterior and 167 medial margin of the external naris (Fig. 2). Each premaxilla bears five alveoli that create a 168 slightly waved margin in a lateral view. A change in the alveoli size is observed at the 169 premaxilla-maxilla contact, but there is no diastema (Fig. 2B). The dorsomedial process of 170 the premaxilla is progressively higher toward the internarial sector (Fig. 2C). The dorsomedial process is broken at the level of the anterior border of the orbit and appears to 171 be projected over the frontals; however, its posterior extension remains unknown. The 172 173 dorsal surface of the premaxilla is slightly wrinkled and bears a neurovascular foramina 174 that are randomly distributed, three of which are larger and aligned near the midline. 175 Maxilla: The premaxilla-maxilla suture is slightly curved along its length. The maxillae

177 2C). In the lateral view, the alveolar border of the maxilla shows a slight ventrally convex

form the ventral margin of the external nares and the anterolateral margin of the orbit (Fig.

178	curve that includes the 1 st to the 4 th alveoli. Although incomplete, the left maxilla bears nine
179	alveoli. In the palatal view, the anterior part of the maxillae is not well exposed, but its
180	contact with the vomers is insinuated. The maxilla-palatine junction is barely visible on
181	both sides of the skull, and it begins at the posterior rim of the internal naris. The maxilla
182	forms the lateral margin of the internal naris (Fig. 2D).
183	External naris: Both external nares are poorly preserved along the posterior border (Fig.
184	2C). The external naris is located at the level of the second maxillary alveolus. The distance
185	from the external naris to the midline of the skull is equivalent to the width of the external
186	naris, which is shorter than that of F. suzukii and N. bradti (Sato et al., 2006; Serratos et al.,
187	2017). The distance from the external naris to the orbit is as short as it is in
188	Callawayasaurus colombiensis (Welles, 1962) and in E. australis (Kear, 2005: fig. 6;
189	Sachs, 2005a: fig. 3A; Welles, 1962: fig. 3) and is shorter than that in <i>F. suzukii</i> (Sato et al.,
190	2006). The participation of the frontal in the narial margins cannot be established due to the
191	poor preservation of this area.
192	Orbit: Both orbits are incomplete. Their posterior region is missing. The preserved orbital
193	areas are slightly expanded laterally (Fig. 2C). The presence of a dorsally convex ventral
194	margin of the orbit, a feature that is common among elasmosaurids (Benson and
195	Druckenmiller, 2014; Carpenter, 1999), cannot be established due to the poor preservation
196	of this margin.
197	Frontal: Both frontals are partially crushed and, therefore, an accurate description of these
198	bones cannot be given. The frontal forms an expanded table over the orbits, as in C.

199 *colombiensis* (Welles, 1962), but its relationship with the dorsomedial process of the

premaxilla remains unclear. The right frontal contacts posteriorly a small preserved portionof the parietal (Fig. 2C).

202 **Prefrontal**: A fragment of each prefrontal is exposed on both sides of the skull. Both

203 prefrontals are broken and are slightly displaced from their anatomical place. The prefrontal

forms part of the anterior margin of the orbit (Fig. 2C), as in N. bradti (Serratos et al.,

205 2017). Their poor preservation prevents the establishment of the shape and extension of this206 element.

207 Postfrontal: The postfrontals are only represented by two small bone fragments that are
208 badly preserved on the posterior region of the orbits (Figs. 2B, C).

209 4.2 Palate

The palate is incomplete and is partially covered by the mandibular rami. It preserves the anterior process of the pterygoids, the anterior part of the palatines and the posterior portion of the vomers.

213 Vomer: The anterior end of the vomers is not visible, because the mandible is in occlusion. 214 Both vomers are united, but they are not completely fused along the midline. In its middle 215 region, the vomer is narrow and forms the medial margin of the internal naris. The vomer 216 extends posterior to the internal naris, as is common in elasmosaurids (Carpenter, 1997: fig. 217 2D; O'Gorman et al., 2017: fig. 7B; O'Keefe, et al., 2017: fig. 4C; Sato et al., 2006: fig. 4C; 218 Vincent et al., 2011: fig. 2D, E; Welles, 1962: fig. 4A). The posterior region of the vomer is 219 limited laterally, with the palatine through an irregular suture, and medially with the 220 anterior margin of the pterygoid. The vomers are not separated by the pterygoids along the

midline (Fig. 2D), which is a condition that is also seen in *F. Suzukii, Libonectes morgani*(Welles, 1949) and *Z. oceanis* (Sato et al., 2006; Vincent et al., 2011; Welles, 1949: Plate
3).

Palatine: Both palatines are incomplete. The preserved portion of each palatine is a flat to
slightly convex plate that medially contacts the pterygoid and the vomer (Fig. 2D).
Although the suture with the maxilla is not clear on either side, the anterior end of the
palatine narrows and appears to form the posterior border of the internal naris, which is
known in other elasmosaurids (Carpenter, 1997: fig. 2D; O'Gorman et al., 2017: fig. 7B;
Sachs et al., 2017: fig. 3; Sato et al., 2006: fig. 4C; Vincent et al., 2011: fig. 2D, E; Welles,
1962: fig. 4A).

Pterygoid: Only the anterior process of the pterygoid is preserved. The pterygoid medially
joins its counterpart, anteriorly joins the vomer and laterally joins the palatine. In the
ventral view, the pterygoids form a concave area between the palatines. However, this
appears to be a taphonomic feature (Fig. 2D).

Internal naris: The internal naris is not entirely distinguishable. It is approximately 20 mm
in length and 8 mm in width. Each internal naris is limited by the maxilla, the vomer and
probably the palatine to a limited extend (Fig. 2D).

