
ar
X

iv
:h

ep
-th

/0
60

72
14

v2
  1

5 
Ju

l 2
00

7

Quantum Corrections to Lorentz Invariance

Violating Theories: Fine-Tuning Problem
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Abstract

It is of general agreement that a quantum gravity theory will most
probably mean a breakdown of the standard structure of space-time at
the Planck scale. This has motivated the study of Planck-scale Lorentz
Invariance Violating (LIV) theories and the search for its observational
signals. Yet, it has been recently shown that, in a simple scalar-spinor
Yukawa theory, radiative corrections to tree-level Planck-scale LIV the-
ories can induce large Lorentz violations at low energies, in strong con-
tradiction with experiment, unless an unnatural fine-tuning mechanism is
present. In this letter, we show the calculation of the electron self-energy
in the framework given by the Myers-Pospelov model for a Lorentz Invari-
ance Violating QED.We find a contribution that depends on the prefered’s
frame four-velocity which is not Planck-scale suppressed, showing that this
model suffers from the same disease. Comparison with Hughes-Drever ex-
periments requires a fine-tuning of 21 orders of magnitude for this model
not to disagree with experiment.

1 Introduction

The two astonishingly successful pillars of contemporary physics, namely Quan-
tum Mechanics and General Relativity have stubbornly resisted their unifica-
tion. The problem of finding a consistent theory that merges these two aspects
of Nature, i.e. a quantum theory of gravitation, is known as the Quantum
Gravity (QG) problem. Currently, the two most important approaches to this
challenge are String Theory, which also claims to be a complete unification of all
forces, and the less ambitious theory, known as Loop Quantum Gravity which
is a canonical quantum version of General Relativity. Although based on dif-
ferent approaches and hypotheses, these theories agree in that novel properties
of the structure and symmetry of space-time at the Planck-scale must arise,
making the experimental exploration of Planck-scale physics of fundamental
importance. Quantum Gravity phenomenology had been left aside for a while
since directly probing Planck-scale effects on elementary particles would require
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energies of the order of EPl =
√

h̄c5/G ≃ 1019GeV , which is currently, and
will most probably be for a long time, inaccessible to experimentalists. Nev-
ertheless, Quantum Gravity phenomenology has enjoyed a renewed interest in
recent years and has actually become a very active research area by the hand
of Amelino Camelia, among others, when it was noticed that some Planck-scale
effects may be amplified in several experimental and astrophysical scenarios to
the extent of becoming observable with current experimental technology [1],[2].

Lorentz invariance breakdown at the Planck scale, manifested as a modified
dispersion relation, is one of the common features that arises in the two men-
tioned contenders for QG phenomenology (see, for instance, [3], [4] ) and one
which has attracted considerable attention lately. Lorentz invariance violation
(LIV) signifies a modification of the group structure of space-time symmetry
and so the usual algebra Casimir pµη

µνpν = m2 fails to be an invariant under
the set of transformations relating inertial observers in the effective QG the-
ory, i.e. a modified dispersion relation is expected. In fact, the existence of a
natural mass scale (MPl =

√

h̄c/G) allows the appearance of Planck-scale sup-
pressed terms of powers greater than 2 in momenta in the dispersion relation.
These terms can be traced back as having their origin in a modified Lagrangian
for fields that contains five(or higher)-dimensional (i.e. non-renormalizable) ki-
netic terms. This field-point of view suggests that one should consider radiative
corrections to the bare vertices of the theory to explore quantum modifications.

The motivation of this letter is the following [5]: The calculation of loop-
diagrams requires the integration over arbitrarily high momenta and so the high
energy regime of the theory is explored. In the usual Lorentz invariant gauge
theories, these diagrams are divergent due to dimension four (or smaller) terms
in the Lagrangian, which are made finite by the well-known procedure of renor-
malization. The incorporation of operators of higher dimension (higher powers
in momenta in the dispersion relation) naturally introduces a mass scale (e.g.
the Planck scale) and some of the originally divergent diagrams are naturally
regularized. The superficial degrees of divergence of the Lorentz invariant dia-
grams therefore determine the size of the contributions of the Lorentz violating
terms, which involve the Planck scale. These contributions are not necessarily
Planck-scale suppressed, as frequently stated in the literature. In conclusion,
Lorentz violation at the Planck scale is pulled down to low energies due to ra-
diative effects, requiring an enormous fine-tuning in order to be consistent with
experimental bounds on Lorentz violation.

