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Abstract 
 

Oxidative damage to proteins leads to a variety of modifications that are markers of 

pathogenesis. One of the most important modifications is the dityrosine (Tyr2) cross-link, 

resulting from an oxidative covalent bond between two tyrosines (Tyr). An optimized 

methodology for preparation of pure Tyr2 is important to investigate in detail its 

physicochemical properties and reactivity. Pterin (Ptr), the parent and unsubstituted 

compound of oxidized pterins, is able to photosensitize the cross-linking of free tyrosine 

(Tyr) and tyrosine residues of peptides and proteins through a photoinduced electron 

transfer mechanism. We have optimized a simple, one-step photocatalyzed formation of 

Tyr2, using Ptr as photocatalyst. Our procedure is carried out in aqueous solutions under 

UV-A radiation for few minutes. The purification of Tyr2 is performed by reverse-phase 

chromatography. The obtained highly pure solution is used to fully characterize the Tyr2 

(exact mass and 1H, 1H-1H COSY; DEPT; HSQC and HMBC NMR experiments) and to 

deeper study its fluorescence properties. 
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Introduction 

 

Oxidative damage to proteins leads to a variety of modifications that are markers of 

pathogenesis [1]. One of the most important modifications is the dityrosine cross-link, 

resulting from an oxidative covalent bond between two tyrosines (Tyr), which is involved 

in amyloid fibril formation, Parkinson’s disease or epidermoid carcinoma [2]. Surprisingly, 

the mechanism of the dityrosine adducts (Tyr2) formation has been little addressed. On the 

basis of electronic paramagnetic resonance spectroscopy (EPR), it has been proposed that 

the process starts with the one-electron oxidation of Tyr, which leads to the long-lived 

tyrosyl radical (Tyr(-H)•). The coupling of two Tyr(-H)• yields the dimer o,o′-dityrosine 

(Tyr2) as the main product [3] (Figure 1). This linkage can occur intramolecularly between 

two Tyr residues in the protein, or intermolecularly between two different protein molecules 

[4,5]. The latter process leads to products of higher molecular weight and affects the 

solubility and elastic properties of proteins [6]. 

 

Figure 1. Postulated oxidative formation of dimer o,o′-dityrosine (Tyr2). 
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An optimized methodology for preparation of pure Tyr2 is important to investigate 

in detail its physicochemical properties and reactivity. Aryl-aryl coupling reactions have 

traditionally been carried out using aryl halides or aryl boronic derivatives as starting 

materials that eventually are reduced in the presence of metal catalysts such as Pd, Cu or Ni 

[7]. In fact, Tyr2 has been prepared from 3-iodo-L-tyrosine through a Miyaura-borylation-

Suzuki-coupling reaction in four steps [8]. On the other hand, efforts have been devoted to 

synthesize Tyr2 by using a battery of oxidizing agents, but these attempts remain of limited 

applicability [9,10,11]. By contrast, in vitro oxidation of Tyr with peroxidase and hydrogen 

peroxide has been shown to be an interesting method for production of Tyr2 [12,13,14]. 

However, the main drawback relies on the isolation of pure Tyr2 from the incubation 

mixture, which is not straightforward and requires many steps. Despite of that, this method 

is still the main way to obtain Tyr2 and although it has been improved, the purification step 

is still laborious [15]. 

More recently, an increasing interest in using light for synthetic organic purposes 

has been observed. For instance, Boguta and Dancewicz have shown that radiation can 

induce the dimerization of Tyr by direct light absorption [16,17]. Furthermore, examples of 

photoredox catalysis applied to a great variety of organic transformations using transition-

metal or more convenient metal-free photocatalysts have attributed attention of researchers 

and examples in literature are countless [18,19,20]. 

Interestingly, aryl-aryl bond formation can be triggered through a photocatalyzed 

oxidation reaction, as reported for the cross-linking of free Tyr and tyrosyl groups in 

proteins in reaction photosensitized by riboflavin (Rb) [3,21]. In this case, the proposed 

mechanism was the reduction of the triplet excited state of Rb by Tyr, yielding the Rb 



radical anion (Rb•−) and the tyrosine radical cation (Tyr•+), which deprotonates to Tyr(-H)•; 

subsequent dimerization of two Tyr(-H)• gives rise to the formation of Tyr2. 

