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Abstract

The flowers of cardoon (Asteraceae) are a rich source of aspartic peptidases which possess milk clotting activity – and are thus used in
traditional cheesemaking in the Iberian Peninsula. This study was aimed at characterizing the enzymatic action of the aspartic peptidases
present in flowers of Silybum marianum (L.) Gaertn. (Asteraceae), specifically upon degradation of caseins. The proteolytic activities
toward Na-caseinates previously prepared from caprine and ovine milks were studied, in a comparative fashion, using urea-PAGE, tri-
cine-SDS-PAGE, densitometry, electroblotting and sequencing. Caprine as1- and b-caseins were degraded up to 68% and 40%, respec-
tively, during 24 h of incubation. Only one important and well-defined band corresponding to a molecular weight of 14.4 kDa – i.e. a
fragment of b-casein, was observed by 12 h of hydrolysis. By 24 h of incubation, ovine as- and b-caseins were degraded up to 76%
and 19%, respectively. In what concerns specificity, the major cleavage site in ovine caseinate was Leu99-Arg100 in as1-casein.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Argentina is the second milk producer of Latin America,
and it ranks eleventh place on a world-wide basis. Sales of
goat’s and ewe’s milk cheeses appears to be an attractive
alternative to reconvert and diversify primary production
in that country, since possesses a relation of favorable price
of 3:1 when compared with cheeses of bovine origin (Daye-
noff, Ochoa, & Domı́nguez, 2002; Estación Experimental
Agropecuaria Chubut, 2006). Furthermore, goats and ewes
can grow in more unfavorable environmental conditions,
from a feeding point of view, than cows (Dayenoff et al.,
2002). On the other hand, cheeses manufactured from milk
of ewes or goats possess a much higher added value as
gourmet products are in stake.
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The unique nutritional composition relative to cow’s
milk should also be emphasized. This reflects especially in
cheese yield: ca. 5.5 l of ewe’s milk is required to produce
1 kg of cheese, whereas ca. 11 l of cow’s milk is required
for the same amount of cheese. This greater cheese yield
is explained by the quantitatively higher content of fat
(7.5%) and caseins (4.6%) of ewe’s milk than cow’s counter-
part (3.9% of fat and 2.6% of caseins); a similar realization
holds with goat’s milk (4.5% of fat and 3.0% of caseins). In
addition to the aforementioned higher cheese yield, goat’s
and ewe’s milk have beneficial health properties, because
of their mineral and vitamin levels, and their different pro-
tein profile (Walstra, Geurts, Noomen, Jellema, & van Boe-
kel, 1999; Dulce, 2006).

Aqueous extracts from flowers of Cynara cardunculus

(Verı́ssimo, Esteves, Faro, & Pires, 1995; Verı́ssimo et al.,
1996), Cynara humilis, and/or Cynara scolymus contain pro-
teinases, so thus have accordingly been used in the Iberian
Peninsula since Roman times to manufacture ovine and/
or caprine milk cheeses (Reis et al., 2000). Milk clotting
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activity was also found in flowers of Centaurea calcitrapa,
Onopordum turcicum and Silybum marianum (Domingos
et al., 1998; Tamer, 1993; Vairo Cavalli, Claver, Priolo, &
Natalucci, 2005). All these species belong to the Asteraceae

family, and furthermore lie in the same tribe: Cardueae

Cass. = Cynareae Less. (Ariza-Espinar & Delucchi, 1998).
Flowers specifically of S. marianum were claimed to contain
aspartic proteinases that were able to entertain milk clot-
ting; such clotting activity is partially inhibited at NaCl con-
centrations above 50 mM, whereas the effect of CaCl2 is
biphasic – with an initial decrease, followed by an increase
in rennet clotting times (Vairo Cavalli et al., 2005).

Primary proteolysis is caused chiefly by residual rennet,
and produces large to medium-sized peptides from the start-
ing caseins; these can be further degraded into small pep-
tides, and eventually free amino acids – in a process
generally known in whole as secondary proteolysis. Primary
proteolysis plays an essential role upon development of
proper cheese texture, whereas secondary proteolysis is
often implicated with cheese flavour; it is thus of great
importance to assure a well-balanced breakdown of caseins,
in order to prevent development of such undesired attributes
in cheese as low viscosity and high bitterness (Visser, 1993).
Proteolysis is indeed the most important set of biochemical
transformations during cheese ripening, in which the resid-
ual rennet plays a relevant role; hence, it is of the utmost
importance to evaluate the degradation patterns of caseins
in model systems that mimic actual cheesemaking (Irigoyen,
Izco, Ibáñez, & Torre, 2000; Silva & Malcata, 1999).