In this letter we show that a modified model of QED, known as the Myers-
Pospelov model, suffers this disease and estimate the order of magnitude of the
fine-tuning by comparison with Hughes-Drever measurements [6], which is in
agreement with the general conclusions of reference [5]. The organization of
the paper is as follows: presentation of the Myers-Pospelov model, calculation
of the electron’s self energy diagram and finally the discussion of experimental
bounds and the fine-tuning problem that this arises.
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2 The Myers-Pospelov Model

The Myers-Pospelov (MP) model, which incorporates cubic modification terms
in the dispersion relation by introducing a background four-vector wµ, has re-
ceived considerable attention lately and exhibits more appealing properties re-
garding causality conditions than other LIV models [7]. It has been studied in
the language of effective field theory by introducing dimension-five operators
into the lagrangian. More precisely, the MP’s low energy effective field theory
introduces Planck’s scale-suppressed operators which satisfy the following gen-
eral constraints: Quadratic in the same field, one more derivative than the usual
kinetic term, gauge invariance, Lorentz invariant except for the appearance of
wµ, not reducible to lower dimension by the equations of motion and not re-
ducible to a total derivative. The MP Lagrangian describing the electromagnetic
interactions reads [8]:

LMP
QED = LQED + δLγ + δLΨ, (1)

wherein LQED = − 1
4
F 2 + Ψ̄(6 p− e 6 A−m)Ψ is the usual QED Lagrangian and

δLγ =
ξ

MPl
waFadw · ∂(wbF̃

bd), (2)

δLΨ =
i

MPl
Ψ̄(η1 6 w + η2 6 w)(n · ∂)2Ψ. (3)

The photon dispersion relation due to this modified Lagrangian is

(

E2 − |p|2 ±
2ξ

MPl
|p|3

)

(εx ± iεy) = 0, (4)

while
(

E2 − |p|2 −m2 +
1

MPl
|p|3(η1 + η2γ5)

)

Ψ = 0 (5)

is the modified dispersion relation for electrons in the privileged system of refer-
ence, i.e., the one in which wµ = (1, 0, 0, 0) meaning that Poincare’s symmetry
has been broken to O(3) in this frame. Note that in this frame the modifications
to the usual dispersion relation are related to the space-components of p while
the energy dependence is the usual one. From these expressions, we can perform
the calculation of the electron self-energy diagram in which we are interested
now.

3 Electron self-energy

Since it is expected that departures from the (incredibly accurate) usual QED
theory manifest themselves at high energies, due to it being a quantum gravity
effect, we shall consider QED as a good enough approximation for energies
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smaller than a given energy scale which we shall call Λ, while being the MP
theory the accurate description for high energies compared to Λ. Then, we shall
express the quantum correction to a given diagram by the symbolical expression

Σ =

∫ Λ

0

dΣQED +

∫

∞

Λ

dΣMP . (6)

That is to say that we may think of δΣ(ξ,Λ) ≡
∫

∞

Λ
dΣMP as being a correction

term to the (regularized) self-energy diagram in QED due to quantum gravity
effects of the MP model. We wish to stress the fact that the Λ scale introduced
here has a two-fold function: It regularizes the usual divergent integral of QED
and it allows the calculation of δΣ(ξ,Λ) in the high-energy regime1. This cut-

off is of a physical character and unnecessary at the fundamental level, but it
enormously simplifies the calculations and it allows us to identify more clearly
the modification the MP model introduces. As we shall see, this correction term
is not suppressed by any powers of 1/MPl, as could of been naively expected,
giving the finite contribution to the Lorentz violation at low energies to which
we have referred above.