238 **4.3 Mandible**

239 **Dentary:** The dentaries are fused along the mid-line of the symphysis (Fig. 2C) and,

because the mandible is in occlusion, it is difficult to see if this fusion is also complete on

the dorsal surface of the symphysis. In the ventral view, the external surface of dentaries is

242	marked by a great quantity of pits at the symphyseal region, which differs from the less
243	densely distributed pits that cover the external surface of each mandibular ramus (Figs. 2A,
244	B, D). The ventral surface of the dentaries along the mandibular symphysis lacks any
245	elaboration (Figs. 4C, E), such as in. L. morgani and N. bradti (Serratos et al., 2017;
246	Welles, 1949), and differs from E. australis, L. morgani and S. snowii, in which a
247	symphyseal keel is observed (Kear, 2007; Sachs and Kear, 2017; Sachs et al., 2018: fig.
248	3B). In the lateral view, the symphysis includes only three pairs of large alveoli for
249	functional teeth, as in Terminonatator ponteixensis Sato 2003, S. snowii and N. bradti
250	(Sachs et al., 2018; Sato, 2003; Serratos et al., 2017). In the anterior view, there are two
251	pairs of alveoli that are anteriorly directed, which is similar to the premaxillae (Fig. 2A).
252	Angular: The anterior end of both angulars is preserved. In the ventral view, the angular is
253	exhibited posterior to the level of the internal nares (Fig. 2D) but less posterior than in T.
254	ponteixensis or N. bradti (Sato, 2003; Serratos et al., 2017). In the medial view, the anterior
255	end of the angular forms a wedge that anteriorly tapers against the splenial, posterior to the
256	mandibular symphysis.

Splenial: The preserved portion of the splenials forms a long and narrow blade tapering
anteriorly. The splenials end where the symphysis begins, as in *L. morgani* (Welles, 1949).

Coronoid: The coronoid forms the dorsal half of the medial wall of the preserved part of
the mandible and extends anteriorly to approximately 2 cm posterior to the symphysis, as in *L. morgani* (Welles, 1949). The anterior end of the coronoid contacts the dentary in an Sshaped suture.

263 **4.4 Alveoli and dentition**

264 The alveoli of the upper jaw differ in size. Their mesodistal measurements are shown in 265 Table 1. The first premaxillary alveolus is procumbent and small but is not significantly 266 smaller than the second. However, its diameter is less than half that of the third alveolus 267 (Table 1). This condition is found in L. richterae (Sachs et al., 2017), S. snowii (Sachs et 268 al., 2018: Appendix) and T. ponteixensis (Sato, 2003). The third alveolus is the largest and 269 is similar to the fourth, while the fifth is smaller. The more complete left maxilla bears nine 270 alveoli and, extrapolating the possible length of the missing part, and it is probable the total number of alveoli was approximately eleven. The alveoli of this maxilla are of different 271 272 sizes, which indicates a heterodont dentition. The first is relatively small compared with the 273 others that are variable in size (see Table 1). There are twelve alveoli in the left mandibular 274 ramus and eleven on the right. The seven anterior alveoli are similar in size and those that 275 are more posterior are smaller.

Twelve fragmentary teeth are preserved, seven of which are almost complete and five that are broken at their crown base. The surfaces of the teeth are damaged, and only their labial surfaces can be observed. The crown is conical in shape and circular in the cross section, as in *C. colombiensis* and *L. richterae* (Sachs et al., 2017; Welles, 1962). The surface of the enamel is practically smooth. However, on the labial side of the more complete tooth, very slight ridges and transversal wrinkles in the basal two-thirds of the crown are present (Fig. 2E), which is similar to those described by Welles (1949) for the teeth of *L. morgani*.

283

284 **5. DISCUSSION**

285 5.1 Morphological comparisons

286	The specimen FCG-CBP-22 shows well-ossified elements and some closed sutures, such as
287	the symphysis, which indicates that the individual was osteologically mature at the time of
288	death (sensu Brown, 1981).
289	Although the specimen FCG-CBP-22 is an incomplete skull and does not preserve any of
290	the autapomorphic characteristics of Elasmosauridae, some of the cranial features
291	registered as diagnostic of elasmosaurids (Brown, 1981; Ketchum and Benson, 2010;
292	O'Keeffe, 2001; Vincent et al., 2011) are present including vomer extended posterior to the
293	internal nares (O'Keefe, 2001), splenial without participation in the mandibular symphysis
294	(Ketchum and Benson, 2010) and absent of an anterior interpterygoid vacuity (Vincent et
295	al., 2011). The new specimen also presents the following two features that together indicate
296	its elasmosaurid affinities: a nonelongated rostrum and premaxilla dorsomedial process
297	projecting over the frontals. These characteristics are present in all elasmosaurids, with the
298	exception of Callawayasaurus colombiensis, in which the premaxilla tapers more
299	proximally (Benson and Druckenmiller, 2014; J.P.O'G Pers. Obs.).
300	The early Cretaceous elasmosaurids that can be compared with L. bernardoi include the
301	late Aptian C. colombiensis UCMP 38349 (Figs. 3C-E and 4A-D), and UCMP 125328
302	(Figs. 4E-F) from Villa de Leiva (Welles, 1962), the Albian E. australis from Australia
303	(Kear, 2005, 2007; Sachs, 2005a), and the late Hauterivian L. richterae from Germany
304	(Sachs et al., 2017). The more distinctive feature of the new taxon L. bernardoi is the
305	presence of large alveoli that result in a lower number of alveoli in the different regions of
306	the cranium and mandible. L. bernardoi has five premaxillary alveoli, which differs from
307	the maximum of four premaxillary alveoli in <i>E. australis</i> , (Kear, 2007) and the minimum of
308	six premaxillary alveoli in <i>Elasmosaurus platyurus</i> Cope, 1868 (Sachs, 2005b). In Table 2

