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a b s t r a c t

Context: Inheritance is the cornerstone of object-oriented development, supporting conceptual modeling,
subtype polymorphism and software reuse. But inheritance can be used in subtle ways that make com-
plex systems hard to understand and extend, due to the presence of implicit dependencies in the inher-
itance hierarchy.
Objective: Although these dependencies often specify well-known schemas (i.e., recurrent design or cod-
ing patterns, such as hook and template methods), new unanticipated dependency schemas arise in prac-
tice, and can consequently be hard to recognize and detect. Thus, a developer making changes or
extensions to an object-oriented system needs to understand these implicit contracts defined by the
dependencies between a class and its subclasses, or risk that seemingly innocuous changes break them.
Method: To tackle this problem, we have developed an approach based on Formal Concept Analysis. Our
Formal Concept Analysis based-Reverse Engineering methodology (FoCARE) identifies undocumented
hierarchical dependencies in a hierarchy by taking into account the existing structure and behavior of
classes and subclasses.
Results: We validate our approach by applying it to a large and non-trivial case study, yielding a catalog
of hierarchy schemas, each one composed of a set of dependencies over methods and attributes in a class
hierarchy. We show how the discovered dependency schemas can be used not only to identify good
design practices, but also to expose bad smells in design, thereby helping developers in initial reengineer-
ing phases to develop a first mental model of a system. Although some of the identified schemas are
already documented in existing literature, with our approach based on Formal Concept Analysis (FCA),
we are also able to identify previously unidentified schemas.
Conclusions: FCA is an effective tool because it is an ideal classification mining tool to identify common-
alities between software artifacts, and usually these commonalities reveal known and unknown charac-
teristics of the software artifacts. We also show that once a catalog of useful schemas stabilizes after
several runs of FoCARE, the added cost of FCA is no longer needed.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Inheritance is the cornerstone of object-oriented development,
supporting conceptual modeling, subtype polymorphism and soft-
ware reuse [75]. There is often a tension between these three uses
of inheritance. During analysis, inheritance is used to model spe-
cialization of domain concepts; during design, generic components

are specified by exploiting polymorphism; and during implemen-
tation, inheritance is often used as a pure reuse mechanism to de-
fine new classes from existing ones [29,46].

The different uses of inheritance in large class hierarchies result
in explicit and implicit dependencies within such class hierarchies.
Explicit dependencies are clearly identifiable from source code,
such as the definitions of subclasses. On the other hand, implicit
dependencies are induced by uses of self and super sends, method
cancellations in subclasses, method redefinitions in subclasses, or
state access from subclasses.

In general, inheritance is not a simple incremental definition
mechanism, but it usually works in strong interaction with other
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object-oriented mechanisms [75], such as overriding, method can-
cellations and encapsulation.

Inheritance combined with these object-oriented mechanisms
can make class hierarchies difficult to understand, because unex-
pected and implicit behavior based-dependencies can appear. Here
are some illustrations of the possible difficulties a reengineer may
face when he has to modify an existing and often unknown
hierarchy.

� Template Method in superclasses. When defining a class, the
developer has to understand if the superclass imposes restric-
tions regarding the behavior of subclasses. This is the case of
Template Method, which defines a skeleton of an algorithm in
a method in a class, deferring the implementation of the
algorithm steps to its subclasses [2,13,65]. For example,
Fig. 1a shows Template Method between the superclass Keyed-

Collection and the subclasses RBSmallDictionary and Method-

Dictionary. The method atIfAbsentPut calls the methods
atIfAbsent and atPut which are abstract in the class itself,
but concrete in the subclasses. This is a classical use of sub-
typing. This restriction is implicit and the developer can only
detect the presence of this design pattern by attentively read-
ing the code. Although modern development environments
are capable of automatically generating stub methods for
subclasses of abstract classes, the general problem of detect-
ing and enforcing implicit constraints between classes and
subclasses is unsolved.
� Inheritance for implementation reuse. The use of inheritance for

implementation reuse (subclassing) can violate subclassing
contracts from structural and behavioral viewpoints. For exam-
ple, in Fig. 1b the class Dictionary is a subclass of the class Set.
Dictionary elements can only be removed by their key values, so
the method removeIfAbsent inherited from class Set is overrid-
den to raise an error. From a structural viewpoint inheritance is
used for mere implementation purposes, and it forces the devel-
oper to cancel inherited methods or to override superclass
behavior with error messages. From the behavioral viewpoint,
they are incompatible because this hierarchy does not respect
the Liskov Substitution Principle [52].
� Yo-yo problem. The behavior of a class is specified by its meth-