Let us consider the case in which the departure from the usual dispersion
relation is mostly dominated by the ξ parameter in the photon dispersion rela-
tion, while keeping the electron propagator unmodified (i.e. η1 = η2 = 0). We
wish to explore the effect of 1-loop corrections in this scenario, in particular the
electron self-energy to first order in h̄ given by

−iΣMP (p) =(−ie)2
1

(2π)4

∫

d3k

∫

dk0γ
µ (6 p− 6 k +m)

(p0 − k0)2 − [(p− k)2 +m2]
γµ

1

k20 − [k2 ∓ 2ξ
MPl

|k|3 + λ2]
.

(7)

We recall that the superficial degree of divergence of the electron self-energy
diagram in QED is 1 and so a linear divergence is to be expected, but because
of Ward’s identities this divergence is smoothed into a logarithmic one to match
that of the interaction vertex diagram. Since Ward’s identities are a consequence
of gauge invariance, the same can be said here and it’s required that this integral
be convergent, as the interaction vertex is finite in the MP model. Indeed, note
that by regularizing the integral in such a way that the symmetry kµ → −kµ at
high energies is preserved and writing the integrand as I(k) = 1

2
[I(k) + I(−k)],

one gets a finite result. That is, the MP model predicts a finite correction to
the self-energy diagram. After using the standard Feynman parameterization
and performing some integrals, we get (see Appendix)

− iΣMP (p) ≃ −i
e2

8π2

(

− 6 p− γipi + 4m
)

ln
ξΛ

2MPL
. (8)

1More precisely, the Λ scale marks the begining of the regime in which the quantum gravity

effects are important. In the privileged reference frame this occurs for big values of |p|. Also,

observe that Λ acts as an infrared regulator.
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Notice that the contribution

e2

8π2
(− 6 p+ 4m) ln

ξΛ

2MPL
(9)

can be absorbed by the regularized self-energy term coming from QED, leaving

δΣMP =
e2

8π2
γipi ln

ξΛ

2MPL
(10)

as a new and finite term, due to high energy corrections in the MP model.
Note that (10) has the asymptotic form f(m/MP ) ln ξ for small ξ and the

form g(ξ) ln(m/MP ) for small m/MP . Since the latter quantity is m/MP ∼
10−22 we shall have the behaviour δΣMP ∝ g(ξ) ln(m/MP ). Thus, the very
small quantity m/MP appears as the argument of a logarithm.

Note also that the Λ dependence on equation (10) appears because a cutoff
in momentum space does not preserve the symmetry k → −k.

Now, recall that this expression is to be understood in the preferred sys-
tem of reference in which wµ = (1, 0, 0, 0), but in an arbitrary reference frame
with relative velocity wµ, we must replace pι by the projection of pµ onto the
transversal direction of wµ, i.e., p

T
µ = Πν

µ(w)pν , where Πν
µ(w) ≡ δνµ − wµw

ν is
the usual transversal projector, if the w four-vector is normalized and gµν =
diag(+,−,−,−). Finally

δΣMP (p, w) =
e2

8π2
γµ(gµν − wµwν)p

ν ln
ξΛ

2MPl
, (11)

wherein wµ represents the 4-velocity of the observer relative to the preferred
system of reference. Note that the limit ξ → 0 must be taken simultaneously
with the limit Λ → ∞ in such a way that ξΛ remains finite in order to recover
the low-energy limit. Notice that the parameter ξ, which controls the extent
of Lorentz Invariance violation, regularizes the usual logarithmic divergence,
as could of been expected from power counting. This slightly resembles what
happens in Non-Commutative Field Theory, where the non-commutativity pa-
rameter θ measures the extent of Lorentz invariance violation and regularizes
some ultravioletly-divergent diagrams as well [9],[10].