In this context, pterins appeared to be of particular interest. They are a family of 

heterocyclic compounds present in a wide variety of living systems and participate in 

relevant biological functions [22,23]. In addition, these endogenous compounds exhibit an 

absorption in the UVA region of the solar spectrum (Figure 2), and thus might represent 

intrinsic photosensitizers of proteins. Indeed, several studies have demonstrated that pterin 

(Ptr), the parent and unsubstituted compound of oxidized pterins (Figure 2), is able to 

photosensitize the cross-linking of free tyrosine (Tyr) [24] and tyrosine residues of peptides 

[25,26] and proteins [27,28,29] through a photoinduced electron transfer mechanism. 

 

Figure 2. Absorption spectra of pterin (Ptr, solid line) and tyrosine (Tyr, dashed line) in air-
equilibrated aqueous solutions at pH 5.5. Inset: molecular structure of Ptr. 

 

 

Material and Methods 
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2.1. General 

 Pterin (Ptr, purity > 99%, Schircks Laboratories, Switzerland) and tyrosine (Tyr, 

purity > 99%, Sigma Chemical Co) were used without further purification after checking 

for impurities by HPLC. Ammonium acetate (NH4Ac), formic acid (HCOOH) and D2O 

were purchased from Sigma Chemical Co. Quinine hemisulfate salt monohydrate and 

acetonitrile (ACN) were purchased from Fluka and J. T. Baker, respectively. 

Electronic absorption spectra were recorded on a Shimadzu UV-1800 

spectrophotometer, using quartz cells of 1 cm optical path length. The pH measurements 

were performed using a pH-meter sensION+ pH31 GLP combined with a pH electrode 

5010T (Hach) or microelectrode XC161 (Radiometer Analytical). The pH of the aqueous 

solutions was adjusted by adding drops of HCl and NaOH solutions from a micropipette. 

The concentration of the acid and the base used for this purpose ranged from 0.1 M to 2 M. 

Nitrogen and oxygen-saturated solutions were obtained by bubbling for 20 min with these 

gases (Linde, purity 99.998%), previously saturated in water. 

 

2.2. Steady-state irradiation 

 The continuous irradiation of the samples, air equilibrated aqueous solutions 

containing Ptr and Tyr in the pH range 6.0 ± 0.1, was carried out at room temperature. Two 

different irradiation systems were employed: (I) the sample (1 mL) in quartz cell (1 cm 

optical path length) was irradiated with a Rayonet RPR 3500 lamp (Southern N. E. 

Ultraviolet Co.) with emission centered at 350 nm [bandwidth (full width at half-

maximum) of ∼20 nm], the distance between the lamp and the sample was 4 mm; (II) the 

sample (100 mL) in a round flask was irradiated in a multilamp photoreactor equipped with 

12 lamps (Osram Sylvania, F15T8/BLB) emitting from 310 to 410 nm with a maximal 



output (1 mW/cm2) at ca. 360 nm. 

 

2.3. High-performance liquid chromatography (HPLC) 

Equipment 1 (HPLC1). A Prominence equipment from Shimadzu (solvent delivery module 

LC-20AT, on-line degasser DGU-20A5, communications bus module CBM-20, auto 

sampler SIL-20A HT, column oven CTO-10AS VP, photodiode array (PDA) detector SPD-

M20A and fluorescence (FL) detector RF-20A) was employed for monitoring the 

photochemical processes and to purified the Tyr2 sample. A Synergi Polar-RP column 

(ether-linked phenyl phase with polar endcapping, 150 x 4.6 mm, 4 µm, Phenomenex) was 

used for isolation of Tyr2 from HPLC runs (preparative HPLC), by collecting the mobile 

phase after passing though the PDA detector. Solutions containing 100 % NH4Ac (1 mM, 

pH 6.0 ± 0.1) were used as mobile phase. The same column and runs conditions were used 

to analyze the purity of the isolated Tyr2 sample. 