Analysis of the degradation pattern of bovine Na-casei-
nate by aspartic proteinases from S. marianum was studied
previously – and was even considered as a new source of
plant rennet, with distinctive, useful characteristics for
the dairy industry (Vairo Cavalli et al., 2005). The aim of
this work was to complement that knowledge, via evaluat-
ing the action of those aspartic peptidases upon the hydro-
lysis of caprine and ovine Na-caseinates – using
experimental conditions that parallel milk (pH 6.5), in
order to address an increasing worldwide demand for alter-
native dairy products with improve organoleptic nutri-
tional and health properties. Study of casein breakdown
in model systems will likely generate important informa-
tion to help elucidate the complex processes involved in rip-
ening of cheeses from small ruminants, and eventually
contribute toward development of better, non conventional
final cheeses (Silva & Malcata, 2000).

2. Materials and methods

2.1. Enzyme extract preparation

The method described by Vairo Cavalli et al. (2005) was
followed to prepare the enzyme extract. Fresh flowers of S.

marianum (L.) Gaertn. were ground with a mortar and pes-
tle under liquid nitrogen, homogenized at a ratio of 1 g per
3 ml of 0.1 M citric acid–sodium citrate buffer (pH 3.0)
containing 1.0 mM EDTA, and stirred for 30 min. The
homogenate was centrifuged at 5000g for 20 min at 4 �C,
and a 10-ml aliquot of the supernatant was applied to a
Pharmacia K 15/30 column packed with a size exclusion
chromatographic medium (Sephadex G-25 Fine, from GE
Healthcare, Uppsala, Sweden) – which had been previously
equilibrated with 50 mM citric acid–sodium citrate buffer
(pH 3.0). Elution was performed with the same buffer, at
a 0.45 ml/min flow rate, so as to obtain a partially purified
enzyme extract (EE).

2.2. Protein quantification

Protein concentration was determined by the method of
Bradford (1976). Bovine serum albumin (Sigma, St. Louis
MO, USA) was used as reference in the preparation of
the calibration curve.

2.3. Milk clotting activity

A 100 ll-aliquot of EE was added to 1 ml of skim milk
(San Regim, SanCor, Argentina) and 12% (w/v) in 10 mM
CaCl2, at 30 �C (Vairo Cavalli et al., 2005). The milk clot-
ting activity (MCA) was measured following the procedure
described by the International Dairy Federation (1992).
One rennet unit (RU) was defined as the amount of enzyme
that coagulates 10 ml of milk at 30 �C in 100 s (Barros,
Ferreira, Silva, & Malcata, 2001).

2.4. Endopeptidasic activity

The endopeptidasic activity of the EE was determined
by hydrolysis of the synthetic fluorogenic peptide MCA–
Lys–Pro–Ala–Glu–Phe–Phe–Ala–Leu–DNP (Genosphere
Biotechnologies, Paris, France), according to Verı́ssimo
et al. (1996) with modifications. Enzyme preparations were
incubated at 37 �C with 0.54 lg/ml of substrate in 50 mM
Na-acetate buffer (pH 5.6), containing 140 mM NaCl.
The rate of hydrolysis of the aforementioned Phe–Phe
bond was monitored for 5 min, in a thermostated spectro-
fluorometer Luminiscence Spectrometer LS 50 B (Perkin
Elmer, Wellesley MA, USA). The fluorofore was excited
at 328 nm, and the light emitted was detected at 393 nm.

2.5. Sodium caseinate preparation

Whole ovine and caprine caseins were obtained from
raw milk, via isoelectric precipitation following acidificat-
ion to pH 4.25 with 6 M HCl – according to the method
of Sousa and Malcata (1998) with slight modifications.
The mixture of caseins and whey was warmed to 37 �C,
and held at that temperature for 30 min. The caseins were
recovered by filtration through a clean cloth, and washed
several times with deionized water. The caseins were then
resuspended in deionized water (to the initial volume),
and pH was adjusted to 7.0 with 1 mM NaOH. The suspen-
sion was allowed to equilibrate at 4 �C for at least 2 h,
freeze-dried and stored until use.
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2.6. Enzymatic hydrolysis performance

