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Abstract 

We investigated the effect of the point substitutions in the N-terminal domain of the yeast prion 

protein Sup35 (Sup35NMp) on the structure of its amyloid fibrils. As the objects of the study, proteins 

with mutations that have different influence on the [PSI+] prion propagation, but do not prevent the 

aggregation of Sup35NMp in vitro were chosen. The use of the wide range of physico-chemical 

methods allowed us to show significant differences in the structure of these aggregates, their physical 

size, clumping tendency. Also we demonstrated that the fluorescent probe thioflavin T can be 

successfully used for investigation of subtle changes in the structural organization of fibrils formed 

from various Sup35NMp. The obtained results and our theoretical predictions allowed us to conclude 

that some of selected amino acid substitutions delimit the region of the protein that forms the core of 

amyloid fibrils, and change the fibrils structure. The relationship of structural features of Sup35NMp 

amyloid aggregates, prepared in vitro, with the stability of the [PSI+] prion in vivo allowed us to 

suggest that oligopeptide repeats (R) of the amyloidogenic N-terminal domain of Sup35NMp from R0 

to R2 play a key role in protein aggregation. Their arrangement rather than just presence is critical for 

propagation of the strong [PSI+] prion variants. The results confirm the suitability of the proposed 

combination of theoretical and empirical approaches for identifying changes in the amyloid fibrils 

structure, which, in turn, can significantly affect both the functional stability of amyloid fibrils and 

their pathogenicity. 
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Introduction 

Amyloid fibrils are formed due to intermolecular interactions of the proteins. Their 

accumulation in the human organism accompanies many serious diseases, such as Alzheimer's and 

Parkinson's diseases, prion diseases, diabetes, etc. (1-7) In addition, an increasing number of studies 

indicate that fibrils can be not only a pathogenic factor, but also perform vital functions, and their 

implementation is probably closely related to the structural features of these protein aggregates (8-11). 

Despite the great diversity of the sequences and size of amyloidogenic regions in proteins, their 

amyloid fibrils have some common features. All of them are long thin unbranched protein aggregates 

enriched by β-sheets (12-14). The study of the structural organization of amyloids at the atomic level 

is hampered by the impossibility of applying conventional methods of X-ray crystallography, since 

amyloid fibrils cannot be crystallized. However, recently, a number of new methods (solid state NMR 

and Cryo-electron microscopy) were developed to study these protein aggregates (15). As a result, it 

was shown that the cross-β amyloid fibrils formed from various amyloidogenic proteins have different 

structural variants (16,17). This is also true for fibrils formed from the same protein under different 

conditions of fibrillogenesis or from a protein with altered amino acid sequence (18-23). The 

relevance of the study of amyloid polymorphism increased in the last decade due to the discovered 

association of the amyloid fibrils structure with their cytotoxicity, as well as with the variability of 

amyloidosis (18,24-26).  

One of the well-known amyloids is yeast Sup35 protein, aggregation of which leads to the 

appearance of the [PSI+] prion. In the cells with this prion, the Sup35 protein forms amyloid 

aggregates. The [PSI+] factor leads to nonsense suppression in vitro (27) and in vivo (28,29) and is 

probably an adaptive response of the cell to various stress effects (30-32). It was shown that [PSI+] has 

various variants (33). Their properties are associated with the structural polymorphism of Sup35p 

aggregates (34). In particular it was shown that amyloid fibrils of the [VH], [VK], and [VL] strains of 

[PSI+] differ in their morphologies (35). 

The N-terminal domain plays a major role in propagation of the [PSI+] prion, that was shown 

previously in vivo (36). This region forms the core of amyloid fibrils (37-39) and its general structural 

arrangement can be represented well by the superpleated β-structure with parallel and in register 

stacking of β-strands (40-42). Sup35p can form many different superpleated β-structures that differ in 

their properties (40). Recently, we obtained a set of mutant forms of the Sup35p fragment 

(Sup35NMp) (reviewed in the work (43)). Each of these mutant forms has two glutamine residues (or 

one glutamine residue in combination with another amino acid) replaced with positively charged 

lysine residues in one of the six oligopeptide repeats of the N-domain (Table 1) (44). Based on the 

above-mentioned model of the superpleated β-structure (40) the assumption was made that if such 

mutations are located within the amyloid core this should result in a destabilization of prion 

aggregates. According to the experimental results, only three of the six alleles (sup35-M0 
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(Q33K/A34K); sup35-M1 (Y46K/Q47K); sup35-M2 (Q61K/Q62K)), affect the stability and 

properties of [PSI+], both in combination with the wild-type allele and in the homozygous state. The 

remaining three alleles (sup35-M3 (Q70K/Q71K); sup35-M4 (Q80K/Q81K); sup35-M5 

(Q89K/Q90K)) do not change (sup35-M3) or only slightly change the properties of [PSI+] (44-46). 

We hypothesized that these mutations affect the properties of the [PSI+] prion by changing the 

structure of Sup35NMp aggregates. The aim of this work was to study the structural polymorphism of 

amyloid fibrils formed from mutant forms of Sup35NMp using multidisciplinary approaches, as well 

as analyzing the relationship of the structural features of Sup35NMp amyloid aggregates obtained in 

vitro, with stability of the prion [PSI+] in vivo. For this purpose, we used conventional methods of 

structural analysis of amyloids such as electron microscopy and different spectroscopic approaches, 

but also a new approach based on the quantification of the binding of ThT fluorescent probe to the 

amyloid samples.  