309	the alveolar account of <i>L. bernardoi</i> (FCG-CBP-22) is contrasted with that of the Early
310	Cretaceous elasmosaurids and other comparable Late Cretaceous elasmosaurids, which
311	have 4-5 premaxillary alveoli (F. suzuki, L. morgani, Thalassomedon haningtoni Welles,
312	1943, Tuarangisaurus keyesi Wiffen and Moisley, 1986, Z. oceanis, T. ponteixensis,
313	Styxosaurus browni Welles, 1952, S. snowii and N. bradti). L. bernardoi have the same
314	number of alveoli pairs on the mandibular symphysis (three alveoli) as T. ponteixensis, S.
315	snowii and N. bradti. It has seven mandibular alveoli anterior to the orbit, while all the
316	other taxa have more than seven.
317	L. bernardoi is different from other elasmosaurids, except for N. bradti, in the ratio
318	between the mesiodistal measurements of the premaxillary alveoli and the preorbital length
319	(Figs. 3A, B). In L. bernardoi, the meso-distal measurement of the third and fourth
320	premaxillary alveoli is approximately 14% of the preorbital length. Although no
321	measurements were taken, this ratio seems to be similar in N. bradti (Serratos et al., 2017:
322	fig. 2) and different in other elasmosaurids, such as the Lower Cretaceous C. colombiensis
323	(~6%), E. australis (~8%) (Kear, 2007: fig. 1A), and L. richterae (~11%) (Sachs et al.,
324	2017: fig. 4); the Upper Cretaceous elasmosaurids Z. oceanis (~12%-~13%) (Lomax and
325	Wahl, 2013: fig Vincent et al., 2011: fig. 2), L. morgani (~11%) (Sachs and Kear, 2017: fig.
326	1A, C), T. keyesi (~10%-~8%) (O'Gorman et al., 2017: fig. 2), T. haningtoni (~9%)
327	(Carpenter, 1999: fig. 12), S. snowii (~9%) (Sachs et al., 2018: fig. 1), and F. suzukii (~5%)
328	(Sato et al., 2006: fig. 4); and the aristonectine elasmosaurids (~3%) (Otero et al., 2012,
329	2014), which have long skulls with an increased number of teeth.
330	There are other features that distinguish L. bernardoi from other comparable elasmosaurids,

331 mainly from those of the early Cretaceous, which are worth discussing. The position of the

332 external naris in L. bernardoi (at the level of the second maxillary position) differs from 333 that in Z. oceanis (first maxillary position) (Lomax and Wahl, 2013: fig 5; Vincent et al., 334 2011: fig. 2) and those in S. snowii, N. bradti or L. morgani (third or posterior to the third 335 maxillary position) (Sachs and Kear, 2017: fig. 1C; Sachs et al., 2018; Serratos et al., 2017: 336 fig. 3). The absence of the dorsomedial ridge in the premaxillae of *L. bernardoi*, which is a 337 characteristic that it shares with L. richterae and F. Suzukii (Sachs et al., 2017; Sato et al., 2006), differs from the keeled premaxillae that are found in most elasmosaurids, including 338 339 C. colombiensis (Figs. 4A, B, D), E. australis and N. bradti (Benson and Druckenmiller, 2014: character 17; Kear, 2007; Serratos et al., 2017; Welles, 1943, 1962). The size and 340 341 form of the external nares of L. bernardoi differ from the small cordate external nares of N. 342 bradti (Serratos et al., 2017). In L. bernardoi, the palatine participates only in the 343 posteromedial tip of the internal naris, while in L. richterae, the palatine forms the 344 posterolateral margin of the internal naris (Sachs et al., 2017: figs. 3A, B). In L. bernardoi, 345 the pterygoids are not visible between the vomers, while in L. richterae and in M. 346 seymourensis, the vomer has a posterior medial V-shaped notch from which the pterygoids 347 can be seen (Chatterjee and Small, 1989; O'Keefe et al., 2017; Sachs et al., 2017). M. 348 seymourensis also has in the vomer a medial ventral ridge (O'Keefe et al., 2017) that is 349 absent in L. bernardoi.

The normal ventral surface of the dentaries along the mandibular symphysis of *L. bernardoi* differs from that of *L. richterae*, which exhibits a platform (Sachs et al., 2017: fig. 7); those of *E. australis*, *Z. oceanis*, *L. morgani* and *S. snowii*, which have a symphyseal keel (Kear, 2007; Sachs and Kear, 2017; Sachs et al., 2018: fig. 3B, Vincent et al., 2011); that of *F. suzukii*, which has a symphyseal pit (Sato et al., 2006); and those of *T. keyesi* and *C*.