Equipment 2 (HPLC2). Isolation of Tyr2 was performed on a ProStar equipment from 

Varian (solvent delivery system model 240, rheodyne injector and PDA detector model 

330). A Synergi Polar-RP column (250 x 10 mm, 4µm, Phenomenex) was used with 

aqueous solutions of HCl (pH 3.0 ± 0.1) as mobile phase. 

 

2.4. Mass spectrometry analysis 

 The liquid chromatography mass spectrometry system was equipped with an UPLC 

chromatograph (ACQUITY UPLC from Waters) coupled to a quadrupole time-of-flight 

mass spectrometer (Xevo G2-QTof-MS from Waters) (UPLC-QTof-MS). UPLC analyses 

were performed using the Acquity UPLC BEH Phenyl (1.7 µm, 2.1 x 50 mm) column 



(Waters). An isocratic elution with 99 % of aqueous HCOOH (0.1 % v/v) and 1 % of ACN 

was used as mobile phase with a flow rate of 0.2 mL min-1. Mass chromatograms, i.e. 

representations of mass spectrometry data as chromatograms (the x-axis representing time 

and the y-axis signal intensity), were registered using different scan ranges. The mass 

spectrometer was operated in both positive (ESI+) and negative (ESIˉ) ion modes. When 

solutions of pure Tyr2 were analyzed, the signals corresponding to the intact molecular ion 

of Tyr2 as [2Tyr-2H+H]+ and [2Tyr-2H-H]ˉ species at m/z 361 Da and 359 Da, respectively, 

were observed. However, the resolution was much better in ESIˉ than in ESI+ mode. 

Therefore the results presented in this work correspond to mass spectrometry analysis 

carried out in ESIˉ mode. 

 

2.5. Nuclear Magnetic Resonance spectroscopy 

 The experiments were acquired on a Bruker AV (400 MHz) spectrometer, equipped 

with a BBI probe. The signal of the solvent, D2O, was used as a reference for the 

determination of the chemical shifts (δ) in ppm. When the 1H was run with suppression of 

solvent the reference was taken internally by the equipment. 1H-1H COSY; DEPT; 

heteronuclear single quantum correlation experiments (HSQC) and heteronuclear multiple-

bond correlation spectroscopy (HMBC) experiments were performed to complete the 

assignment. 

 

2.6. Determination of the pKa 

 The pKa value of Tyr2 was determined by UV/Vis-spectrophotometric analysis at 

room temperature. The experimentally determined absorbance (A) at a given wavelength 

can be fitted by equation (1) 



A = (c  l)  (εa [H+] + εb Ka) / (Ka + [H+])      (1) 

where εa and εb are the molar absorption coefficients of the acid and basic forms of Tyr2 

respectively, c is the total concentration of the species involved in the acid–base 

equilibrium (ie. [Tyr2]), l is the optical path length and Ka is the dissociation constant of the 

acid form of the species involved in the acid–base equilibrium. UV-visible absorption 

spectra were registered on the above-mentioned spectrophotometer. A more-detailed 

description of pKa determinations has been given elsewhere [30]. 

 

2.7. Fluorescence spectroscopy 

Fluorescence measurements were performed at room temperature using a single-

photon-counting equipment FL3 TCSPC-SP (Horiba Jobin Yvon). 

Steady-state experiments. The sample solution in a quartz cell was irradiated with a CW 

450 W Xenon source through an excitation monochromator (FL-1004). The luminescence, 

after passing through an emission monochromator (iHR320), was registered at 90° with 

respect to the incident beam using a room-temperature R928P detector. The emission 

measurements were performed at 25 ºC. Corrected fluorescence spectra obtained by 

excitation at 280 and 315 nm were recorded in the ranges 310 - 550 nm and 340 - 550 nm, 

respectively. The excitation spectra were recorded between 260 and 380 nm, monitoring the 

fluorescence intensity at 410 nm. 