ods and the reuse of its superclass behavior via self and super
sends. The fact that self is dynamic (i.e., self sends are resolved
only at runtime to the appropriate receiver method) while super
is static (i.e., methods are looked up statically in the superclass
of class containing the method issuing the super call), can make
it difficult to understand the run-time behavior of a given class
[77,27]. When a class hierarchy is deep, the flow is implicit and
is difficult to follow since the programmer has to keep flipping

between different class definition. This phenomenon is known
as the yoyo effect [74].
� Inappropriate state usage. Object-oriented languages support

various visibility mechanisms for instance variables defined in
classes. In languages where instance variables are ‘‘protected”
by default, such as Smalltalk, it is not possible to prevent sub-
classes from inappropriately accessing inherited state. While a
class often hides its state from its clients, supporting a good
encapsulation of internal representation, subclasses can directly
access superclass state creating unexpected dependencies. Clas-
ses such as OrderedCollection (in Fig. 1c) do not expose their
state to client classes, since there are no accessors. However,
this does not prevent subclasses from accessing directly (with-
out accessors) the state defined by the class. Subclasses can
therefore violate the encapsulation of the class. A class should
ideally act as a provider of (inherited) services for its subclasses
[71]. For example, Fig. 1c shows that class SortedCollection

accesses the attribute lastIndex of the class OrderedCollection

without using accessors. This happens because the attributes
in OrderedCollection are used internally in the class itself, and
they are not public to its clients. The only way that the class
SortedCollection can access superclass state is by violating the
encapsulation of the superclass.

During initial maintenance phases, when the developer needs
to develop a first mental model of an object-oriented system, he
should understand the contracts implicitly defined by the depen-
dencies between a class and its subclasses to avoid introducing
changes that break these contracts, or to eventually fix existing
problems before modifying the system [19,72].

A key issue for our analysis is that the contracts can be defined
by a simple dependency, such as the reuse of behavior via a self call
from one subclass and engaging its superclass, or by a combination
of certain dependencies, as we have seen in the description of a
Template Method. The contract defined with a simple dependency
can be easily detected using a query-based tool, because we know
exactly how the contract is defined [78]. But the contracts defined
by a combination of (explicit and implicit) dependencies cannot
easily be detected like that, because we do not know a priori which
are the contracts, how they are defined in terms of sets of depen-
dencies between classes and if there are relationships between
them. Without Formal Concept Analysis (FCA), we would need to
generate all the possible combinations of (explicit and implicit)
dependencies between classes, resulting an exponential number
of candidate contracts. Each combination can define an unexpected
contract, which should be identified and verified if it appears in the
class hierarchy. Thus, the process can be expensive in terms of per-
formance and processing, and FCA is a better choice in our context.

removeIfAbsent()

Set

removeIfAbsent() 

Dictionary

lastIndex
 OrderedCollection

resort() 

 SortedCollection

(a) (c)

atIfAbsentPut() 
atIfAbsent() 
atPut() 

«Abstract»
KeyedCollection

atIfAbsent() 
atPut() 

Method Dictionary

atIfAbsent() 
atPut() 

RBSmallDictionary

…. 
self.atIfAbsent();
self.atPut()
…. 

self.error() ….
lastIndex
…...

(b)
Fig. 1. Schemas in class hierarchies: (a) Template Method. (b) Cancelled Behavior. (c) Access to superclass state.
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We have developed an approach called Formal Concept Analysis
based-Reverse Engineering (FoCARE) to detect dependencies in a
class hierarchy using FCA [4]. While our original approach focused
purely on the behavior of classes, the work presented in this paper
also takes state into account. FoCARE adopts a pipeline architecture
with a set of processing steps that transforms source code in terms
of useful high-level entities for reengineering purposes. In our spe-
cific case, we identify hierarchy schemas to obtain a first mental
map for initial reengineering phases. One of the main features of
this methodology is that it is language independent because it uses
a model of the source code as input instead of the source code it-
self. Language independence is achieved by using Moose1 reengi-
neering platform, a research vehicle for reverse and reengineering
object-oriented software [61] in the methodology. We use FCA to
identify recurring, unanticipated and undocumented patterns
revealing the way classes use local (or superclass) behavior and
state. The patterns revealed by our analysis, called hierarchy sche-
mas, are composed of a set of dependencies over methods and attri-
butes in a class hierarchy. These schemas correspond not only to
known contracts defining best practices but also to hidden contracts,
bad smells and questionable or irregular practices.