355	colombiensis, which have a narrow symphyseal sulcus (Welles, 1962; O'Gorman et al.,
356	2017: fig. 9L). The symphyseal ventral groove, which is slightly marked in L. bernardoi, is
357	deep in C. colombiensis (Figs. 4C, E). The non-participation of the angular and splenial in
358	the mandibular symphysis distinguishes L. bernardoi from S. snowii, in which the angular
359	participates (Sachs et al., 2018), and from N. bradti, in which the splenial participates
360	(Serratos et al., 2017).
361	In the new specimen and in <i>C. colombiensis,</i> the first premaxillary alveolus is smaller than
362	the second and third, but the difference in size is more significant in C. colombiensis (Figs.
363	3D-E, H). On the other hand, in N. bradti, T. keyesi and T. haningtoni, the first
364	premaxillary alveolus is not significantly smaller than the third (Serratos et al., 2017;
365	Welles, 1943; Wiffen and Moisley, 1986), which differs from the condition that is found in
366	L. bernardoi. The alveoli of L. bernardoi are relatively larger than those of C.
367	colombiensis. This is evident for both, in the anterior view (Figs. 3A, B, D, E, H), and in
368	comparing the position of the tenth mandibular alveolus (Figs. 3C, F, G). This alveolus is
369	located near the middle of the orbit in L. bernardoi (Figs. 3F, G) but anterior to the anterior
370	margin of the orbit in the UCMP 38349 specimen of C. colombiensis (Fig. 3C). The
371	circular cross section of the teeth of L. bernardoi is shared with L. richterae, E. australis
372	and C. colombiensis (Kear, 2005; Sachs et al., 2017, Welles 1962) and differs from the
373	labiolingually compressed teeth of most of the Late Cretaceous elasmosaurids (Sachs and
374	Kear, 2017; Sachs et al., 2017; Sachs et al., 2018; Serratos et al., 2017: character 139) and
375	the "D" shaped tooth cross section of N. bradti (Serratos et al., 2017). The smooth texture
376	of the crown of L. bernardoi is similar to that of C. colombiensis, but in L. bernardoi, the
377	enamel has very slight ridges and transverse wrinkles towards the base of the crown, while

in *C. colombiensis*, it has anterior and posterior edges that are finely striated longitudinally
(Welles, 1962). Transverse wrinkles, which are similar to those of *L. bernardoi*, were
described for *L. morgani* (Welles, 1949), while in most elasmosaurids, the crowns show
more regular longitudinal ridges (Chatterjee and Small, 1989; Sachs et al., 2017; Sato,
2003; Sato et al., 2006; Serratos et al., 2017; Vincent et al., 2011; Wiffen and Moisley,
1986).

384

385 5.2 Phylogenetic analysis

The Wagner tree search resulted in a subset of 5000 parsimonious trees (MPTs), and the 386 387 final phylogenetic analysis resulted in 20000 MPTs with 1502 steps (CI=0.273 and RI= 388 0.667). The strict consensus (Fig. 5A) recovers L. bernardoi within the Elasmorauridae 389 clade, which is identified only by postcranial synapomorphies. L. bernardoi is the sister 390 taxa of T. keyesi and T. haningtoni. This node (L. bernardoi + (T. keyesi + T. haningtoni)) 391 is closely related to the node L. morgani+ (S. snowii + H. alexandrae), which forms a well-392 resolved branch. In contrast, the basal elasmosaurids, including the Early Cretaceous C. colombiensis and E. australis, as well as some Late Cretaceous elasmosaurids, were 393 394 recovered within polytomies that are only resolved after pruning unstable OTUs, which 395 were identified by applying the IterPCR algorithm (Figs. 5A-B). The elasmosaurids that 396 were identified as unstable OTUs were E. australis, C. colombiensis, E. platyurus and Z. 397 oceanis.

L. bernardoi is differentiated from the *T. keyesi* + *T. haningtoni* node by the absence of a
dorsomedian ridge in the premaxilla (17.0), which is a characteristic that is found in

400	leptocleidid plesiosauroids, and by the smaller size of the first premaxillary alveolus
401	(140.1), a characteristic also found in the closely related L. morgani + (S. snowii + H.
402	alexandrae) node. L. bernardoi is grouped with T. keyesi + T. haningtoni and is separated
403	from the <i>L. morgani</i> + (<i>S. snowii</i> + <i>H. alexandrae</i>) node by the reduced size of the
404	distalmost alveolus of the premaxilla (132.1). Altogether, these taxa form a branch that car
405	be distinguished from all of the other elasmosaurids by the posteromedian process of the
406	premaxilla not expanding into the original width posterior to the naris (22.1), and by two
407	postcranial synapomorphies that are unknown in L. bernardoi: there are more than 60
408	cervical vertebrae and pubis without anterolateral cornu.
409	
410	5.3 Dentition differences and trophic changes

411 Elasmosaurids have largely been considered to be ecologically optimized to middle trophic-412 level aquatic predation based on the presence of narrow tooth crowns with a markedly 413 elongated profile that indicates structural fragility (Massare, 1987; Kear et al., 2017). 414 However, even among elasmosaurids there is a clear tooth morphological variation. 415 Differences in related features, such as symphyseal length, number of symphyseal alveoli, 416 tooth shape and increase in the number of alveolar count, have been observed in the Late 417 Cretaceous aristonectines (A. parvidens, Kaiwhekea katiki Cruickshank and Fordyce, 2002) 418 and have been associated with differences in prey capture strategy and prey preference 419 compared with non-aristonectines (Cruickshank and Fordyce, 2002; O'Gorman, 2016; 420 Otero et al., 2014). Following the same argumentation line, the differences in dentition and 421 alveoli size between L. bernardoi and C. colombiensis (the alveoli of L. bernardoi are