 The fluorescence quantum yields (ΦF) were determined from the corrected 

fluorescence spectra using the following equation: 

ΦF = ΦF
R          (2) 

Where I is the integrated intensity, A is the absorbance at the excitation wavelength and the 

I AR 

IR A 



superscript R refers to the reference fluorophore. In our experiments, quinine hemisulfate in 

0.5 M H2SO4 was used as a reference [31] (ΦF =0.546 [32]). The sample and reference 

were excited at the same wavelength. To avoid inner filter effects, the absorbance of the 

solutions at the excitation wavelength was kept below 0.10. 

Time-resolved experiments. NanoLED sources (maxima at 295 and 341 nm) were used for 

excitation. The emitted photons, after passing through the iHR320 monochromator, were 

detected by a TBX-04 detector connected to a TBX-PS power supply and counted by a 

FluoroHub-B module, controlled using the DataStation measurement control software 

application. The selected counting time window for the measurements reported in this study 

was 0–200 ns. 

In addition, the time-resolved emission spectra (TRES) of solutions were obtained, 

measuring the decay curves at multiple emission wavelengths to construct a 3D data set of 

counts versus time and versus wavelength. The Global Analysis of TRES, a fit calculation 

(up to 5 exponentials) performed globally on up to 100 separate decay curves, was carried 

out using the DAS6 Fluorescence Decay Analysis software. 

 

2.8. Laser flash photolysis 

 A pulsed Nd:YAG laser (Lotis TII) was used for the excitation at 355nm. The single 

pulses were of ca. 10 ns duration and the energy was 21 mJ/pulse. A pulsed Xenon lamp 

was employed as detecting light source. The laser flash photolysis apparatus consisted of 

the pulsed laser, the Xe lamp, a monochromator, and a photomultiplier made up of a tube, 

housing, and power supply. The output signal from the oscilloscope was transferred to a 

personal computer. All transient spectra were recorded using 1 x 1 cm2 quartz cells with 4 



mL capacity, and solutions were bubbled for 20 min with N2 before acquisition. Aqueous 

solutions of 75 µM Ptr (A355= 0.4) were prepared in acidic water at pH=5. For quenching 

experiments, stock solutions of quenchers were prepared so that it was only necessary to 

add microliter volumes to the sample cell to obtain appropriate concentrations of the 

quencher. 

 

 

3. Results and discussion 

 

3.1. Mechanistic study of the photoreaction between Ptr and Tyr 

 Up to now, few data are available on the process responsible for Tyr dimerization as 

a result of a photocatalyzed process. A type I mechanism involving a photoinduced electron 

transfer from the amino acid to the triplet excited state of the photosensitizer (3Phs*) has 

been proposed for Rb and Ptr [3,21,24]. Briefly, after the excitation of the Phs and 

formation of its triplet excited state, 3Phs* (Reactions 3 and 4), the one electron oxidation of 

Tyr takes place leading to the formation of the corresponding pair of radical ions, Phs•− and 

Tyr•+ (Reaction 5), that may deprotonate to Tyr(-H)• (Reaction 6) (Figure 1). The electron 

transfer from Phs•− to O2 regenerates Phs and forms O2
•– (Reaction 7), which, in turn, 

disproportionates to form H2O2 (Reaction 8). Finally a group of processes, represented 

schematically by Reaction 9, leads to the oxidation of Tyr and consumption of O2. 

Alternatively, Tyr(-H)• suffers dimerization to yield Tyr2 (Reaction 10, Figure 1) (vide 

infra).  

 



Phs  1Phs* (3) 

1Phs*  3Phs* (4) 

3Phs* + Tyr  Phs•– + Tyr•+ (5) 

Tyr•+  Tyr(-H)• + H+ (6) 

Phs•– + O2  Phs + O2
•– (7) 

2 H+ + 2 O2
•–  H2O2 + O2 (8) 

Tyr•+/Tyr(-H)• + O2  Tyr(ox) (9) 

2 Tyr(-H)•  Tyr2 (10) 

 

  However, the involved excited states and/or radical species of reactions 5 and 6 

have never been detected spectroscopically in the case of Ptr. In this context, nanosecond 

laser flash photolysis at 355 nm (Nd:YAG laser) of Ptr in the presence of Tyr was 

performed. The transient absorption spectrum of N2 flushed Ptr solution (75 µM) in acidic 

water at pH = 5 showed a band with a maximum at around 430 nm (Figure 3, black 

triangles), which decayed by a biexponential process with lifetimes of τ1 and τ2 of 0.34 and 