4 Lagrangian Counterterm: fine-tuning prob-

lem

If the MP model with 1-loop corrections is to be consistent with experimental
bounds on low energy Lorentz violation, it is necessary to include a (Lorentz
violating) counterterm in the original Lagrangian in the way

L′

MP = L1−Loop
MP −

ie2

8π2
ln(

ξ′Λ

MPl
)Ψ̄ (γµ(gµν − wµwν)∂

ν) Ψ. (12)
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By introducing δ ≡ ξ
ξ′ − 1, we have

L′

MP = L0
MP −

ie2

8π2
ln(δ + 1)Ψ̄ (γµ(gµν − wµwν)∂

ν)Ψ (13)

L′

MP ≃ L0
MP −

iδe2

8π2
Ψ̄ (γµ(gµν − wµwν)∂

ν)Ψ. (14)

Notice that the dependence on Λ has disappeared and there is no Planck-scale
suppression, as advertised before. The δ parameter therefore measures the ex-
tent of Lorentz violation, rising the problem of a fine-tuning of the counterpa-
rameter ξ′.

5 Experimental bounds

The associated Hamiltonian in the non-relativistic limit of this Lagrangian,
given by the method developed in [11] up to first order in δ, reads

H =

[

mc2
(

1−
δe2

4π2
(w/c)2

)

+

(

1− 2
δe2

4π2

(

1 +
5

6
(w/c)2

))(

p2

2m
+ gµs ·B

)]

−
δe2

4π2

[

w·QP ·w

mc2

]

.

(15)

The last term badly breaks Lorentz invariance. It represents an anisotropy
of inertial mass and it has been tested in Hughes-Drever like experiments [6].
On account of the approximation QP = −5/3 < p2 > Q/R2 for the momentum
quadrupole moment, with Q being the electric quadrupole moment, we get

δHQ = −
δe2

4π2

5

3

〈

p2

2M

〉(

Q

R2

)

(w

c

)2

P2(cos θ). (16)

for the perturbing Hamiltonian, from which we get a bound for the fine tuning
parameter δ

|δ| < 10−21. (17)

6 Conclusions

We have explicitly shown the realization, in the framework of the Myers-Pospelov
model for a LIV QED of the idea, first exposed in [5], that LIV at the Planck
scale at the classical (i.e. h̄ = 0) level are dragged down to low energies by radia-
tive corrections. This is reflected by the fact, already noted, that the dependence
of the LIV term (10) on the very small factor m/MP is only logarithmic. Thus,
the LIV is actually amplified in such a way that a LIV finite counterterm has to
be added to suppress the large (order of the QED fine structure constant) term
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and an extreme fine-tuning is required in order for this theory to be consistent
with present experimental bounds.

By comparison with Hughes-Drever measurements[6], we have been able to
determine the magnitude of the fine-tuning to be (17), in agreement with the
general conclusions of reference [5].

Fine-tuning problems already arise within the Standard model, considered
one of the most succesfull theories, but it is expected to be solved at a more fun-
damental level and has been considered unacceptable in a fundamental theory
by some authors [13],[14]. The fine-tuning problem discussed here could also
be considered as a sign suggesting, a still unknown, underlying structure.The
implications of this study are quite restrictive on possible Lorentz violating sce-
narios; if the exact Lorentz invariance hypothesis is relaxed at the Planck-scale,
then a deeper and precise mechanism for ensuring Lorentz invariance at low en-
ergies when quantum corrections are considered, is needed. Some mechanisms
to deal with this problem have been proposed, but none of these are, at present,
fully satisfactory. The reader is referred to [16] for an updated review and dis-
cussion of these proposals and, in general, of LIV’s role in quantum gravity
phenomenology.
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APPENDIX

We show in this appendix the calculations leading to (8). The Feynman
parameterization

1

ab
=

∫ 1

0

dz
1

(az + b[1− z])
2

(18)

allows us to express the integral in (7) as

I =

∫

dz

∫

dk0
−2 6 p+ 4m+ 2 6 k

(

[p2 − 2pk −m2] z + k2 +
[

−λ2 + 2ξ
MPl

|k|3
]

(1− z)
)2

, (19)

where the standard Dirac gamma matrices properties γµ 6 pγµ = −2 6 p and
γµγµ = 4 have been used. By shifting solely the time-like integration variable
k0 to k0 − p0z, we get

I =

∫

dz

∫

dk0
−2 6 p(1− z) + 4m+ 2γi(ki + piz)

(

k20 + p20z(1− z)− (p− k)2z −m2z −
(

k2 + λ2 − 2ξ
MPl

|k|3
)