 \sim

422	larger than those of <i>C. colombiensis</i> ; the mandible of <i>L. bernardoi</i> shows less alveoli than
423	those observed in C. colombiensis, and the symphysis of L. bernardoi is longer and bears
424	fewer teeth) appear to indicate a subdivision in prey preference between species from the
425	similar locality and age (late Aptian). These differences suggest specialization in the
426	feeding of the Early Cretaceous Colombian elasmosaurids, with L. bernardoi likely being
427	able to consume prey that are larger than those preferred by C. colombiensis.
428	It is interesting to remark that the decrease in tooth count was achieved several times during
429	the elasmosaurid history, as is recorded in Z. oceanis from the Maastrichtian of Morocco
430	(Lomax and Wahl, 2013; Vincent et al., 2011). Nevertheless, in Z. oceanis, the reduction in
431	tooth number is associated with a decrease in alveolar size (Lomax and Wahl, 2013, fig. 7,
432	8), which is not the case in <i>L. bernardoi</i> . Therefore, differences in the teeth number and
433	proportions that are observed in Cretaceous elasmosaurids seem to indicate changes in their
434	food preferences throughout their history. The contemporaneity of L. bernardoi and C.
435	colombiensis suggests that the elasmosaurids have achieved diverse prey preferences since
436	the Early Cretaceous, at least in the Colombian sea.

437

438 6. CONCLUSIONS

439 The new specimen FCG-CBP-22 is defined as a new genus and species of Elasmosauridae,

440 Leivanectes bernardoi gen. et sp. nov., by having large premaxillary alveoli and a

441 distinctive amount of alveoli in the different regions of the cranium and mandible. *L*.

442 bernardoi differs from other Lower Cretaceous elasmosaurids in that it has five

443 premaxillary alveoli, three pairs of alveoli on the mandibular symphysis, seven mandibular

444	alveoli anterior to the orbit, the tenth mandibular alveolus located near the level of the
445	middle of the orbit, the absence of a symphyseal ventral elaboration, and vomers that do not
446	form a posterior medial V-shaped notch to accommodate the pterygoids. L. bernardoi
447	represents the second elasmosaurid species that was defined from the Aptian of Colombia
448	and the Lower Cretaceous of South America.
449	The large alveoli of <i>L. bernardoi</i> allows for a feeding habit that relies on prey of greater
450	size than those chosen by others elasmosaurids, including C. colombiensis. Since both L.
451	bernardoi and C. colombiensis come from the upper Aptian beds of the same geographic
452	region, these differences suggest that the elasmosaurids could have attained a wide range of
453	morphologies during the Early Cretaceous, at least in the Colombian sea.

454

455 7. ACKNOWLEDGMENTS

456 We are grateful to the Centro de Investigaciones Paleontológicas (CIP) for allowing the

457 study of the fossil. We would like to thank Dr. Fernando Etayo-Serna for his comments on

the age of the fossil, and M. Pardo from the Museo Geológico José Royo y Gómez of the

459 Servicio Geológico Colombiano (SGC) for giving access to the material of *C*.

460 *Colombiensis*. Patricia Holroyd (UCPM) allowed for the revision of Colombian

461 elasmosaurid material under her care, for which we are grateful. The Doris and Samuel P.

462 Welles Grant supported the visit of JPO'G to the UCPM. The author also thanks Jorge

463 Gonzalez for some of the illustrations. This work was partially supported by the PICT

464 2015-0678 to J.P.O'G. TNT is a free program that is available with the sponsorship of the

- 465 Willi Hennig Society. We sincerely thank Patrick Druckenmiller and Benjamin P. Kear for
- their useful comments on the manuscript, which enhanced this version.

467 **8. REFERENCES**

- 468 Benson, R. B. J., Druckenmiller, P. S., 2014. Faunal turnover of marine tetrapods during the
- 469 Jurassic-Cretaceous transition. Biological Reviews of the Cambridge Philosophical
- 470 Society 89, 1-23.
- 471 Blainville, H. D. de., 1835. Description de quelques espèces de reptiles de la Californie,
- 472 précédée de l'analyse d'un système général d'herpetologie et d' amphibiologie.
- 473 Nouvelles Archives Du Museum d'Histoire Naturelle 4, 233-296.
- 474 Bremer, K., 1994. Branch support and tree stability. Cladistics 10, 295-304.
- 475 Brown, D. S., 1981. The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of
- the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum of
- 477 Natural History (Geology) 35(4), 253-347.
- 478 Cabrera, A., 1941. Un plesiosaurio nuevo del Cretáceo del Chubut. Revista del Museo de
- 479 La Plata 2,113-130.
- 480 Carpenter, K., 1997. Comparative cranial anatomy of two North American plesiosaurs. In:
- 481 Callaway, J.M., Nicholls, E.L. (Eds.), Ancient Marine Reptiles. Academic Press, San
- 482 Diego, 191-216.
- 483 Carpenter, K., 1999. Revision of North American elasmosaurs from the Cretaceous of the
 484 Western Interior. Paludicola 2, 148-173.
- 485 Chatterjee, S., Small, B. J., 1989. New plesiosaurs from the Upper Cretaceous of
- 486 Antarctica. Special Publication of the Geological Society of London 47, 197-215