3.8µs, respectively. This result is in agreement with the data described in the literature for 

the triplet-triplet transient absorption of Ptr [33]. Addition of increasing amounts of Tyr (up 

to 500 µM) resulted in a shortening of τ2. It should be mentioned that the employed 

experimental set up does not allow to detect changes of the sub µs lifetime τ1. The 

bimolecular quenching rate constant (kq) was determined by means of the Stern-Volmer plot 

(Figure 3) following Equation 11: 

1/τ = 1/τ2 + kq [Tyr]          (11) 

ISC 



where τ2 and τ are the triplet lifetimes (in s) in the absence and in the presence of Tyr, 

respectively, and [Tyr] is the concentration of the amino acid in M. An efficient quenching 

was observed with a kq of ca. 2 x 109 M-1 s-1. This kq, close to water diffusion controlled 

rate constant [34], points toward a possible electron transfer mediated by the triplet excited 

state of Ptr. 

 

Figure 3. Transient absorption spectra of N2 flushed aqueous solution of Ptr (75 µM) at pH 5 
in the absence (black triangle, 0.4 µs after the laser pulse) or in the presence of 500 µM Tyr 
(white triangle, 15 µs after the laser pulse). Inset: corresponding Stern-Volmer plot. 
 

 Accordingly, the transient absorption spectrum in the presence of Tyr showed two 

new bands: a sharp one at ca 410 nm and a broader one (400-550 nm) (Figure 3, white 

triangles). On the basis of literature data, the former could be satisfactorily correlated with 

the known spectral properties of the tyrosyl radical (Tyr(-H)•) obtained after deprotonation 

of the Tyr•+, which has been reported peaking at 410 nm [35]. The latter, as stated in 
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Reaction 5, should thus be due to the radical anion of Ptr (Ptr•-). This species was further 

assigned by exciting Ptr in the presence of DABCO, used as reductant. The 3Ptr* was 

efficiently quenched in the presence of DABCO giving rise to the formation of a new band 

(Figure 4) that is coincident with the broad absorption species observed at 400-550 nm in 

the presence of Tyr (Figure 3). 

 

Figure 4. Transient absorption spectrum of N2 flushed aqueous solution of Ptr (75 µM) at pH 
5 in the presence of 1 mM DABCO (5.4 µs after the laser pulse). Inset: Time dependence of the 
absorbance at 460 nm at 0 (black line) and 1 mM (gray line) of DABCO. 
 

 Moreover, the thermodynamic feasibility of the electron transfer between Tyr and 

3Ptr* was determined using the Gibbs energy of photoinduced electron transfer Equation 12: 

∆G = Eº(Tyr•+/Tyr)- Eº(Ptr/Ptr•-) – ET(Ptr)      (12) 

where Eº(Tyr•+/Tyr) is the reduction potential of Tyr (ca. 0.93 V vs NHE) [36], Eº(Ptr/Ptr•-) 

is the reduction potential of Ptr (ca. -0.55 V vs NHE) and ET(Ptr) is the triplet excited state 

energy of Ptr (ca. 2.52 eV) [37]. A value of ∆G = -1.04 eV was obtained, supporting the 
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occurence of a photoinduced electron transfer between 3Ptr* and Tyr, leading to the tyrosyl 

radical Tyr(-H)•, which in turn could dimerize to give rise to Tyr2. 

 

3.2. Preparation of Tyr2 

Then, acidic air-equilibrated aqueous solutions of Tyr were exposed to UV-A 

radiation in the presence of Ptr. Under these experimental conditions only Ptr is selectively 

excited, as it can be inferred from the corresponding absorption spectra (Figure 2). The 

photocatalyzed reaction was run in quartz cells of 1.0 cm optical path length and the 

photomixtures were analyzed by reverse-phase chromatography employing the equipment 

HPLC1, using a C18 column and aqueous solution of NH4Ac 1 mM (pH 6.0) as eluent (see 

Material and Methods). The concentration profiles of Ptr and Tyr, determined by UV-Vis 

chromatograms, showed a decrease of the Tyr concentration as a function of irradiation 

time, whereas the Ptr concentration did not change in the analyzed time-window (Figure 5). 