 

Results 

Physico-chemical properties of amyloid fibrils formed from Sup35NMp and its mutant 

forms 

For the morphological characteristics of amyloid fibrils formed from Sup35NMp and its mutant 

forms, first of all, electron microscopy was used (Fig. 1). The obtained images allowed us to conclude 

that the mutant forms of Sup35NMp, like the wild-type protein, form unbranched amyloid fibrils of 

various morphologies in vitro. In particular, it was shown that wild-type Sup35NMp fibrils (Fig. 1A) 

have the greatest length (> 500 nm) and diameter (up to 20 nm), as well as are most clumped 

aggregates compared to fibrils formed from some mutant forms of this protein. Substitutions 

Q33K/A34K at the beginning of the N-terminal domain noticeably decrease the length (up to 200 nm) 

and thickness (about 10 nm) of amyloid fibrils (Fig. 1B). When replacing Y46K/Q47K and 

Q61K/Q62K, fibrillar structures of various lengths can be observed in the sample: from 40 to 200 

(Fig. 1C) and from 100 to 350 nm (Fig. 1D), respectively. At the same time the replacement 

Q70K/Q71K leads to the formation of predominantly long fibrils (up to 500 nm) (Fig. 1E). 

Substitutions Q80K/Q81K and Q89K/Q90K in the last two oligopeptide repeats of Sup35NMp lead to 

the formation of long amyloid fibrils with the greatest diameter and clumping tendency (Fig. 1F,G), 

compared with fibrils formed form remaining mutant protein forms. It can be noted that the 

replacement Q89K/Q90K has the least impact on the physical size and clustering of Sup35NMp 

amyloid fibrils (Fig. 1G). Images obtained by electron microscopy for this sample and wild-type 

Sup35NMp amyloid fibrils are almost identical (Fig. 1A,G). Thus, the obtained results allowed us to 

conclude that there are significant differences in the overall morphology of amyloid fibrils formed 

from Sup35NMp with point mutations in its amino acid sequence.  
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Prepared amyloid fibrils were also studied using a number of spectroscopic approaches. The 

absorption spectra of Sup35NMp amyloid fibrils, as expected, have a maximum at a wavelength λmax 

= 276 nm (tyrosine absorption maximum), since there are no tryptophan residues in the amino acid 

sequence of the studied proteins (Fig. 2A). Analysis of the absorption spectra of amyloid fibrils was 

carried out taking into account their light scattering by the standard procedure (47). It should be noted 

that the turbidity of the samples within the error does not change (Fig. 2C), despite the different size 

of amyloid fibrils. This fact may be related to the different concentrations of the fibrils. The observed 

difference in fibrils length (Fig. 1) in the samples with identical protein concentration and similar rate 

of the monomeric proteins aggregation (supplementary Fig. S1A) confirmed such differences. Thus, it 

can be assumed that the size of the Sup35NMp aggregates is inversely proportional to their number, 

which causes the same turbidity of the samples and does not contradict with the electron microscopy 

data (Fig. 1). The fluorescence spectra of Sup35NMp amyloid fibrils have a maximum at a 

wavelength of ~ 305 nm, which corresponds to the tyrosine fluorescence wavelength (Fig. 2D). At the 

same time the fluorescence spectra of some types of amyloid fibrils have a shoulder in the long-

wavelength region, which may indicate the formation of tyrosinate, a special form of tyrosine, the 

formation of which is caused by the microenvironment of this amino acid residue. This assumption is 

confirmed by the fact that the amino acid substitutions in Sup35NMp are localized in a close 

proximity to several tyrosine residues (Table 1), which means that amino acid replacement can lead to 

a change in the microenvironment of these residues. To determine the fluorescence excitation spectra 

of the samples undistorted to the primary inner filter effect, a correction coefficient was used, which is 

determined only by the total optical density of the solution (48). The corrected excitation spectra (Fig. 

2B), as expected, almost coincide with the absorption spectra of the studied solutions, which indicate 

the homogeneity (identity) of the absorbing centers in the samples. 

To estimate the secondary structure of Sup35NMp amyloid fibrils we measured the CD spectra 

of samples in the far-UV region (in the wavelength range 200–260 nm) (Fig. 2E). The recorded CD 

spectra were analyzed by the special software K2D2 and CDPro (using three different regression 

methods of Selcon, Contin, and CDSSTR) and several basic sets of proteins with a known secondary 

structure (the sets contain from 37 to 56 proteins with different structure, including soluble, 

membrane and denatured). The results indicate that despite the obvious differences in the shape of the 

CD spectra of amyloid fibrils formed from various Sup35NMp forms, the content of the secondary 

structure in the samples differs slightly (in particular, the content of β-sheets is about 35 ± 3%). This 

may be due to the fact that the standard basic sets of proteins used for the calculation are not 

representative for the analysis of the spectra of protein aggregates. Since the quantitative analysis of 

the CD spectra of fibrils is rather arbitrary, we only performed a visual analysis of the registered CD 

spectra. For this aim, CD spectra of proteins and peptides with representative secondary structures 

were used (49). Fibrils formed from the wild-type Sup35NMp, as well as from the Sup35-M4p and 
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Sup35-M5p, have apparent negative shoulder around 220 nm, that allows us to suggest the essential 

content of ordered β-structure. At the same time in the case of the fibrils formed from Sup35-M0p — 

Sup35-M3p this shoulder becomes significantly smaller (Fig. 2F), and the shoulder around 200 nm 

that is typical for unfolded proteins (50) becomes predominant. In conclusion, it can be noted that 

according to the published data (see, for example, work by Tinoco et al. (51)), light scattering of 

macromolecules can substantially distort the CD spectra. However, since the turbidity of the studied 

samples is the same (Fig. 2C), we suggested that even if their CD spectra are distorted, this occurs to 

the same extent for all samples. In this regard, on the basis of the obtained data, we can reliably 

confirm that the CD spectra of the samples of amyloids formed from Sup35NMp with modified amino 

acid sequence vary significantly, and therefore the structure of the fibrils is also different. Observed 

differences in the content of the β-folded structure allowed us to suggest the differences in the length 

of the amino acid sequence forming the backbone of amyloid fibrils. 