Whole caseinates were dissolved to a final concentration
of 1% (w/v) in 100 mM phosphate buffer (pH 6.5), contain-
ing 0.1% (w/v) NaN3 to prevent protein degradation by
adventitious microflora, and allowed to stabilize at 30 �C.
The reactions were started by addition of 450 ll of each
caseinate to 45 ll of EE (which corresponds to 44 ± 4 lg
of protein/ml). At different times, the reactions were
quenched by addition of 500 ll of 5% (w/v) trichloroacetic
acid (TCA). The samples were left to precipitate overnight
at 4 �C, and then centrifuged at 10,000g. The precipitates
were redissolved in 450 ll of sample buffers: (a) for urea
polyacrylamide gel electrophoresis (urea-PAGE), the buffer
was 62 mM Tris–HCl (pH 7.6), containing 8 M urea, 2.0%
(v/v) 2-mercaptoethanol and 0.002% (w/v) bromophenol
blue, with pH adjusted with 1 M NaOH, and with samples
vortexed four times for 30 s; (b) for tricine-sodium dodecyl-
sulphate-PAGE (tricine-SDS-PAGE), the buffer was
62.5 mM Tris–HCl (pH 6.8), containing 2% (w/v) SDS,
0.5% (v/v) 2-mercaptoethanol, 0.002% (w/v) bromophenol
blue and 10% (w/v) glycerol, with pH adjusted with 1 M
NaOH, and with samples heated at 100 �C for 5 min.

Controls containing Na-caseinate and Na-azide, at the
same concentrations but without addition of enzyme, were
also sampled. Digestion of ewe’s and goat’s caseinates were
also carried out with commercial animal rennet (Chris
Hansen’s, Copenhagen, Denmark), diluted so as to obtain
the same coagulation time with EE.

In all cases, samples were dissolved in urea buffer.

2.7. Electrophoretic analysis

Electrophoresis were performed using a Mini Protean
III cell (Bio-Rad Laboratories, Hercule, CA, USA).
Urea-PAGE was according to Shalabi and Fox (1987); gels
were pre-run at 50 mA for 10 min, and after sample load-
ing, the power supply was set at 100 V at the stacking
gel, and then increased to 200 V at the resolution gel.

Tricine-SDS-PAGE was according to Shägger and von
Jagow (1987): after sample loading, the power supply was
set at 30 V at the stacking gel, then increased at 15 V per
min for four times, and finally maintained between 90
and 100 V.

Gels were stained with Coomassie Blue G-250 (Bio-Rad
Bulletin, 2003). Quantification of intact caseins and poly-
peptides was done by gel scanning followed densitometry,
using the software Scion Image Beta v. 4.02 for Windows
(Scion Corporation, Frederick, MA, USA).

2.8. Electroblotting preparation

After Tricine-SDS-PAGE, the peptides were transferred
onto a polyvinylidene difluoride (PVDF) membrane by
electroblotting in 10 mM 3-(cyclohexylamino)-1-propane-
sulfonic acid (CAPS) containing 10% (v/v) methanol (pH
11), at 500 mA for 1 h.
2.9. Chemical sequencing

N-terminal amino-acid sequences of the protein bands
recovered via electroblotting were determined by Edman
degradation, using an automated pulsed liquid-phase-
peptide sequencer (Applied Biosystem 477 A sequencer,
Foster City CA, USA). Partial sequences obtained were
checked against known sequences of caseins, in order to
identify the cleaved peptide bonds. Sequence homology
searches were performed using the BLAST network ser-
vices (Altschul et al., 1997).

3. Results and discussion

3.1. Enzyme extracts – protein quantification, milk clotting

activity and endopeptidasic activity

The EE obtained from fresh flowers of S. marianum, and
partially purified by gel filtration (pH 3.0) displayed a pro-
tein content of 264 ± 4 mg/l, a clotting activity of
0.083 ± 0.003 RU/ml and an endopeptidasic activity of
1.50 � 10�5 IU.

As reported elsewhere (Vairo Cavalli et al., 2005) the
nature of proteolytic activity associated with MCA is due
to aspartyl endopeptidases. On the other hand, when endo-
peptidase inhibitors (PMSF – a serine protease inhibitor,
E-64 – a cysteine protease inhibitor, and pepstatin A – an
aspartic protease inhibitor) were preincubated with the
EE, only the latter promoted inhibition of milk clotting
activity. Recall that pepstatin is one of the most specific
inhibitors known in enzymology, and is highly selective
for aspartic peptidases (Dunn, 2001).