However, a new peak at 6.45 min was differentiated from the other products taking 

advantage of its particular emission features [15]. Therefore, fluorescence chromatograms 

of irradiated solutions (excitation at 280 nm and emission at 410 nm) were recorded and 

only one significant peak was detected at the same retention time (tR) (Figure 5b). The 

absorption and emission spectra of this new peak are red-shifted with respect to those of 

Tyr [38]. The absorption spectrum of this product, registered by the UV-Vis detector (see 

inset of Figure 5a), corresponded to the previously reported for the acidic form of Tyr2 

[39,40]. Therefore, this new peak was safely assigned to the dimeric form of Tyr (Tyr2). As 

shown in the inset of Figure 5b, the production of Tyr2 increased with irradiation time 

reaching a maximum and then decreased slowly. 



 

Figure 5. Chromatograms, obtained using a) the HPLC1-PDA detector at 280 nm and b) 
HPLC1-FL detector (excitation at 280 nm, emission at 410 nm), of a solution containing Tyr 
and Ptr before (black line) and after 10 min (gray line) of irradiation. Inset: a) absorption 
spectrum of Tyr2 in NH4Ac (1mM, pH= 6.0) obtained for the peak at 6.45 min in the 
chromatogram; b) evolution of the Tyr and Tyr2 concentration as a function of irradiation 
time.[Ptr]0 = 100µM, [Tyr]0 = 500µM, pH = 6.0. 
 

To optimize the production of Tyr2, the concentration profiles of this product were 

obtained at different concentrations of each reactant, taking into account the solubility 

limitations. In all cases, the area of the peak corresponding to Tyr2 increased with 

irradiation time reaching a maximum (Figure 5). This analysis revealed that the highest 

concentration of Tyr2 was obtained when a solution containing 500 µM of Tyr and 100 µM 

of Ptr was irradiated 10 min with UVA light (irradiation system I, Material and Methods). 
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3.3. Isolation and identification of Tyr2 

Upon applying the optimized experimental conditions to maximize the production 

of Tyr2, the compound was isolated from HPLC runs by collecting the mobile phase after 

passing through the HPLC1-PDA detector. The analysis of the collected fraction showed 

only one peak with spectroscopic features corresponding to that of Tyr2 (Figure S1, 

Supporting Information), suggesting that the isolation of Tyr2 was done successfully. 

To unequivocally characterize the isolated Tyr2, first it was analyzed by UPLC 

coupled to ESI mass spectrometry (UPLC-MS) (Material and Methods). The corresponding 

mass chromatograms showed a single peak (Figure 6) with a m/z value of 359.1239 Da 

which corresponds to [2Tyr-2H-H]ˉ. Accordingly, the mass chromatograms registered for 

the specific ion mass of 359.1239 Da showed that this molecular weight was observed at 

only one tR value, indicating that only one isomer of Tyr2 is formed. 

 

Figure 6. Mass spectrum obtained from UPLC-QTof-MS analysis of an isolated aqueous 
solution of Tyr2 (14 µM). Inset: Mass chromatogram of m/z 359.1239 Da. Mode ESI-, Voltage= 
30 V. 
 

Then, the isolated compound was fully characterized by NMR spectroscopy 

 

 



(Material and Methods). Taking into account that this technique needs a relatively high 

concentration of the analyte, a 100 mL aqueous solutions of Tyr (500 µM) and Ptr (100 

µM) was irradiated using the irradiation system II (Material and Methods) during 10 min. 

Tyr2 was isolated using the equipment HPLC2 (Material and Methods), equipped with a 

semi-preparative C18 column. In addition, to avoid interferences in the subsequent NMR 

analysis, aqueous solutions of HCl (pH 3.0 ± 0.1) was used as eluent to collect Tyr2. After 

that, the solvent was removed by lyophilization. 