 

Interaction of Sup35NMp amyloid fibrils with a fluorescent probe thioflavin T 

The fluorescent dye thioflavin T (ThT) is a widely and effectively used probe to diagnose the 

formation of amyloid fibrils (52-54). Recent studies suggest that the dye can also be used to study the 

polymorphism of these protein aggregates. This is due to the fact that, according to modern concepts, 

ThT binding sites are located in the grooves along the long axis of the fibrils perpendicular to the β-

sheets (55). The affinity and stoichiometry of the ThT interaction with the fibrils, as well as the 

photophysical characteristics of the dye bound to them, can vary significantly for different amyloid 

fibrils (56-60). This is a confirmation of amyloid polymorphism and can provide valuable and unique 

information about the features of their structure, which is difficult (or impossible) to obtain using 

other experimental approaches. In the present work we attempted to use this dye to assess structural 

differences of amyloid fibrils formed from various forms of Sup35NMp. 

The analysis of ThT - amyloid fibrils interaction is associated with a serious methodological 

problem. The test samples always contain two fractions of the dye: free and bound to fibrils ThT. 

Moreover, to determine the characteristics of the ThT - amyloid fibrils interaction, it is necessary to 

separate the photophysical properties of these dye fractions. To solve this problem, we previously 

proposed a special approach based on the preparation of the tested solutions using equilibrium 

microdialysis (for details of the experiment, see our works (22,61,62)). In the present work using this 

approach we determined absorption spectra (Fig. 3C) and, therefore, concentrations of the free and 

bound to fibrils dye fractions in the prepared samples. This allowed us to plot the Scatchard 

dependencies characterizing the interaction of ThT with Sup35NMp amyloid fibrils, analysis of which 

allowed us to estimate the number of the dye binding modes to fibrils (Fig. 3A,B). The obtained 

results indicate the similarity of the dependencies for the Sup35-M4p and Sup35-M5p fibrils with the 

Scatchard plot for wild-type Sup35NMp fibrils, which may indicate the greatest similarity of these 
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fibrils structure (this agrees well with the electron microscopy and CD spectroscopy data). The 

Scatchard dependencies for other samples differ significantly. The greatest difference can be noted for 

fibrils formed from Sup35-M1p and Sup35-M2p, in which the substitutions are located approximately 

in the middle of the amyloidogenic N-terminal domain of the protein. Intriguingly these substitutions 

lead to a decrease in stability and loss of the [PSI+] prion properties of the protein in vivo. 

In order to investigate the mechanism of the impact of the substitutions made in the Sup35NMp 

amino acid sequence on the fibrils structure, we calculated stoichiometry and affinity of ThT 

interaction with amyloids (the method for determining these parameters is described in detail in the 

work (61)). Taking into account the obvious nonlinearity of the majority of the plotted Scatchard 

dependencies, experimental data were analyzed under the assumption of the existence of two different 

types of dye binding to fibrils (Table 2). In addition, fluorescence decay curves (Fig. 3F), fluorescence 

(Fig. 3D) and fluorescence excitation (Fig. 3E) spectra of samples prepared by equilibrium 

microdialysis were recorded. The fluorescence lifetime of the dye bound to amyloid fibrils formed 

from various Sup35NMp forms was determined (Fig. 3F (Inset)), and using specially developed 

protocols (61), the molar extinction coefficient and fluorescence quantum yield (Fig. 3D (Inset)) of 

ThT associated with different modes of the fibrils were also calculated (Table 2). 

An analysis of the obtained results indicates a difference in the molar extinction coefficient, 

fluorescence quantum yield and lifetime of ThT bound to the studied amyloid fibrils. We previously 

showed that the increase in fluorescence quantum yield and lifetime of ThT when it binds to amyloid 

fibrils is due to the steric restriction of the dye fragments rotation relative to one another (causing non-

radiative ThT deactivation) which in turn is determined by an increase of the rigidity of the dye 

microenvironment (63). In addition a change in the polarity of ThT microenvironment can result in an 

increase in its fluorescence quantum yield (64). The difference in the molar extinction coefficients of 

ThT bound to fibrils can also be due to the variety in the conformation of the dye, as well as the 

hydrophobicity and polarity of its microenvironment. All of the above means that the detected 

differences in the photophysical characteristics of ThT when the dye interacts with different variants 

of Sup35NMp fibrils may be due to differences in the side radicals that form the dye binding groove, 

and hence the amino acid sequence that forms the core of the fibrils. 

Despite the shown differences in the microenvironment of the ThT molecules bound to fibrils 

the affinity of the dye interaction with different amyloids is almost the same. This suggests that the 

dye interacts with the same binding sites of tested amyloid fibrils with similar specificity. As noted 

above, the existence of one of the detected binding types is due to the incorporation of the dye into the 

grooves along the fiber axis (55). In our previous works, on the basis of the analysis of ThT binding 

parameters to a large number of different amyloid fibrils and their images obtained by electron 

microscopy, it was suggested that the second type of binding occurs during the clumping of amyloid 

fibrils. In this case the dye bound to the fibrils grooves located into an even more rigid 
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microenvironment (compared to the first binding type). The calculated stoichiometry of the ThT 

interaction with the second binding mode and formation of large fibril clumps are related according to 

our observations (see Table 2 and Fig. 1). The largest number of ThT binding sites with this mode is 

shown in the case of fibrils formed from wild type protein and from the Sup35-M4p and Sup35-M5p, 

which, according to electron microscopy data, form the largest clumps. In addition, it is for these 

samples the largest shift of the absorption (Fig. 3C) and fluorescence excitation (Fig. 3E) spectra and 

increase of the fluorescence lifetime (Fig. 3F (inset)) of the bound ThT, as well as the maximum 

values of the fluorescence quantum yield of the dye associated with the second mode of the fibrils 

(Fig. 3D (Inset)) were observed. All this, according to the results of our previous works, is 

characteristic of amyloid fibrils prone to clumping and clustering (see, for example, our work (22)). 