We validate our approach with an extensive case study: the
Smalltalk Collection hierarchy, which we selected because (i) it is
a complex and essential part of the Smalltalk system, (ii) it com-
bines subtyping and subclassing, (iii) it is an industrial quality class
hierarchy that has evolved over 20 years, and (iv) it has been stud-
ied by other researchers [11,17,35,46].

The case study reveals non-trivial hierarchy schemas in indus-
trial software systems, which we categorize as follows:

� Classical Schemas represent common styles that are used to
build and extend a class hierarchy,
� Irregular Schemas represent questionable practices which can

lead to difficulties when understanding the hierarchy,
� ‘‘Bad Smell” Schemas indicate the presence of likely design

defects that should be corrected.

The identified hierarchy schemas help us to answer such ques-
tions as:

� Which classes define and use (or not) their own state and
behavior?
� Which classes use the state defined in their superclasses?
� Which classes use template and hook methods and define behav-

ior for their subclasses [65]?
� Which classes reuse or extend (or not) the behavior of their

superclasses?
� Which subclasses redefine or cancel the behavior of their

superclasses?

Our methodology also helps us to evaluate FCA itself, and an-
swer such questions as:

� How useful is FCA for software analysis?
� Does FCA scale when applied in practice?
� Considering that there is an algorithm involved in the method-

ology, how does the performance affect the results?

The two main contributions of this paper are:

A catalog of hidden class dependencies. The catalog of hierarchy
schemas provides a good basis for identifying which parts of a
system are well-designed and which ones need to be fixed.

The approach provides two analysis viewpoints: a global view
of the system which identifies which kinds of dependencies
and practices are present, and a partial view of how specific
classes are related to others in their hierarchy and how that
hierarchy can be modified and extended. Although the catalog
is built using FCA, once the catalog reaches a fixed point, the
engineer can identify the schemas using a simple query engine
with the definitions provided by the presented approach.
FCA as a query-engine The FoCARE methodology demonstrates
how FCA can be an effective tool to reveal implicit patterns in
complex software systems. We show the main difference
between the use of FCA and a query-based engine. If we knew
in advance how the Hierarchy Schemas should be defined, we
could use a query-based tool to identify their occurrences, but
it is not the case in our approach. We use FCA because we do
not know in advance which are the possible schemas occurring
in the class hierarchies, and consequently we do not know the
combination of dependencies that characterize these schemas.
FCA helps us mainly to discover implicit and unanticipated sche-
mas introduced in a class hierarchy, and that the patterns may
or may not correspond to expected practices.

There are two main differences as compared to our previous
work [4]. First, in the current approach we include dependencies
that consider access to object state, whereas our earlier work con-
sidered only behavior. Thus, we yield more concepts, and hence
more schemas of interest than when only behavior is considered.
Secondly, we categorize schemas into those that represent good,
irregular and bad design decisions in the class hierarchies.

The paper is structured as follows: Section 2 briefly describes
Formal Concept Analysis. Section 3 details the methodology Fo-
CARE and Section 4 presents our mapping of object-oriented
dependencies in class hierarchies using FoCARE, and the catalog
of hierarchy schemas. Section 5 provides an overview of the re-
sults obtained by applying our approach to the Smalltalk Collec-

tion hierarchy and by showing how SortedCollection fits into this
hierarchy. Section 6 analyzes several issues related to the applica-
tion of the FoCARE approach to class hierarchies and the threats to
validity of the developed approach. Section 7 compares our ap-
proach to related work. Finally, Section 8 concludes and outlines
future work.

2. Formal Concept Analysis (FCA) in a nutshell

Formal Concept Analysis (FCA) [30] is a branch of lattice theory
that allows us to identify meaningful groupings of elements that
have common properties.2

Let us consider a small example about animals and how we cat-
egorize them using FCA. The elements are a group of animals Lion,
Finch, Eagle, Hare and Ostrich; and the properties are Preying, Flying,
Bird and Mammal. Table 1 shows us an incidence table indicating
which animal has which properties.