3.2. Caprine caseinate

3.2.1. Urea-PAGE analysis

It is known that only four genotypes of caseins exist, so
the heterogeneity apparent in electrophoresis is due to
effects of post-translational processing, alternative splicing
of gene product or genetic polymorphisms (Recio, Perez-
Rodriguez, Amigo, & Ramos, 1997). Recall that the
American Dairy Science Association Committee on
Nomenclature and Classification, back in 1984, proposed
that the nomenclature developed for bovine caseins, viz.
as1-, as2-, b- and j-caseins, be adopted for milk proteins
of other species (Ginger & Grigor, 1999).

A typical urea-PAGE electrophoregram of caprine case-
inate, and its fractional degradation by EE is depicted in
Fig. 1A. The group of bands with the lowest electropho-
retic mobility therein is accounted for by b-casein. Con-
versely, the group of bands with the highest
electrophoretic mobility is associated with as-casein (Silva
& Malcata, 2000).

Sodium caseinate was hydrolyzed by EE to yield band
(a) – which exhibits an intermediate mobility between b-
and as2-casein, and which can be seen after 1 h of digestion
and becomes more intense as reaction time elapsed (lanes



Fig. 1. Urea-PAGE electrophoretogram (resolution gel of T = 12.5% and
C = 4%, pH 8.9, overlaid by stacking gel of T = 4%, C = 3%, pH 7.6). A –
degradation patterns of goat’s caseins by EE; lanes 1–7: caseins after
incubation for 0, 30 min, 1 h, 3 h, 6 h, 12 h, and 24 h, respectively. B –
degradation patterns of caprine caseinate by commercial bovine curdle;
lanes 1–2: caseins after incubation for 0 min and 24 h.

Fig. 2. Densitogram analysis of bands obtained by urea-PAGE of (A)
caprine Na-caseinate and of (B) ovine Na-caseinate.

Fig. 3. Kinetics of hydrolysis of caprine as1- and b-caseins.
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3–7 in Fig. 1A). A pair of bands of higher electrophoretic
mobility – denoted as bands (b) and (c), in lanes 2–7 of
Fig. 1A, were also produced; band (b) was first visible by
30 min, became much more intense until 3 h, and remained
as such until 24 h of reaction. On the other hand, band (c)
looked very intense by 3 h of hydrolysis, but vanished as
time elapsed. The densitograms corresponding to the bands
obtained by urea-PAGE are shown in Fig. 2A. Caprine b-
casein was degraded up to 40% (Fig. 2A), whereas caprine
as1-casein was hydrolyzed up to 68%, by 24 h of incuba-
tion. These results do not agree with those by Sousa and
Malcata (1998) for caprine Na-caseinate hydrolyzed at
pH 6.5 by enzymatic extracts of flowers of C. cardunculus

(Asteraceae), and those by Silva and Malcata (2000) per-
taining to degradation of caprine Na-caseinate at pH 6.8
with purified cardosins A and B. The breakdown patterns
of bovine Na-caseinate by EE of S. marianum (Vairo Cav-
alli et al., 2005) showed a greater hydrolysis degree of b-
casein, as well as very different profile relative to obtained
with caprine Na-caseinate.

The kinetics of hydrolysis, measured as the decrease in
area of densitogram peaks are apparent in Fig. 3. The rate
of breakdown was similar for both caseinates during the
first 3 h of reaction. These results are consistent with those
reported by Sousa and Malcata (1998), who promoted
reaction catalyzed by aqueous extracts of dry flowers of
C. cardunculus, at pH 5.9. However, as hydrolysis pro-
ceeded, as1-casein was hydrolyzed to a greater extent than
b-casein.

Hydrolysis of goat’s caseinate was also carried out sep-
arately with commercial bovine curdle and with EE of
flowers of S. marianum under identical reaction conditions.
The results produced by urea-PAGE are also shown in
Fig. 1A and B. It can be observed that the commercial
bovine curdle did not produce any observable effect on
the two more important fractions of casein, but it partially
hydrolyzed the proteins/peptides associated with bands
with mobility between those of as1- and b-caseins – which
corresponds to as2-casein. On the other hand – and as
already observed in Fig. 1A, EE produced extensive degra-
dation of as-caseins but only a slighter degradation of b-
casein.