The number of ThT binding sites to the first mode of the amyloids should be determined by the 

number and length of the grooves formed by the amino acids of the fibril core (Fig. 4A). The number 

of binding grooves depends on the length of the fibrils, their number as well as the length of the 

amino acid sequence that forms the core of the fibrils. Given the fact that the protein concentration 

used for amyloid fibrils preparation and the ratio between aggregated and monomeric protein were the 

same, the length and number of amyloid fibrils should be interconnected (as evidenced by the same 

turbidity of the samples), but should not alter the number of binding grooves. This means that in the 

case of shorter fibrils, number of these aggregates should be greater (and vice versa). Although the 

electron microscopy cannot be used to clearly quantify the number of amyloid fibrils in a sample, it 

can be noted that the results used by this method do not contradict the made assumption. Thus, the 

main factor determining the number of the dye binding sites is probably the length of the amino acid 

sequence that forms the core of the amyloid fibrils, or more precisely the protofibrils. Thereby the 

different stoichiometry of ThT binding to Sup35NMp fibrils supported the initial hypothesis that the 

amino acid substitutions affect the length of the protein fragment involved in fibrillogenesis. Next, we 

modelled various parameters characterizing the structure of the fibrils formed from the mutant forms 

of Sup35NMp, using various in silico methods.  

 

The relationship between thioflavin T binding parameters to different Sup35NM 

aggregates and their structural arrangements 

The investigated substitutions in Sup35NMp amino acid sequence were designed to affect the 

structure of this protein aggregates (44). The possible impact of these substitutions was analysed with 

the bioinformatic approaches. The ArchCandy program predicts amyloidogenic regions in the protein 

based on its ability to form specific structural motif (β-strand – loop – β-strand), called β-arch (65). 

The accuracy of this tool was demonstrated in several works (65-67). According to the results of 

ArchCandy program introduced mutations change distributions of β-arches across the protein. The 

replacement of polar amino acid to charged one can lead to a noticeable decrease in the 
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amyloidogenic potential of the corresponding region (Fig. 4B). The BetaSerpentine program, which 

allows reconstructing all possible β-serpentine arrangements for a given protein, was used to evaluate 

the impact of the mutations on the structure of Sup35 aggregates. Previously we demonstrated that the 

program predicts reliable structures, which correspond to the experimental data (68). The 

BetaSerpentine demonstrates that aggregates of Sup35NMp with investigated substitutions include 

protein fragments of different length (Fig. 4C). Thus the set of Sup35-M0-M5 proteins represents a 

good model for the investigation of changes in amyloid structure caused by point mutations. The 

analysis of ThT binding with aggregates may reveal corresponding structural rearrangements. 

Two different models were proposed for the explanation of ThT binding to amyloids fibrils. 

One of them, which was mentioned above, assumes that the dye is incorporated into grooves formed 

by the side chains of amino acids, located in β-strands (Fig. 4A, β-sheet groove or b-groove model) 

(55). This mode of ThT-binding was confirmed by molecular dynamic simulations, which also reveal 

that the grooves with aromatic residues possess a higher affinity to the ThT (56,57) (for review see 

work by Biancalana & Koide (58)). This model was experimentally proved for β-sheet with anti-

parallel β-strands. In such arrangement minimal ThT binding site is formed by four β-strands and 

optimal – by five (56,57). In the other model, the ThT binds to the groove formed by the side chains 

and backbone at the base of the β–arch (arch groove or a-groove model) (40). First of all, this model 

was proposed to explain the interaction of the Congo Red with Ure2p fibrils. This a-groove model can 

be also applied to the ThT molecule due to the similarity of two dyes (Fig. 4A). The results of 

molecular docking confirm that the ThT can bind with the comparable affinity to both types of the 

grooves (Fig. 4A). We demonstrated that four β-strands are required for the single ThT binding site 

for parallel super-pleated β-structure, which was proved for Sup35 aggregates (41,42). 

Using the BetaSerpentine tool (68) we can predict numbers of b-grooves and a-grooves (Nb-

grooves and Na-grooves) which can provide sites for ThT binding according to different models (see Fig. S1 

for an example), and then compare these theoretical values with experimental data. The program 

predicts hundreds of possible arrangements for the given protein (in case of Sup35NMp or its variants 

this number may exceed several thousands). In the further analysis, we used mean values for number 

of grooves or arches across all predicted structures. This parameter adequately describes the most 

probable characteristic of potential fibers reflecting the most frequent case among all possible variants 

(Fig. S2). We found significant correlation between the number of ThT binding sites for the second 

mode of amyloid fibrils formed from different proteins (n2 parameters, Table 2) and the corresponding 

mean number of b- and a-grooves (Fig. 4D-E). We focused only on the second mode because it was 

proposed previously that it describes the incorporation of the dye along fibril, and the first mode is 

rather due to ThT binding to the fibril clumps (60). Following the idea that aromatic residues can 

increase the affinity of the groove to the dye, we checked the correlation between n2 and mean 

numbers of b-grooves with one aromatic (F, W, Y) and one aliphatic residue (A, L, M, I, V; 
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designated RL), grooves with one aromatic and any other residue (RA) and grooves with one 

hydrophobic and any other residue (F, W, Y, A, L, M, I, V; designated HA). The correlation was not 

observed only in the case of b-grooves of RL (Fig. 4D-E). Knowing that among thousands of possible 

arrangements of β-serpentines only several ones are present in the solution, we confirmed our analysis 

by the following procedure. We recalculated correlations for random sets of arrangements for each 

protein. One thousand independent samples were tested, and the significant correlation was found in 

most cases (Table S1). 