Based on these sets, a context is defined as a triple C = (E,P,R),
where E and P are finite sets of elements and properties respec-
tively, and R is a binary relation between E and P represented in
the incidence table. In the example, the elements are the animals,
the properties are its features, and the binary relation is a is defined
by Table 1. For example, the tuple (Lion, Preying) is in R, but (Finch,
Mammal) is not.

Let X # E, Y # P, and X
0
= {p 2 Pj "e 2 X:(e,p) 2 R} and

Y
0
= {e 2 Ej"p 2 Y:(e,p) 2 R}, then X

0
gives us all the common proper-

1 http://www.moosetechnology.org.

2 In standard FCA literature these are referred to, respectively, as objects and
attributes. We use the terms element and property to avoid the unfortunate clash with
object-oriented terminology.
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ties of the elements contained in X, and Y
0
gives us the common ele-

ments of the properties contained in Y, e.g., {Lion,Eagle}
0
= {Preying}.

A concept is a pair of sets – a set of elements (the extent) and a
set of properties (the intent) (X,Y) – such that Y = X

0
and X = Y

0
. In

other words, a concept is a maximal collection of elements sharing
common properties. In Table 1, a concept is a maximal rectangle
(up to permutation of rows and columns of the table) we can ob-
tain with relations between animals and its features. For example,
({Finch, Eagle}, {Flying, Bird}) is a concept, whereas ({Lion}, {Mam-
mal}) is not, since {Lion}

0
= {Mammal}, but {Mammal}

0
= {Lion,Hare}.

The set of all the concepts of a given context forms a complete
partial order shown in Fig. 2a. We define that a concept (X0,Y0) is
a sub-concept of concept (X1,Y1), denoted by (X0,Y0) 6 (X1,Y1), if
X0 # X1 (or, equivalently, Y1 # Y0). Inversely we define that the
concept (X1,Y1) is a super-concept of concept (X0,Y0). For example,
the concept ({Eagle}, {Preying,Flying, Bird}) is a sub-concept of the
concept ({Eagle,Lion}, {Preying}). The set of concepts constitutes a
concept lattice and there are several algorithms for computing the
concepts and the concept lattice for a given context.

There are two alternatives for labelling the concepts. Given a
concept c = (E,P), the label l(c) can be defined as:

� l(c) = (extent(c), intent(c)) = (E,P). This means that we label con-
cepts with all the elements and properties calculated for the
concept. Fig. 2a shows the lattice of the example with this nota-
tion. For example, the concept c5 has {Eagle, Finch} as extent and
{Bird, Flying} as intent.
� l(c) = (En,Pm), if c is the largest concept (w.r.t. 6) with p(2Pm) in

its intent, and c is the smallest concept (w.r.t 6) with e(2En) in
its extent. The reading rule is as follows: An element e has a
property p if and only if there is an upwards leading path from
the circle named e to the circle named p. Hence, Lion has exactly
the properties Mammal and Preying. We can easily read the
extent (and the intent) of each concept by collecting all ele-
ments below (respectively all properties above) the given con-
cept. Fig. 2b shows the lattice of the example with this
notation. For example, the concept c5 has {Finch} as reduced
extent and {Flying} as reduced intent.

From the conceptual viewpoint, each concept represents a cat-
egory of elements described by a set of properties. In the animals
example, c3 represents the mammals, c4, the preying ones and c6,
the birds. They correspond to natural concepts in our restrictive do-
main of animals. We will use FCA in a similar way to identify recur-
ring concepts by analyzing software artifacts and the dependencies
between them.

3. FoCARE: architecture of the implementation

The approach to detect hierarchy schemas presented in this pa-
per is based on the FoCARE methodology. FoCARE is language inde-
pendent and its goal is to use FCA to build tools that identify
recurring sets of dependencies in the context of object-oriented soft-
ware reengineering. It conforms to a pipeline architecture in which
the analysis is carried out by a sequence of five processing steps with
different input and output artifacts, and two iterative phases, and
the output of each step provides the input to the next step.

Fig. 3 shows the different parts of FoCARE detailed as follows.
The processing steps are Model Import, FCA Mapping, ConAn En-

gine, Post-Filtering, Analysis, and the iterative phases are Modelling
and Interpretation. First, we explain the processing steps as itera-
tive phases work with them. We describe each step listing the goal
of each step and indicating Input and Output models.