- 487 Cope, E. D., 1868. Remarks on a new enaliosaurian, *Elasmosaurus platyurus*. Proceedings
- 488 of the Academy of Natural Sciences of Philadelphia 1868, 92-93.
- 489 Cope, E. D., 1869. Extinct Batrachia, Reptilia and Aves of North America. Transactions of
- 490 the American Philosophical Society 14, 1-252.
- 491 Cruickshank, A. R., Fordyce, R. E., 2002. A new marine reptile (Sauropterygia) from New
- 492 Zealand: further evidence for a Late Cretaceous austral radiation of cryptoclidid
- 493 plesiosaurs. Palaeontology 45, 557-575.
- 494 Etayo-Serna, F., 1968. El sistema Cretáceo en la región de Villa de Leiva y zonas próximas.
- 495 Geología Colombiana 5, 5-74.
- 496 Etayo-Serna, F., 1979. Zonation of the Cretaceous of Central Colombia by ammonites.
- 497 Publicaciones Geológicas Especiales del INGEOMINAS 2, 1-186.
- 498 Farris, J. S., 1989. The retention index and the rescaled consistency index. Cladistics 5,
 499 417-419.
- 500 Forero, H. and Sarmiento, L. F., 1985. La facies evaporítica de la Formación Paja en la
- 501 región de Villa de Leiva. In: Etayo-Serna, F., Laverde, F. (Eds), Proyecto Cretácico-
- 502 Contribuciones. Publicaciones Geológicas Especiales del INGEOMINAS, Bogotá,
- 503 Colombia, XVII1-XVII16.
- 504 Gómez-Pérez, M. and Noè, L. F., 2017. Cranial anatomy of a new pliosaurid Acostasaurus
- 505 *pavachoquensis* from the Lower Cretaceous of Colombia, South America,
- 506 Palaeontographica Abteilung A. 310, 5-42.
- 507 Goñi, R., Gasparini, Z., 1983. Nuevos restos de 'Alzadasaurus colombiensis' (Reptilia,
- 508 Plesiosauria) del Cretácico temprano de Colombia. Geología Norandina 7, 49-54.

- 509 Goloboff, P. A., Catalano, S. A., 2016. TNT version 1.5, including a full implementation of
- 510 phylogenetic morphometrics. Cladistics 32, 221-238.
- 511 Kear, B. P., 2005. A new elasmosaurid plesiosaur from the Lower Cretaceous of
- 512 Queensland, Australia. Journal of Vertebrate Paleontology 25, 792-805.
- 513 Kear, B. P., 2007. Taxonomic clarification of the Australian elasmosaurid genus
- 514 *Eromangasaurus*, with reference to other austral elasmosaur taxa. Journal of Vertebrate
- 515 Paleontology 27(1), 241-246.
- 516 Kear, B. P., Larsson, D., Lindgren, J., Kundrát, M., 2017. Exceptionally prolonged tooth
- 517 formation in elasmosaurid plesiosaurians. PloS one, 12, e0172759.
- 518 Ketchum, H. F., Benson, R. B. J., 2010. Global interrelationships of Plesiosauria (Reptilia,
- 519 Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of
- 520 phylogenetic analyses. Biological Reviews 85, 361-392.
- 521 Lomax, D. R., Wahl, W., 2013. A new specimen of the elasmosaurid plesiosaur
- 522 Zarafasaura oceanis from the Upper Cretaceous (Maastrichtian) of Morocco. Paludicola
- 523 9(2), 97**-**109.
- Maddison, W. P., Maddison, D. R., 2011. Mesquite: a modular system for evolutionary
 analysis. Version 2.75.
- 526 Massare, J. A., 1987. Tooth morphology and prey preference of Mesozoic marine reptiles.
- 527 Journal of Vertebrate Paleontology 7(2), 121-137.
- 528 Maxwell, E. E., Dick, D., Padilla, S., Parra, M.L., 2015. A new ophthalmosaurid
- 529 ichthyosaur from the Early Cretaceous of Colombia. Papers in Palaeontology.
- 530 doi.org/10.1002/spp2.1030.
- 531 O'Gorman, J. P., 2016. New Insights on the Aristonectes parvidens (Plesiosauria,

532	Elasmosauridae) Holotype: News on an Old Specimen. Ameghiniana 53, 397-417.
533	O'Gorman, J. P., Otero, R. A., Hiller, N., Simes, J., Terezow, M., 2017. Redescription of
534	Tuarangisaurus keyesi (Sauropterygia; Elasmosauridae), a key species from the
535	uppermost Cretaceous of the Weddellian Province: internal skull anatomy and
536	phylogenetic position. Cretaceous Research 71, 118-136.
537	O'Keefe, F. R., 2001. A cladistic analysis and taxonomic revision of the Plesiosauria
538	(Reptilia: Sauropterygia). Acta Zoologica Fennica 213, 1-63.
539	O'Keefe, F. R., Otero, R. A., Soto-Acuña, S., O'Gorman, J. P., Godfrey, S. J., Chaterjee,
540	S., 2017. Cranial anatomy of Morturneria seymourensis from Antarctica, and the
541	evolution of filter feeding in plesiosaurs of the Austral Late Cretaceous. Journal of
542	Vertebrate Paleontology 37.4, e1347570, DOI: 10.1080/02724634.2017.1347570.
543	Otero, R. A., 2016. Taxonomic reassessment of Hydralmosaurus as Styxosaurus: new
544	insights on the elasmosaurid neck evolution throughout the Cretaceous. PeerJ 4, 1-60
545	Otero, R. A., Soto-Acuña, S., Rubilar-Rogers, D., 2012. A postcranial skeleton of an
546	elasmosaurid plesiosaur from the Maastrichtian of central Chile, with comments on the
547	affinities of Late Cretaceous plesiosauroids from the Weddellian Biogeographic
548	Province. Cretaceous Research 37, 89-99.
549	Otero, R. A., Soto-Acuña, S., O'Keefe, F. R., O'Gorman, J. P., Stinnesbeck, W. S., Suárez,
550	M. E., Rubilar-Rogers, D., Salazar, C., Quinzio-Sinn, L. A., 2014. Aristonectes
551	quiriquinensis, sp. nov., a new highly derived elasmosaurid from the upper
552	Maastrichtian of central Chile. Journal of Vertebrate Paleontology 34, 100-125.
553	Owen, R., 1860. On the orders of fossil and recent Reptilia, and their distribution in time.