The n2 parameter corresponds to the number of ThT binding sites per protein molecule in the 

aggregate. According to the literature data and our calculations, at least 4 β-strands (protein 

molecules) are required for the single ThT binding site in a single groove. Thus the simplest 

relationship between experimentally determined number of sites and predicted should be described by 

the equation n2 = k * N, where N is a number of grooves, binding ThT, and k is a number of protein 

molecules required for ThT binding in the single groove. According to our simulation k should be 

equal to 1/4. We made a regression analysis with our data and calculated corresponding coefficients 

(Fig. 4E). For the a-model the coefficient is in expected diapason, demonstrating a good match of 

experimental and theoretical data. For the b-model, the results significantly vary depending on the 

type of analyzed grove and the coefficients are close to expected only if we considered HA but not 

any or RA grooves. This is in agreement with previously published data about the role of aromatic 

and aliphatic residues in the ThT binding (56,57). The major limitations of this analysis are the 

assumption that all ThT binding sites should be occupied and dissociation of the dye is negligible. 

Further simulations and experiments are required to propose a detailed model. These data can be used 

for the further improvement of the BetaSerpentine program. In general, theoretically predicted 

numbers of ThT binding sites correlate well with the experimentally determined ones. This result 

supports the reliability of BetaSerpentine predictions.  

 

Relationship of the structure of amyloid fibrils formed from various forms of Sup35NMp 

obtained in vitro with the properties of the prion [PSI+] in vivo 

The biophysical and bioinformatics analyses demonstrated structural differences between 

amyloid aggregates of investigated Sup35NM proteins. To reveal the relationship between amyloid 

structure and the prion properties we transformed yeast [psi-][pin-] strain, bearing wild type allele of 

SUP35, with these aggregates and analyzed spectra of appeared [PSI+] variants (Fig. 5). More than 

600 obtained [PSI+] strains were analyzed among five thousand transformants selected. These [PSI+] 

strains were differentiated into three groups: strong, weak and very weak, using OT56 and OT55 

(69,70) strains as references for strong and weak [PSI+] variants, respectively (Fig. 5). To exclude 

potential effects of the substitutions on the prion properties we used 2-OT56 yeast strain containing 

wild type SUP35 allele. Thus, all newly obtained [PSI+] prion variants propagate in the presence of 



11 
 

the same Sup35 protein. And all observed differences in the prion phenotype are linked to the specific 

structure of aggregates, but not to the protein sequence. In turn, structural differences between 

aggregate samples obtained in vitro and used for transformation are caused by the analyzed 

substitutions.  

Fibrils of Sup35NM-M0, M1 and M2 led to the appearance of very weak prion. From the 

theoretical point of view amyloid core in these aggregates should be shorter compared to other 

investigated proteins. This hypothesis was supported at least by ThT binding data (smaller number of 

ThT binding sites for second mode, Table 2) and by BetaSerpentine analysis (Fig. 4C). In opposite 

case, the aggregates of Sup35NM or Sup35NM-M3,-M4 and -M5 possessing longer amyloid core led 

to the formation of strong prion variants with higher frequency. This observation is in disagreement 

with the previous work demonstrating that short amyloid core is a characteristic of the strong [PSI+] 

variants (38,39). At the same time, our results supported a critical role of QN-region and first two 

oligopeptide repeat in the prion propagation (71-73). Recently it was shown that Sup35 region 42-72 

is more resistant to the proteinase K digestion in the strong prion variants (74). The mutations sup35-

M1 and -M2 lead to substitutions inside this region. Thus our results supported the idea that first two 

oligopeptide repeats should be included into amyloid core for the appearance of strong prion variant. 

We also can conclude that the length of Sup35 amyloid core is not a key parameter for the [PSI+] 

prion properties determination. We need to mention that the highest rate of strong prion variants 

corresponded to Sup35NM-M4 fibrils. This is only observation and this fact have not statistical 

support, but it is in good agreement with our results demonstrated that sup35-M4 change the prion 

variant to a stronger one (44). The role of the first two Sup35 oligopeptide repeats in the prion 

maintenance was shown previously. The deletion of these regions abolishes [PSI+] propagation, but 

duplication increases its de novo formation (72,73,76). Our results together with data published by 

Dergalev et al., 2019 suggest that propagation of the strong prion variants requires not only the 

presence of the two first oligopeptide repeats but also their implication into the fibril structure. 

According to our previous results, three of the six alleles (sup35-M0, sup35-M1 и sup35-M2) 

affect stability of [PSI+]. At the same time the remaining three alleles (sup35-M3, sup35-M4 и sup35-

M5) are comparable or only slightly change the properties of [PSI+] (44,46). Using electron 

microscopy, we found differences in the fibril structure of the Sup35NMp with the amino acids 

substitutions. Despite that, several investigated mutations (sup35-M0, sup35-M1 and sup35-M2) 

destabilize the prion, our results revealed that corresponding proteins are able to form aggregates. 

This fact is in agreement with published data describing variant specificity of sup35 mutations. They 

may destabilize one prion variant but be compatible with another (10,66,75). It is likely that effect of 

a certain mutation on the prion depend on the structural variants of the corresponding Sup35p 

aggregates. 
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Conclusion 

In the present work, the effect of point amino acid replacements in the fragment of the yeast 

prion protein Sup35 (Sup35NM) on the structural organization of its amyloid fibrils was investigated. 

Mutant proteins containing amino acid substitutions in one of the six oligopeptide repeats of the 

Sup35NMp amyloidogenic N-domain were chosen as objects of the study. The choice of positions for 

mutations was based on the model of the superpleated β-structure of Sup35NMp amyloid fibrils. It 

was shown that despite the fact that the made substitutions do not prevent the formation of amyloid 

fibrils of this protein, they have a significant impact on the different aggregate properties. 

One of the main experimental approaches that made it possible to conduct a comparative study 

of the structural organization of Sup35NMp amyloid fibrils was investigating the interaction of a 

specific probe thioflavin T (ThT) with the fibrils using equilibrium microdialysis. It was shown that 

substitutions in the Sup35NMp N-domain significantly affect the stoichiometry of the dye-fibrils 

interaction, as well as the photophysical characteristics of the bound ThT (in particular, its 

fluorescence quantum yield and lifetime). This, in turn, indicates a significant difference in the 

structural organization of the fibrils sites with which ThT binds, and hence the difference in the 

structure of amyloid fibrils formed from various mutant Sup35NMp forms. An analysis of the 

stoichiometry of ThT interaction with different variants of Sup35NMp fibrils allowed us to make a 

suggestion that the amino acid substitutions affect the length of the protein fragment involved in 

fibrillogenesis. 