� Model Import: Our first step is to build a model of the application
from the source code. For this purpose we use the Moose reen-
gineering platform, a collaborative research platform for soft-
ware reengineering and visualization [61,26,32,36].Moose
models the software artifacts of the target system as language
independent source code level entities. This allows entities to
be directly queried and interacted with, consequently providing
a convenient way to query and navigate the model with meta-
descriptions [24]. Software models in Moose conform to the
FAMIX family of language-independent metamodels for reengi-
neering [20]. FAMIX is customized for various aspects of code rep-
resentation (static, dynamic, history). FAMIX core, the metamodel
we used in this paper, describes the static structure of software
systems in terms of packages, classes, method, attribute, vari-
able and their associated relationships (inheritance, access,
and invocation).
Input: Source code of the application to analyze.
Output: Moose model of the source code.
� FCA Mapping: An FCA Context (Elements, Properties, Incidence

Table) is built, mapping from Moose model entities to FCA ele-
ments and properties.
Input: Moose model of source code.
Output: An FCA context (Elements, Properties, Incidence Table).

Table 1
Incidence table of the animals example.

Preying Flying Bird Mammal

Lion X X
Finch X X
Eagle X X X
Hare X
Ostrich X

C5

C6

C7

C4

C0

C2C1

C3

Bird

Eagle, Finch, Ostrich

Bird, Flying

Eagle, Finch

Bird, Flying, Preying

Eagle

Mammal, Preying

Lion

Mammal

Lion, Hare

Preying

Lion, Eagle C5

C6

C7

C4

C0

C2C1

C3

Bird

Ostrich

Flying

Finch

EagleLion

PreyingMammal

Hare

(a) (b) 
Fig. 2. Lattices of the Animal example with (a) complete labelling and (b) reduced labelling.
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� ConAn Engine: Once the FCA elements and properties are
defined, we run the ConAn engine. The ConAn engine is a
black-box component implemented in VisualWorks 7 which
runs the FCA algorithms to build the concepts and the lattice.
ConAn applies the Ganter algorithm [30] to build the concepts
and our own implementation of the algorithm [5] to build the
lattice.
Input: FCA Context (Elements, Properties, Incidence Table).
Output: Lattice with Concepts.
� Post-Filtering: Once the concepts and the lattice are built, each

concept constitutes a potential candidate for analysis. But not
all the concepts are relevant. We have a post-filtering process,
which is the last step performed by the tool. In this way we fil-
ter out meaningless concepts.
Input: Lattice with Concepts.
Output: Candidate Concepts.
� Analysis: In this step, the software engineer examines the candi-

date concepts resulting from the previous steps and uses them
to explore the different implicit dependencies between the soft-
ware entities and how they determine or affect the behavior of
the system.Input: Candidate Concepts.Output: Patterns (in our
specific case, hierarchy schemas).

A key aspect of FoCARE is that the engineer has to iterate over
the modeling and the interpretation phases (see Fig. 3) in order
to find hierarchy schemas of interest for analyzing a class hierar-
chy. The modeling phase entails a process of experimentation with
smaller case studies to find a suitable mapping from the source
code model to FCA elements and properties. A particular challenge
is to find a mapping that is efficient in terms of identifying mean-
ingful concepts while minimizing the quantity of data to be
processed.

In the interpretation phase, the output of the modeling phase is
analyzed in order to interpret the resulting concepts in the context
of the application domain. The useful concepts can then be flagged
so that future occurrences can be automatically detected. As more
case studies are analyzed, the set of identifiably useful concepts
typically increases up to a certain point, and then stabilizes.

In Section 4 we show how we instantiate our architecture to
analyze class hierarchies and outline the key issues that must be

addressed to use FoCARE in analyzing class hierarchies. Model Im-
port is not described in Section 4 because it is performed by MOOSE, a
tool that supports automatically this phase in FoCARE. Thus, we
only describe the FCA Mapping, ConAn Engine, Post-Filtering and
Analysis.

4. Analyzing class hierarchies

If we knew which contracts between classes to expect in a given
application (and how they are defined), we could use a query-
based tool to identify their presence in the software. Unfortunately
this is not possible since the range of possible contracts is com-
pletely open and therefore we cannot know their definitions (see
Section 6). For this reason, we need a technique that detects the
presence of implicit patterns in the dependencies between classes.

The analysis of class hierarchies using FCA helps us to identify
hierarchy schemas that will show us how the class hierarchies
are designed and specifically how classes define their state and
methods on their own and in terms of superclasses and subclasses.
To detect these schemas, we must model class hierarchies in terms
of FCA elements and their properties. Note that FCA is perfectly neu-
tral in terms of what elements and properties represent. As a con-
sequence we can choose how we model class hierarchies and the
contracts (i.e., concepts) we are looking for.