Initially the 1H NMR was run in slightly acidic D2O to compare to the previously 

described Tyr2. In fact, the spectrum was coincident to the one already described (see 

Supporting Information, Figures S2-S8).9 However, to fully characterize the dimer, much 

better resolution was obtained in slightly basic D2O; therefore all the experiments were 

carried at pH ca. 11 (1H, 1H-1H COSY, DEPT, HSQC and HMBC). Due to the limited 

solubility of Tyr2, the quaternary carbons were only identified with the help of HMBC: 1H 

NMR (400 MHz, basic D2O) δ = 7.31 (br s, 1H), 7.25 (br s, 1H), 7.17 (br d, J = 8.0 Hz, 

1H), 7.04 (br d, J = 8.0 Hz, 1H), 6.99 (br d, J = 8.0 Hz, 1H), 6.74 (br d, J = 8.0 Hz, 1H), 

3.45 (dd, J = 8.0, 4.8 Hz, 1H), 3.39 (dd, J = 8.0, 5.3 Hz, 1H), 3.01 (dd, J = 13.2, 4.8 Hz, 

1H), 2.92 (dd, J = 13.6, 5.3 Hz, 1H), 2.74 (dd, J = 13.2, 8.0 Hz, 1H), 2.69 (dd, J = 13.6, 8.0 

Hz, 1H); 13C NMR (100 MHz, basic D2O) δ = 40.1 (CH2), 40.3 (CH2), 57.6 (2xCH), 119.0 

(CH), 121.9 (CH), 129.6 (CH), 129.7 (CH), 129.8 (CH), 131.5 (CH), 152.9 (2xC), 156.9 

(2xC), 182.6 (2xC). A parallel set of experiments were carried out for commercial Tyr 

under basic D2O in order to compare (see Supporting Information, Figures S9-S15). 

 

3.4. Determination of the yield  



As previously reported, the phenol groups of Tyr2 are much more acidic than that of 

Tyr and the two acid-base forms have well differentiated spectral features [13,15], e.g. the 

absorbance maxima are 283 and 315 nm for the acid and basic form, respectively. 

Therefore, the absorption spectra of the isolated compound was recorded over a range of 

pH (Figure 7) and the corresponding pKa value was determined to be 7.25 ± 0.02 (Material 

and Methods), which is in agreement with that published in the literature [40]. 

 

Figure 7. Absorption spectra of air equilibrated aqueous solution of purified Tyr2 at different 
pH values. The pH values appear above each spectrum. Inset: acid-base equilibrium in 
aqueous solution of Tyr2 and the variation of the absorbance at 315 nm (circles) as a function 
of pH; the solid line represents the absorbance calculated by fitting the experimental data to 
Equation 1. [Tyr2]= 12 µM. 
 

The absorbance of the solution of the isolated compound (pH 6.0) at 283 nm was 

measured, and the concentration of Tyr2 was determined using the Beer–Lambert law (Aλ =

εTyr2

λ  𝑙𝑙[Tyr2]), using εTyr2
283 = (5680 ± 30) M-1cm-1 for the molar extinction coefficient of the 
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acid form [15]. With this data, the mass of Tyr2 in the isolated sample was calculated taking 

into account the volume obtained during the isolation of the sample. The result was 

compared to the initial mass of Tyr and a value of 9 (±1) % was obtained for the overall 

yield of the one-step photocatalyzed process. 

 

3.5. Fluorescence properties 

As mentioned above, the Tyr2 is fluorescent and its particular emission properties 

are used to detect its formation in proteins and peptides [6,15]. Moreover, fluorescence of 

Tyr2 is an unspecific marker of oxidative damage in proteins [6,15]. Despite the biological 

and medical importance of Tyr2 emission, the reports on fluorescence of isolated Tyr2 in 

aqueous solutions are rare [15,39]. 

The fluorescence spectra of Tyr2 in acid (pH 4.8±0.1) and alkaline (pH 9.7±0.1) 

solutions were recorded by excitation at 280 nm and 315 nm, respectively. Both 

fluorescence spectra were identical, with an emission maximum at 410 nm (Figure 8). The 

fluorescence spectrum is unaffected by the pH of the solution because the emitting species 

is always the singly ionized Tyr2 chromophore, produced by either ground state (alkaline 

pH) or excited-state (acid pH) ionization [41]. In contrast, a prominent shift of maximum 

excitation spectra from 280 to 315 nm on varying the pH from the acid to the alkaline 

medium was observed (Figure 8). These results are in good agreement with those published 

in the literature [6,15]. 