Prediction of structural arrangements of amyloid fibrils by Arch Candy is in line with our 

hypothesis that the investigated amino acid substitutions in Sup35p reduce the length of the protein 

fragment(s) involved in the formation of the amyloid fibril core. Moreover, the BetaSerpentine 

program agrees well with the experimental data about interaction of ThT with Sup35p aggregates. We 

showed a good correlation of the experimentally calculated number of ThT binding sites of 

Sup35NMp fibrils per protein molecule with expected numbers of binding sites (b- or a-grooves), 

calculated from structural prediction. The obtained results are in a good agreement with the existing 

models of ThT - amyloid fibrils interaction (b-groove and a-groove models). Finally, our results 

supported the importance of amyloid conformation of the first two oligopeptide repeats for the 

propagation of the [PSI+] prion. 

The results confirm the sensitivity of the combined theoretical and empirical approach to 

detecting minor changes in the structure of amyloid fibrils (for example, caused by various external 

factors or point mutations) that are difficult to detect using other techniques. Obtained results can be 

used in the study of polymorphism and the mechanisms of formation of amyloid fibrils (including 

amyloids formed from prion proteins), as well as in the development of approaches to the diagnosis 

and treatment of amyloidosis. 
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Experimental procedures 

Materials 

Fluorescent dyes Thioflavin T (ThT) "UltraPure Grade" (AnaSpec, USA) and ATTO-425 

(ATTO-TEC, Germany) were used without after-purification for mature amyloid fibrils study. 

Protein purification and aggregation 

For Sup35NMp purification, pET20b-SUP35NM (77) plasmid or its derivatives obtained by 

side-directed mutagenesis (primer sequences are available upon request) were used. For protein 

purification, E.coli strain BL21(DE3) was used (78). Overproduction of recombinant proteins was 

carried out in 2TYa media with 1 mM IPTG. Cultures were grown at 37°C for 6 hours. Proteins were 

purified in denaturing conditions (in presence of 8M urea) according to previously published 

protocols (79). The purification was performed with a two-step purification procedure with Ni-NTA 

agarose (Invitrogen) and Q-sepharose (GE Healthcare) columns. Proteins were concentrated with a 

centricon 30 kDa (Millipore). For aggregation Sup35NM proteins were diluted at least 100-fold into 

fibril assembly buffer (5 mM potassium phosphate pH 7.5, 150 mM NaCl) to the final concentration 

0.5 mg/ml. The protein solution was incubated at 25oC with overhead rotation (approximately 60 

times per minute). To monitor amyloid fibril formation, aliquots were removed every 12 hours up to 

24 hours of incubation. The rate of aggregated protein was estimated by SDS-PAGE with boiled and 

unboiled samples. The aggregation was stopped when rate of the monomeric protein was below 30%.  

Protein transformation 

Protein transformation was performed based on previously published protocol (80,81) and [psi-] 

2-OT56 yeast strains was used (82). To prepare spheroplasts for transformation yeast cells were 

grown in YPD media to OD600 = 0.3 and successively washed with sterile H2O, buffer (1 M sorbitol, 

25 mM EDTA, 50 mM dithiothreitol), 1 M sorbitol, and SCE buffer (1 M sorbitol, 1 mM EDTA, 10 

mM sodium citrate, pH 5.8). Cells were spheroplasted with 50 µl of zymolyase (120 U/ml) in SCE 

buffer at 30°C for 30 min. Spheroplasts were successively washed with 1 M sorbitol and STC buffer 

(1 M sorbitol, 10 mM CaCl2, 10 mM Tris, pH 7.5). Pelleted cells were resuspended in 1 ml of STC 

buffer. A 100 µl portion of the spheroplast suspension was mixed with 2 µl of salmon sperm DNA (5 

mg/ml), 500 ng of selectable plasmid (pRS316) (83) and 5 µl of Sup35NM filaments in concentration 

0.5 µg/ml. The mixture was incubated during 30 min at room temperature. Fusion was induced by 

addition of 900 µl of PEG buffer (20% (w/v) PEG 8000, 10 mM CaCl2, 10 mM Tris, pH 7.5) for 30 

min. Cells were centrifuged, resuspended in 150 µl of SOS buffer (1 M sorbitol, 7 mM CaCl2, 0.25% 

yeast extract, 0.5% bacto-peptone), incubated at 30°C for 30 min and plated on synthetic media (SC) 

(84) with 1M sorbitol lacking uracil. Then transformants were plated on the 1/4 YEPD media (85) to 

determine presence of the prion and classify the [PSI+] variants. The OT55 and OT56 (69,70) were 

used as a “standard” weak and strong variants respectively.  
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Spectroscopic studies 

The absorption spectra of the samples were recorded using a U-3900H spectrophotometer 

(Hitachi, Japan). The absorption spectra of amyloid fibrils and ThT in the presence of the fibrils were 

analyzed along with the light scattering using a standard procedure (47). The concentrations of ThT 

and Sup3NMp in solution were determined using molar extinction coefficients of ε412 = 31600 M-1cm-

1 and ε276 = 29000 M-1cm-1 (86), respectively. 

Fluorescence and fluorescence excitation spectra were measured using a Cary Eclipse 

spectrofluorimeter (Varian, Australia). Florescence of the Sup35NMp fibrils was excited at 280 nm 

and registered at 305 nm. Fluorescence of ThT and fluorescent dye ATTO-425 was excited at a 

wavelength of 440 nm. A PBS solution of ATTO-425, whose fluorescence and absorption spectra are 

similar to that of ThT, was taken as a reference for determining the fluorescence quantum yield of 

ThT bound to fibrils. The fluorescence quantum yield of ATTO-425 was taken as 0.9 (ATTO-TEC 

Catalogue 2009/2010 p.14). The spectral slits width was 5 nm in most of experiments. Changing the 

slit widths did not influence the experimental results. Recorded fluorescence intensity was corrected 

on the primary inner filter effect with the use of previously elaborated(48) and successfully applied 

for ThT (87) approach.  