We first describe how we build the corresponding elements and
properties (Section 4.1), the incidence table and the lattice (Section
4.2). Then we show which conditions a candidate concept should
fulfil to (Section 4.3) and how recurring combinations of properties
lead to the dependency schemas of interest (Section 4.4). Fig. 4
shows a part of the Smalltalk Collection that we use as an example
to show how we analyze a class hierarchy with our approach.

4.1. FCA mapping: elements and properties of classes

Let us analyze our goal illustrating what information we need.
We use FCA to identify implicit contracts such as usage of the Tem-
plate Method Design Pattern. In a Template Method, the elements
of interest are methods of a class and its subclasses, and the prop-
erties we are interested in are the facts that the template method
calls its hook method, that the hook method may be abstract in the

Interpretation 

Modelling 

Post-Filtering 

Analysis 

ConAn Engine 

FCA Mapping 

Model Import 

Magnitude Integer 

Inheritance 

Magnitude isAbstract 
<self send = ….. > 

= 

Magnitude 

< 
= 

= = 

Source Code 

Lattice 

FCA Context 

Moose model 

Meaningful 
Concepts 

Patterns 

Iterative Phases Processing Steps Input/Output Artifacts 

Fig. 3. The overall approach.
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superclass, and that the hook method is overridden in subclasses.
We are also interested if methods access attributes in idiomatic
ways, for example, if a subclass accesses an attribute defined in a
superclass. In general we do not know what kinds of combinations
of dependencies will be present, so we use FCA to detect which
contracts are present as concepts, i.e., as sets of elements with sim-
ilar sets of properties.

4.1.1. FCA elements
Since we want to analyze the inheritance dependencies within a

class hierarchy, we build FCA elements using self and super invoca-
tions of methods and accesses to the attributes of the classes. We
build the FCA elements as pairs of (Invoking Class C, invoked method
m) and (Accessing Class C, accessed attribute a). The pairs are inter-
preted as the method m is invoked in the class C, and the attribute a
is accessed in the class C respectively. For example, the element
(Col, removeIfAbsent) (shown in Table 2) represents that the meth-
od removeIfAbsent is called in the class Collection. We abbreviate
the names of the classes in the incidence table and in the lattice
(as explained in Section 4.2). The abbreviated names are Col, for

Collection, KC, for KeyedCollection, MD, for MethodDictionary,
and RBD, for RBSmallDictionary.

Table 2 shows the elements in our sample class hierarchy (shown
in Fig. 4). They are (Col, removeIfAbsent), (KC, atIfAbsent), (KC, at-

Put), (MD, findIndexOfKey), (MD, findIndexToInsert), (RBD, grow-

To), (RBD, postCopy) and (KC, keysDo).
From FCA representation viewpoint, we do not consider the

name of the caller or accessor method as a part of the FCA elements
representing invocations or accesses. For example, the FCA element
(Col, removeIfAbsent) should be (Collection, remove, removeIfAb-

sent) if we kept the caller method. Instead we just keep (Col, remov-

eIfAbsent). This decision is made to reduce the number of generated
FCA elements (hence, noise) in the results. Let us imagine that there
is another method m that also calls removeIfAbsent in Collection,
then we would have (Collection, remove, removeIfAbsent) and (Col-

lection, m, removeIfAbsent) as FCA elements. The explosion in the
number of FCA elements can also generate problems in lattice com-
putation time. As we are interested in the hierarchy dependencies
between classes, we just keep one representative in these specific
cases. We select (Col, removeIfAbsent), which represents all the
calls made to removeIfAbsent in the class Collection.

remove() 
removeIfAbsent()

«Abstract»
Collection

atIfAbsentPut() 
atIfAbsent() 
atPut() 
postCopy()
iincludesKey()
keysDo()

«Abstract»
KeyedCollection

atIfAbsent() 
atPut() 
findIndexOfKey() 
findIndexToInsert()
removeIfAbsent() 

Method Dictionary

atIfAbsent() 
atPut() 
removeIfAbsent() 
growKeysAndValues()
growTo() 
postCopy()
keysDo()

RBSmallDictionary

…. 
self.removeIfAbsent()
…. 

…. 
self.atIfAbsent();
self.atPut()
…. 

…. 
self. growTo()
 …. 