 Then, the fluorescence quantum yields (ΦF) of the acid and basic forms were 

determined in oxygen-free, air-equilibrated and oxygen-saturated solutions (Table 1). For 

each acid-base form, the ΦF value does not depend on the oxygen concentration, indicating 



that this species does not quench the singlet excited state. 

 

Figure 8. Normalized emission and excitation spectra of Tyr2 in acid (dashed line) and alkaline 
(solid line) aqueous solutions. Emission spectra in acid and alkaline solution were obtained 
upon excitation at 280 and 315 nm, respectively. Excitation spectrum was obtained at 410 nm. 

 

Table 1. Fluorescence quantum yields (ΦF) in nitrogen-saturated, air-equilibrated and oxygen-
saturated aqueous solutions, fluorescence lifetime (τF) and fluorescence maxima (λF) of Tyr2 
 

Acid- base 
form 

λF (nm) 
(± 2) 

ΦF(O2) 
 

ΦF(N2) 
 

ΦF(Air) 
 

τF(ns) 
(± 0.1) 

acid 410 0.29(±0.02) 0.29(±0.02) 0.28(±0.02) 4.0 

base 410 0.42(±0.02) 0.46(±0.03) 0.46(±0.02) 4.4 

 

 The ΦF value of the acid form of Tyr2 is lower than that of the basic form. This fact 

suggests that when the acid form is excited not all the singlet excited states undergo 

deprotonation to yield the basic form. A proportion of them deactivate before ionization. 

Figure 8 shows that the fluorescence spectrum of the acid form has a small contribution 

between 300 and 370 nm, that might be a weak emission of the protonated singlet excited 

 

λ (nm)
300 350 400 450 500 550

R
ea

la
tiv

e 
flu

or
es

ce
nc

e 
in

te
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0



state. The radiationless deactivation of the singlet excited state before deprotonation also 

could contribute to reduce the ΦF value, by respect to the ΦF value of the basic form. 

Fluorescence decays were analyzed for acid and base forms of Tyr2. The emission 

decays, registered at 410 nm, were clearly monoexponential (Figure 9) with a value of 

fluorescence lifetime (τF) of 4.0 (±0.1) ns and 4.4 (±0.1) ns, in acid and alkaline media, 

respectively. These results are in disagreement with previous works, in which biexponential 

fluorescence decay pattern of Tyr2 have been reported [39]. We attribute this difference to 

the purity of our samples using our method of synthesis and isolation. The lower τF in acid 

than in alkaline medium can be explained by the role of protons, which act as quenchers of 

Tyr2 fluorescence. The global analysis of TRES data confirmed that only one component is 

responsible for the fluorescence of the sample. 

 

Figure 9. Fluorescence decays and monoexponential fitting analysis of the Tyr2 emission in 
alkaline aqueous solution (17 µM, pH = 9.75, λexc = 341 nm, λan = 410 nm). 
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4. Conclusions 

 

 Pterin (Ptr) photoinduce the formation of dimers of tyrosine (Tyr2). The process is 

initiated by an electron transfer from tyrosine (Tyr) to the triplet excited state of Ptr, leading 

to the formation of Tyr radicals that recombine to form Tyr2. This photochemical process 

suggests: i) the potential of Ptr as photocatalyst for aryl-aryl bond formation reactions and, 

ii) since pterins are endogenous photosensitizers, they might significantly contribute to the 

harmful effects of UV-A radiation on the human skin.  

 We have optimized a simple, one-step photocatalyzed formation of Tyr2, using Ptr 

as a photocatalyst. Our procedure is carried out in aqueous solutions under UV-A radiation 

for few minutes. The purification of Tyr2 was performed by reverse-phase chromatography. 

The high pure obtained solution was used to fully characterize the Tyr2 (exact mass and 1H 

and 13C NMR) and to deeper study its fluorescence properties.  
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