CD spectra in the far UV-region were measured using a J-810 spectropolarimeter (Jasco, 

Japan). Spectra were recorded in a 0.1 cm cell from 260 to 200 nm. For all spectra, an average of 

three scans was obtained. The CD spectrum of the appropriate buffer was recorded and subtracted 

from the samples spectra. Amyloid fibrils in concentration ~ 0.2 mg/ml were used. 

Fluorescence decay curves were recorded by a spectrometer FluoTime 300 (PicoQuant, 

Germany) with the Laser Diode Head LDH-C-440 (ex = 440 nm). The fluorescence of ThT was 

registered at em = 490 nm. ThT in concentration ~ 2.2∙10-5 M and amyloid fibrils in concentration ~ 

0.2 mg/ml were used. The measured emission decays were fit to a multiexponential function using the 

standard convolute-and-compare nonlinear least-squares procedure (88). In this method, the 

convolution of the model exponential function with the instrument response function (IRF) was 

compared to the experimental data until a satisfactory fit was obtained. The fitting routine was based 

on the nonlinear least-squares method. Minimization was performed according to Marquardt (89). 

Electron microscopy 

Micrographs were obtained using a transmission electron microscope Libra 120 (Carl Zeiss, 

Germany). Amyloid fibrils were placed on nickel grids coated with formvar films (Electron 

Microscopy Sciences, USA). To obtain electron micrographs, the method of negative staining with a 

1% aqueous solution of uranyl acetate was used. 

Preparation of the samples for the study of ThT- amyloid fibrils interaction 

ThT-fibrils tested solutions were prepared by equilibrium microdialysis using a Harvard 

Apparatus/Amika (USA) device in the same environment in which fibrils were obtained. The stability 
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of the structure and properties of amyloid fibrils during the equilibrium microdialysis experiment was 

experimentally proven. Equilibrium microdialysis was performed for a fixed concentration of fibrils 

(~0.4 mg/ml) and a wide range of concentrations of ThT (2 - 140 μM). Further spectroscopic study of 

these sample and reference solutions allowed calculating ThT-fibrils affinity and stoichiometry. 

Details of experimental procedure see in the Supporting information. 

Computational approaches 

The ArchCandy program with recommended parameters (65) was used for the prediction of 

amyloidogenic properties of proteins. The predictions of β-serpentine arrangements were performed 

with the BetaSerpentine program (68).  

In order to identify putative binding sites for ThT, a blind docking experiment was conducted. 

Whereas in conventional docking simulations a ligand is docked into a small portion of the protein 

(binding pocket), blind docking refers to docking a ligand to the whole surface of a protein without 

any prior knowledge of the target binding site. By clustering the obtained poses and analyzing their 

interaction energies, putative binding pockets for a probe molecule can be identified. Thioflavin T 

was docked into the typical β-arcade structure (PDB id: 2BEG) using the Achilles Blind Docking 

Web Server (90) available at: http://bio-hpc.ucam.edu/aquiles/.  
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Abbreviations 

 

[PSI+]                prion isoform of the Sup35p 

Sup35NMp       Sup35p fragment consisting of N-terminal and middle (M) region of the protein 

R0 - R5             oligopeptide repeats of the amyloidogenic N-terminal domain of Sup35NMp 

Sup35-M0         mutant form of Sup35NMp with the substitution in the R0 (Q33K/A34K) 

Sup35-M1         mutant form of Sup35NMp with the substitution in the R1 (Y46K/Q47K) 

Sup35-M2         mutant form of Sup35NMp with the substitution in the R2 (Q61K/Q62K) 

Sup35-M3         mutant form of Sup35NMp with the substitution in the R3 (Q70K/Q71K) 

Sup35-M4         mutant form of Sup35NMp with the substitution in the R4 (Q80K/Q81K) 

Sup35-M5         mutant form of Sup35NMp with the substitution in the R5 (Q89K/Q90K) 

ThT                   fluorescent probe thioflavin T 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 124 254 685

N M C

M0 M1 M2 M3 M4 M5

28 41 56 65 75 84 93
R0 R1 R2 R3 R4 R5

33/34 46/47 61/62 70/71 81/80 89/90

Abbreviation:
Position of 
substitutions:

Figure I. Localization of substitutions in the N-domain of Sup35. The 
color highlights six oligopeptide repeats (R0-R5) of the protein N-
domain. Numbers mark borders of certain regions. The colors 
highlighting different types of protein match the colors for the 
corresponding Sup35NMp mutant forms at the Figures.
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Figure II. Most of the analyzed substitutions affects the Sup35 

aggregation. Results of ThT kinetic assay were presented. 
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Table 2. Binding parameters of ThT to different types of Sup35NMp amyloid fibrils and 
characteristics of the bound dye. 
 