3.2.2. Tricine SDS-PAGE analysis
The results obtained by tricine SDS-PAGE of hydro-

lyzed goat’s caseinate is shown in Fig. 4. Only one impor-
tant and defined band (a), characterized by 15.0 kDa,
appeared by 12 h of digestion – and became more intense
by 24 h. The N-terminal sequence of the peptide with the
molecular weight of 14.4 kDa was REQEELNV, which
corresponds to the N-terminus of b-casein. Studies includ-
ing casein breakdown in caprine cheeses by animal rennet
have also reported the presence of bands accounted for
by b-casein fragments (Silva & Malcata, 2000).



Fig. 4. Tricine SDS-PAGE electrophoretogram (resolution gel of
T = 14.5%, C = 3%, overlaid by separating gel of T = 10%, C = 3%,
and then by stacking gel of T = 4%, C = 3%). Degradation patterns of
caprine caseins by EE; lane 1: polypeptide molecular weight markers (Bio-
Rad): bacitracin (1.4 kDa), insulin b chain, oxidized (3.5 kDa), aprotinin
(6.5 kDa), a-lactalbumin (14.4 kDa), myoglobin (17.0 kDa) and triose-
phosphate isomerase (26.6 kDa); lane 2: intact casein; lanes 3–5: whole
casein after 6 h, 12 h and 24 h of digestion, respectively. Proteins were
stained with Coomasie Blue G.

Fig. 5. Urea-PAGE electrophoretogram (resolution gel was T = 12.5%
and C = 4%, pH 8.9, overlaid by stacking gel of T = 4%, C = 3%, pH 7.6).
A – degradation patterns of ewe’s caseins by EE; lanes 1–7: caseins after
incubation for 0, 30 min, 1 h, 3 h, 6 h, 12 h and 24 h, respectively. B –
degradation patterns of ovine caseinate by commercial bovine curdle;
lanes 1–2: caseins after incubation for 0 min and 24 h.
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3.3. Ovine caseinate

3.3.1. Urea-PAGE analysis

The results of hydrolysis of ovine caseinate analysed by
urea-PAGE are depicted in Fig. 5A. Two main groups of
caseins can be identified – regions as- and b-caseins; this
observation is consistent with those previously reported
by Richardson and Creamer (1976). The group with
greater mobility corresponds to as-caseins, and may
include several variants; such microheterogeneity comes,
as previously discussed, from the degree of glycosylation
and/or the degree of phosphorylation, in addition to actual
genetic polymorphism (Chianese et al., 1996). The group
with lower mobility corresponds to the region of b-casein
– formed by two variants, b1 and b2, with differences in
phosphorylation level (Sousa & Malcata, 1998).

Although breakdown of ovine caseinate took place
much slowlier than that of bovine counterpart (Vairo Cav-
alli et al., 2005), a region with bands of greater mobility
than as-casein is visible as early as by 30 min (a). On the
other hand, other bands appeared after 6 h of incubation
and became thicker towards 24 h. In the urea-PAGE den-
sitogram (Fig. 2B), peaks (a–d) can be seen by 24 h of
hydrolysis. A noticeable decrease of as-casein from 0 to
24 h of degradation can also be observed. After 24 h of
incubation, as-casein was degraded by EE to 76 ± 4%,
whereas b-casein was only degraded to 19 ± 4%. Electro-
phoresis analysis of water insoluble fractions from La Sere-
na cheese – semi-hard Spanish ewe’s milk cheese
manufactured with extracts of C. cardunculus, showed that
as-casein was less susceptible to proteolysis than b-casein
(Roa, López, & Mendiola, 1999). After ripening Serra da
Estrela cheeses produced in Portugal from ovine milk cur-
dled with extracts of flowers of C. cardunculus; were char-
acterized by extensive hydrolysis of b- and as-caseins, and
essentially similar viz. 75% and 82%, respectively (Macedo
& Malcata, 1997). Silva and Malcata (1999) reported that
cardosin B degraded both ovine caseins, but not to the
same extent; however, when whole ovine caseinate was
degraded by cardosin B, as-casein was more susceptible
to proteolysis than b-casein, whereas the opposite behavior
was observed when the isolated fractions were exposed to
hydrolysis. In cheese-like systems, none of the highly sus-
ceptible peptide bonds of as1-casein were found to be
cleaved during the initial 24 h of ripening – neither by
crude aqueous extracts of C. cardunculus or by purified
cardosin A (Silva & Malcata, 2005). Irigoyen et al. (2000)
found that as-casein are more acutely hydrolyzed than b-
caseins throughout ripening of ovine cheeses, that had been
curdled with lamb artisan rennet, calf industrial rennet or a
mixture of both. The clotting activity of the rennet used is
one of the factors that has a major influence upon the deg-
radation extent of caseins; similarly, the origin of the clot-
ting enzyme used (from animal, microbial or plant sources)
will constrain the proteolysis degree; plant and microbial
clotting enzymes breakdown b-caseins faster than animal
ones (Irigoyen et al., 2000).