(1− z)
)2

,

(20)
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where we have used the fact that the integral with γ0k0 is exactly zero, due to
the integrand being parity-odd in k0. The table expression

I =

∫

ddk

(k2 + 2kq − r2)
α = (−1)d/2iπd/2Γ(α− d

2
)

Γ(α)

1

[−q2 − r2]α−d/2
(21)

allows the full computation of the integral in QED. Although not so useful now,
it allows the whole integration of the time-like component of k, by taking

d = 1, α = 2, (22)

r2 = −p20z(1− z) + (p− k)2z +m2z +

(

k2 + λ2 −
2ξ

MPl
|k|3

)

(1 − z)(23)

q = 0. (24)

This way, the integral to be performed over the spatial components of k is

−
π

2

∫

d3k
−2 6 p(1− z) + 4m+ 2γi(ki + piz)

[

p20z(1− z)− (p− k)2z −m2z +
(

−k2 − λ2 + 2ξ
MPl

|k|3
)

(1− z)
]3/2

.

(25)
It is important to stress that no shifting in the spatial components of k has
been done, but solely in the time component, k0, which is consistent with the
lagrangian’s symmetry and the integral being calculated as the energy integral
has no intermediate cut-off.

By taking the external electron to be on-shell we have

I = −
π

2







∫

d3k
−2 6 p(1− z) + 4m− 2γipiz

[

−p20z
2 − k2 + 2pkz cos θ + 2ξ

MPl

(1− z)k3
]3/2

+

∫

d3k
2γiki

[

p20z(1− z)− (p− k)2z −m2z +
(

−k2 − λ2 + 2ξ
MPl

|k|3
)

(1− z)
]3/2






,

(26)

≡ −
π

2
(ILog. + ILin.) , (27)

where the infrared regularization parameter λ has been omitted because this
expression is valid at high energies. We have already argued that the ILin.

= 0 sow we perform the calculation of the (originally) logarithmically divergent
integral, ILog. We may first perform the angular integral over dΩ = −d(cos θ)dφ,
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getting

ILog. = −2π
(

−2 6 p(1− z) + 4m− 2γipiz
)

·

∫

dkk
2

2|p|z





1
√

2ξ
MPl

(1− z)k3 − k2 + 2pkz − p20z
2

−
1

√

2ξ
MPl

(1− z)k3 − k2 − 2pkz − p20z
2



 . (28)

By introducing ε ≡ 2pkz − p20z
2 in the first term and ε′ = 2pkz + p20z

2 in the
second one we have, to first order in ε and ε′,

ILog ≃
π

|p|z

(

−2 6 p(1− z) + 4m− 2γipiz
)

∫

dk
(ε+ ε′)k

(

−k2 + 2k3 ξ
MPl

(−z + 1)
)

3

2

≃ 4π
(

−2 6 p(1− z) + 4m− 2γipiz
)

∫

dk
1

k
[

2ξ
MPL

(1− z)k − 1
]3/2

. (29)

The definite integral between the values Λ and ∞ , in which we are interested
in, reads

ILog ≃ −8π
(

−2 6 p(1− z) + 4m− 2γipiz
)

·




π

2
−

1
√

2ξ
MPL

(1− z)Λ− 1
− arctan

√

2ξ

MPL
(1− z)Λ− 1





ILog ≃ −4π
(

−2 6 p(1− z) + 4m− 2γipiz
)

(

π + i ln
ξΛ(1− z)

2MPL

)

, (30)

where the standard tan−1(ix) = i tanh−1(x) and tanh−1(x) = 1
2
ln(1+x

1−x) iden-
tities have been used in the last line and the small terms when ξΛ/MPL ≪ 1
have been neglected. Integrating over the Feynman parameter z,

∫ 1

0

ILogdz = −4πi
(

− 6 p− γipi + 4m
)

ln
ξΛ

2MPL
+ finite terms, (31)

which finally gives

− iΣMP (p) = −i
e2

8π2

(

− 6 p− γipi + 4m
)

ln
ξΛ

2MPL
. (32)
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