Object* mode 
εi, maxx10-4,  

M-1cm-1 
Kbi x10-5,  

M-1 
ni  qi 

1 2.3±0.3 70±10 0.08±0.08 0.35±0.04 
Sup35NMp 
Wild type 

2 2.2±0.1 0.21±0.07 0.86±0.04 0.15±0.02 

1 1.3±0.3 71±12 0.06±0.03 0.25±0.03 
Sup35-M0 

(Q33K/A34K) 
2 1.2±0.2 0.19±0.03 0.76±0.03 0.04±0.02 

1 1.7±0.2 71±10 0.01±0.01 0.32±0.05 
Sup35-M1 

(Y46K/Q47K) 
2 1.7±0.3 0.23±0.04 0.65±0.04 0.03±0.02 

1 3.0±0.3 70±10 0.02±0.07 0.27±0.04 
Sup35-M2 

(Q61K/Q62K) 
2 1.6±0.2 0.22±0.05 0.80±0.04 0.19±0.02 

1 2.2±0.3 70±11 0.03±0.05 0.22±0.06 
Sup35-M3 

(Q70K/Q71K) 
2 2.2±0.1 0.22±0.02 0.82±0.04 0.15±0.02 

1 0.8±0.3 70±12 0.08±0.04 0.21±0.04 
Sup35-M4 

(Q80K/Q81K) 
2 1.9±0.2 0.20±0.04 0.84±0.04 0.16±0.02 

1 1.7±0.3 71±11 0.08±0.03 0.25±0.06 Sup35-M5 
(Q89K/Q90K) 

 2 1.9±0.3 0.20±0.05 0.86±0.05 0.17±0.03 

* The colors highlighting different types of protein match the colors for the corresponding 
Sup35NMp mutant forms at the Figures. 
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Figures 

 

 

Figure 1. Images of amyloid fibrils formed from (A) wild type Sup35NMp and its mutant 
forms (B) Sup35-M0p, (C) Sup35-M1p, (D) Sup35-M2p, (E) Sup35-M3p, (F) Sup35-M4p 
and (G) Sup35-M5p, obtained using electron microscopy. The scale bar on the images is 
equal to 500 nm. 
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Figure 2. Photophysical properties of amyloid fibrils formed from Sup35NMp and its mutant 
forms. (A) Absorption, (B) fluorescence emission and (D) fluorescence excitation spectra, 
(C) turbidity, (E) CD spectra of the fibrils. (F) Absolute value of the molar ellipticity at the 
wavelengths 200 and 220 nm characterized the orderliness of the secondary structure of the 
samples. The results for the amyloid fibrils formed from different types of Sup35NMp are 
shown by the different colors: purple - Sup35NMp wild type (WT), blue - Sup35-M0p (M0), 
cyan - Sup35-M1p (M1), green - Sup35-M2p (M2), dark yellow - Sup35-M3p (M3), orange - 
Sup35-M4p (M4), red - Sup35-M5p (M5). 
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Figure 3. The interaction of Sup35NMp amyloid fibrils with a fluorescent probe thioflavin T 
(ThT). (A), (B) Scetchard plots for ThT binding to Sup35NMp amyloid fibrils. (C) 
Absorption, (D) fluorescence and (E) fluorescence excitation spectra and (F) fluorescence 
decay curves of the bound to fibrils ThT. At the (Inserts) to Panels (C), (E) the wavelengths 
of the ThT absorption and fluorescence spectra maximums, respectively, are shown. At the 
(Inserts) to Panels (D), (F) ThT fluorescence quantum yields (bound to the second fibrils 
mode) and lifetimes, respectively, are shown. Colors and designations are the same as at the 
Fig. 2. 
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Figure 4. Correlation between numbers of predicted and experimentally determined ThT 
binding sites. (A) Two ThT binding models: incorporation of the into grooves formed by the 
side chains of amino acids, located in β-strands (b-groove model) or into the groove formed 
by the side chains and backbone at the base of the β–arch (a-groove model). The 2BEG PDB 
structure was used to illustrate these models, ThT molecules were docked to the fibril by the 
AutoDock Vina tool. (B) The frequency of inclusion of individual amino acid residues 
Sup35NMp in β-serpentine, calculated by the ArchCandy program. (C) Sup35-M0-M5p 
fragments of different lengths forming amyloid core. The predictions were made by the 
BetaSerpentine program. The median values are presented; error bars correspond to the 
confidential intervals. (D) The number of ThT binding sites for the second mode (n2) 
correlates with predicted numbers of grooves (Nb-rooves) and β-arches (Na-grooves). The 
Spearman's correlation coefficient was calculated for experimental data and the predicted 
number of ThT binding sites (mean value among all structures). We separately analyzed 
grooves comprising different types of amino acids: RL – one aRomatic (F, W, Y) and one 
aLiphatic (A, L, M, I, V), RA – aromatic residue together with Any other, HA – groove with 
one Hydrophobic residue (F, W, Y, A, L, M, I, V) and Any other. Corresponding values were 
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calculated based on structural arrangements of Sup35NMp provided by the BetaSerpentine 
program. An example was presented on the supplementary Figure S1. (E) Scatter plots 
demonstrating relationships for investigated parameters. Colors and designations are the same 
as at the Fig. 2. Lines correspond to linear model y = k * x, gray area marks the 95% 
confidence interval for the model. 
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Figure 5. Charged residues in first oligopeptide repeats promote formation of the weak pron 
variants. The barplot illustrates ratios of different prion variants among all [PSI+] 
transformants obtained after protein transformation. Phenotypes of corresponding yeast cells 
on the 1/4 YEPD are shown. ** — p-value < 0.01 and *** — p-value < 0.001 according to 
Fisher’s exact test. 
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Figure 6. The effect of mutations in the Sup35NMp amino acid sequence on the structural 
parameters, properties and characteristics of amyloid fibrils formed from this protein. The 
interrelation of the results obtained by in silico (parameters obtained using the program 
«BetaSerpentine»), in vitro and in vivo technics is presented. Colors and designations of 
mutations are the same as at the Fig. 2. In the scheme of the Sup35NMp amino acid sequence 
(proposed by Bondarev et al. (44)) shown the fragments forming β-serpentine, identified by 
the «ArchCandy» program, are highlighted using orange, blue and gray colors. The intensity 
of the fragments color for different fibrils characterizes the probability of the of an amino 
acid inclusion in β-serpentine. Near the arrows, the parameters and characteristics are shown, 
which values decreasing for fibrils with substitutions compared to that for wild-type 
Sup35NMp amyloid fibrils. The intensity of the arrow color indicates how much these 
characteristics have changed. 