Fig. 7. Tricine SDS-PAGE electrophoretogram (resolution gel of
T = 14.5%, C = 3%, overlaid by separating gel of T = 10%, C = 3%,
and then by stacking gel of T = 4%, C = 3%). Degradation patterns of
ovine caseins; lane 1: polypeptide molecular weight markers (Bio-Rad):
bacitracin (1.4 kDa), insulin b chain, oxidized (3.5 kDa), aprotinin
(6.5 kDa), a-lactalbumin (14.4 kDa), myoglobin (17.0 kDa) and triose-
phosphate isomerase (26.6 kDa); lane 2: intact casein; lanes 3–5: whole
casein after 6 h, 12 h and 24 h of digestion, respectively. Proteins were
stained with Coomasie Blue G.
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In attempts to compare degradation patterns, ovine
caseinate was hydrolyzed with commercial bovine rennet
and EE, under identical conditions of reaction; the result-
ing electrophoregram is shown in Fig. 5B. By 24 h of
hydrolysis, a region (a) and a band (b) close to the as-case-
ins can be visualized, and another region of dimmed band
(c) and a band (d) but with much greater mobility can also
be shown (Fig 5A). Electrophoresis of hydrolyzed caseinate
(lane 2 in Fig. 5B), carried out for 24 h with commercial
bovine rennet, displayed little difference with respect to
the control (lane 1 in Fig. 5B); only a low intensity new
band (e), of smaller mobility than b-casein, a band (f)
and a region of bands (g) with greater mobility – yet close
to fraction as-caseins can be observed.

The kinetic of hydrolysis of ovine as- and b-caseins car-
ried out by the partially purified extract of flowers of S.

marianum, are displayed in Fig. 6 As discussed above, as-
casein was faster and more extensively degraded than b-
casein – unlike the data reported by Sousa and Malcata
(1998), who found similar rates of hydrolysis (until 3 h of
reaction) for both ovine fractions when the reaction was
effected by aqueous extracts (pH 5.9) of dry flowers of C.
cardunculus.

3.3.2. Tricine SDS-PAGE analysis

The results of tricine SDS-PAGE of hydrolyzed ewe’s
caseinate is shown in Fig. 7. After 12 h, bands character-
ized by molecular weights of 18.9, 16.5, 11.2 and 8.6 kDa
became more intense, while smaller peptide bands (5.8
and 4.3 kDa) appeared.

In what concerns specificity, the major cleavage site in
as1-casein was Leu99-Arg100 – as derived from N-terminal
sequencing of the band featuring 14.4 kDa [i.e. as1-
(f100-*)]. According to Sousa and Malcata (1998) and Silva
and Malcata (2005), this peptide bound was not reported
to be cleaved by aspartic peptidases of C. cardunculus; how-
ever, Lane, Fox, Johnston, and McSweeney (1997) found
the peptide [fl02-199] from bovine as1-casein in the electro-
phoregrams of cheeses curdled with chymosin, as a band
that increased in intensity throughout ripening.
Fig. 6. Kinetics of hydrolysis of ovine as- and b-casein.
4. Conclusions

Distinct peptide profile were observed in goat’s and
ewe’s caseinates throughout hydrolysis brought about by
extracts of S. marianum; however, lot caseinates underwent
less extensive degradation than bovine caseins, for the same
enzyme extract. On the other hand, caprine and ovine Na-
caseinates were hydrolyzed more extensively with the plant
extract than the same caseinates by calf commercial rennet,
under the same conditions.

Caprine as1- and b-caseins were degraded up to 68%,
and 40%, respectively during 24 h of incubation. Only
one important and well-defined band – characterized by a
molecular weight of 14.4 kDa, was observed by 12 h of
hydrolysis, which is likely a fragment of goat’s b-casein.
By 24 h of incubation, ovine as- and b-caseins were
degraded up to 76% and 19%, respectively.

In terms of specificity, the major cleavage site of ovine
caseinate was Leu99-Arg100 of as1-casein.
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