554	Reports of the British Association for the Advancement of Science 29, 153-166.
555	Padilla, C. B., Páramo, M. E., Noè, L., Gómez Pérez, M., Parra, M. L., 2010). Acid
556	preparation of large vertebrate specimens. The Geological Curator 9 (3), 213-220.
557	Páramo-Fonseca, M. E., 2015. Estado actual del conocimiento de los reptiles marinos
558	cretácico de Colombia. En: Fernández, M. y Herrera, Y. (Eds.) Reptiles Extintos -
559	Volumen en Homenaje a Zulma Gasparini. Publicación Electrónica de la Asociación
560	Paleontológica Argentina 15, 40-57. http://dx.doi.org/10.5710/PEAPA.12.06.2015.98.
561	Páramo-Fonseca, M. E., Gómez-Pérez, M., Noé, L. F., Etayo-serna, F., 2016.
562	Stenorhynchosaurus munozi, gen. et sp. nov. a new pliosaurid from the upper Barremian
563	(Lower Cretaceous) of Villa de Leiva, Colombia, South America, Revista de la
564	Academia Colombiana de Ciencias Exactas, Físicas y Naturales 40, 84-103.
565	Pol, D., Escapa, I. H., 2009. Unstable taxa in cladistic analysis: identification and the
566	assessment of relevant characters. Cladistics 25, 515-527.
567	Sachs, S., 2005a. Tuarangisaurus australis sp. nov. (Plesiosauria: Elasmosauridae) from
568	the Lower Cretaceous of northeastern Queensland, with additional notes on the
569	phylogeny of the Elasmosauridae. Memoirs of the Queensland Museum 50, 425-440.
570	Sachs, S., 2005b. Redescription of <i>Elasmosaurus platyurus</i> Cope 1868 (Plesiosauria:
571	Elasmosauridae) from the Upper Cretaceous (lower Campanian) of Kansas, U.S.A.
572	Paludicola 5, 92–106.
573	Sachs, S., Hornung, J. J., Kear, B. P., 2017. A new basal elasmosaurid (Sauropterygia:
574	Plesiosauria) from the Lower Cretaceous of Germany. Journal of Vertebrate
575	Paleontology 37, e1301945.

576	Sachs, S., Lindgren, J., Kear, B. P., 2018. Reassessment of the Styxosaurus snowii
577	(Williston, 1890) holotype specimen and its implications for elasmosaurid plesiosaurian
578	interrelationships. Alcheringa. 1-27. In press, DOI: 10.1080/03115518.2018.1508613
579	Sato, T., 2003. Terminonatator ponteixensis, a new elasmosaur (Reptilia; Sauropterygia)
580	from the Upper Cretaceous of Saskatchewan. Journal of Vertebrate Paleontology 23, 89-
581	103.
582	Sato, T., Hasegawa, Y., Manabe, M., 2006. A new elasmosaurid plesiosaur from the Upper
583	Cretaceous of Fukushima, Japan. Palaeontology 49, 467-484.
584	Serratos, D. J., Druckenmiller, P., Benson, R. B., 2017. A new elasmosaurid
585	(Sauropterygia, Plesiosauria) from the Bearpaw Shale (Late Cretaceous, Maastrichtian)
586	of Montana demonstrates multiple evolutionary reductions of neck length within
587	Elasmosauridae. Journal of Vertebrate Paleontology, e1278608.
588	Smith, J., Dodson, P., 2003. A proposal for a standard terminology of anatomical notation
589	and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23 (1),
590	1-12.
591	Vincent, P., Bardet, N., Pereda-Suberbiola, X., Bouya, B., Amaghzaz, M., Meslouh, S.,
592	2011. Zarafasaura oceanis, a new elasmosaurid (Reptilia: Sauropterygia) from the
593	Maastrichtian Phosphates of Morocco and the palaeobiogeography of latest Cretaceous
594	plesiosaurs. Gondwana Research 19, 1062-1073.
595	Welles, S. P., 1943. Elasmosaurid plesiosaurs with description of new material from
596	California and Colorado. Memoirs of the University of California 13, 125-254.
597	Welles, S. P., 1949. A new elasmosaur from the Eagle Ford Shale of Texas. Fondren

- 598 Science Series 1, 1-28.
- 599 Welles, S. P., 1952. A review of the North American Cretaceous elasmosaurs. University of
- 600 California Publications in Geological Sciences 29, 47-143.
- 601 Welles, S. P., 1962. A new species of elasmosaur from the Aptian of Colombia and a
- 602 review of the Cretaceous plesiosaurs. University of California, Publications in
- 603 Geological Sciences 44, 1-96. Wiffen, J., Moisley, W. L., 1986. Late Cretaceous reptiles
- 604 (Families Elasmosauridae and Pliosauridae) from the Mangahouanga Stream, North
- Island, New Zealand. New Zealand Journal of Geology and Geophysics 29, 205-252.
- 606 Williston, S. W., 1890. A new plesiosaur from the Niobrara Cretaceous of Kansas.
- Transactions of the Kansas Academy of Science 13, 107-111.
- 608

609 APPENDIX I

- 610 Character states of *Leivanectes bernardoi* gen. et sp. nov.

- 615
- 616

617 Figure captions

- 618 Figure 1. Geographic and stratigraphic provenance of the holotype specimen FCG-CBP-22
- 619 of *Leivanectes bernardoi* gen. et sp. nov. A, locality where FCG-CBP-22 was collected
- 620 (arrow). B, generalized stratigraphic column of the Paja Formation showing the specimen

- 621 occurrence (modified from Etayo-Serna, 1979). C, lateral and ventral views of
- 622 Cheloniceras (Epicheloniceras) carlosacostai Etayo-Serna, 1979 (FCG-CBP-46) found
- 623 with the skeletal remains (scale bar = 5mm).
- 624
- 625 Figure 2. Leivanectes bernardoi gen. et sp. nov., holotype (FCG-CBP-22), A-D,
- 626 photographs and interpretative drawings of skull and mandible in anterior (A), left lateral
- 627 (B), dorsal (C) and ventral (D) views. Dashed lines: interpretative limits (Scale bar = 20
- 628 mm). E, photograph of the fourth right premaxillary tooth in lateral view (Scale in cm).
- 629 Abbreviations: 1st, 2nd, ..., premaxillary alveolus; **a**, angular; **c**, coronoid; **de**, dentary; **fr**,
- 630 frontal; mx, maxilla; p, parietal; pl, palatine; pmx, premaxilla; pof, postfrontal; prf,
- 631 prefrontal; **pt**, pterygoid; **sp**, splenial; **v**, vomer.
- 632
- 633
- 634 Figure 3. A-B, plot of mesio-distal length of premaxillary alveoli of L. bernardoi (FCG-

635 CBP-22), C. colombiensis (UCMP 125328) and T. keyesi (NPC CD 425),

- 636 100*AMD/preorbital length (A), and, absolute measures (AMD) (B). C-H, comparison of
- 637 alveolar features between the *C. colombiensis* holotype (UCMP 38349), referred specimen
- 638 (UCMP 125328) and holotype of *L.bernardoi* FCG-CBP-22. C and F, the anterior orbital
- 639 margin (vertical line) and the tenth mandibular alveoli (arrow) in *C. colombiensis* holotype
- 640 (C) and L. bernardoi (F, G). D, E and H, comparison of anterior views of C. colombiensis,
- holotype (D) and referred specimen (E), and *L. bernardoi* (H) (Scale bars = 20mm).

642

- 643 Figure 4. C. colombiensis skull and mandible. A-D, holotype (UCMP 38349) in right lateral
- 644 (A), left lateral (B), ventral (C) and dorsal (D) views. E-F, referred specimen (UCMP
- 645 125328) in ventral (E) and dorsal (F) views (Scale bars = 20 mm). Abbreviations: **pmr**,
- 646 premaxillary ridge; **svg**, symphyseal ventral groove.
- 647

648

- 649 Figure 5. A-B, Plesiosauroidea branch from the phylogenetic analysis of Plesiosauria data
- 650 set (See material and Methods). A, strict consensus of 20000 most parsimonious trees, 1502
- steps, obtained after (TBR) branch swapping. Bremer Support indicated below some nodes.
- B, reduced most parsimonious tree after pruning unstable taxa (Plesiosauroidea pruned
- 653 OTUs: Hastanectes valdensis, Callawayasaurus colombiensis, Eromangasaurus australis,
- 654 Elasmosaurus platyurus and Zarafasaura oceanis).

655

Table 1. Mesodistal measurements of the premaxillary and maxillary alveoli (in mm). Themaxillary alveoli measurements were taken from the left side of the skull.

658

- Table 2. Alveolar account of several elasmosaurids (data Taken from Carpenter, 1997: fig.
- 660 2; Kear, 2005, 2007; Lomax and Wahl, 2013; O'Gorman et al., 2017: fig. 7A, B, 9M; Otero,
- 661 2016; Sachs et al., 2017; Sachs et al., 2018: fig. 1B; Sato, 2003: fig. 5; Sato et al., 2006: fig.
- 4A; Serratos et al., 2017: fig. 3, 4; Vincent et al., 2011: fig. 4A;; Welles, 1943, 1949, 1962;
- 663 J.P.O'G pers. obs.).

Premaxillary	Mesodistal	Maxillary	Mesodistal	Maxillary	Mesodistal				
alveolus	measurement	alveolus	measurement	alveolus	measurement				
1 st	10	1^{st}	9	6 th	18				
2 nd	15	2 nd	14	7^{th}	13				
3 rd	24	3 rd	20	8 th	11				
4 th	23	4^{th}	21	9 th	13				
5 th	16	5 th	21						
5 th 16 5 th 21									

	Number of		Number of
Elasmosaurid species	symphyseal	Number of premaxillari alveoli	pre-orbital alveoli
	alveoli		in mandible
Leivanectes bernardoi gen. at sp. nov. (FCG-	3	5	7
CBP-22)			
Eromangasaurus australis (QM F11050)	~5	4 (left)/ 3(right)	7+
Callawayasaurus colombiensis (UCMP 38349,			
holotype; UCMP 125328 referred)	~5-6	5	~11
Libonectes morgani (SMUSMP 69120)	4	5	10
Thalassomedon hanningtoni (UNSM 50132)	?	5?	~10
Futabasaurus suzukii (NSM PV15025)	~4	5	~12
Zarafasaura oceanis (OCP DEK/GE 315)	~4	4-5	7?
Tuarangisaurus keyesi (NPC CD 425)	4	5	10
Terminonatator ponteixensis(RSM P2414.1)	3	4 left/1midline/4 right	~10
Lagenanectes richterae (BGR Ma 13328)	4	5	8+, ~13
Styxosaurus browni (AMNH 5835)	?	4-5	9+
Styxosaurus snowii (KUVP 1301)	3	5	8+
Nakonanectes bradti	3	5	~8