…. 
super.postCopy()
…. 

…. 
self.findIndexOfKey();
self.findIndexToInsert()
…. 

<< cancelled >>

…. 
self.keysDo()…. 

Fig. 4. Example of a class hierarchy.

Table 2
Incidence relation of class hierarchy example.

Invoked
via self

Invoked
via super

Is abstract
locally

Is concrete
locally

Is concrete in
descendant RBD

Is concrete in
descendant MD

Is cancelled in
descendant MD

Is concrete in
ancestor KC

(Col, removeIfAbsent) X X X X
(KC, atIfAbsent) X X X X
(KC, atPut) X X X X
(MD, findIndexOfKey) X X
(MD, findIndexToInsert) X X
(RBD, growTo) X X
(RBD, postCopy) X X
(KC, keysDo) X X X
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4.1.2. FCA properties
In order to define specific properties for each type of element:

invocations and accesses, first we extract some facts regarding the
code but obtained from Moose model. These facts characterize
the dependencies between the class that defines a method based
on method invocation or an attribute based on its access within
a class. Let us see which are the mentioned facts.

Consider the elements (C,m) and (C,a) that represent an invoca-
tion or an access in class C, and the classes C1 related to C, then the
facts are:

Applied to attribute and accesses:
� C accesses a via accessors.
� C accesses a without accessors.
� C defines a.
Applied to methods and invocations:
� C invokes m via self.
� C invokes m via super.
� C delegates m via super (This case is a specific case of the

invokes via super. It happens when the called message has
the same name as the invoker method, in this case m).

� m is abstract in C.
� m is concrete in C.
� m is cancelled3 in C.
Applied to both types of elements:
� C1 is ancestor of C.
� C1 is descendant of C.

Let us enumerate some facts that we identify in the example of
Fig. 4:

� RBSmallDictionary invokes growTo,
� postCopy is concrete in RBSmallDictionary,
� atPut is abstract in KeyedCollection,
� removeIfAbsent is cancelled in MethodDictionary,
� Collection is ancestor of KeyedCollection,
� KeyedCollection is ancestor of RBSmallDictionary,
� MethodDictionary is descendant of KeyedCollection,
� RBSmallDictionary invokes postCopy via super, and
� KeyedCollection invokes atPut via self.

We directly adopt some of these facts as properties, and we
also combine some of them to obtain the final set of FCA prop-
erties. When building FCA elements, we restrict our analysis to
self and super invocations of methods because we want to ana-
lyze inheritance dependencies within a class hierarchy. There-
fore, the following facts are amongst those that we adopt
directly:

� C invokes m via self.
� C invokes m via super.
� C delegates m via super.

For example, Fig. 4 shows that KeyedCollection invokes
atPut via self and that RBSmallDictionary invokes postCopy via
super.

The remaining facts are combined to generate the following
FCA properties. The left part of the assertion corresponds to FCA
property and the right part corresponds to the definition based
on the combination of the facts. For example, the property m is
concrete in ancestor C1 of C is defined by the combination of the

facts C invokes m, C1 defines m, m is concrete in C1 and C1 is ancestor
of C.

� C accesses local state (via accessors or without accessors) = C
accesses a and C defines a.

� C accesses state in Ancestor C1 (via accessors or without acces-
sors) = C accesses a, C1 is ancestor of C and C1 defines a.

� m is concrete locally = C invokes m and m is concrete in C (Two
more properties can be built using is abstract or is cancelled
instead of is concrete).

� m is concrete in ancestor C1 of C = C invokes m, m is concrete in
C1 and C1 is ancestor of C (Two more properties can be built
using is abstract or is cancelled instead of is concrete).

� m is concrete in descendant C1 of C = C invokes m, m is concrete
in C1 and C1 is descendant of C (Two more properties can be
built using is abstract or is cancelled instead of is concrete).

We have 14 FCA properties in total in our approach.
Let us consider the properties identified in the example of Fig. 4.

� removeIfAbsent is cancelled in descendant MethodDictionary

of Collection = Collection invokes removeIfAbsent, removeIf-

Absent is cancelled in MethodDictionary and MethodDiction-

ary is descendant of Collection,
� postCopy is concrete in ancestor KeyedCollection of RBSmall-

Dictionary = RBSmallDictionary invokes postCopy, postCopy

is concrete in KeyedCollection and KeyedCollection is ancestor
of RBSmallDictionary, and

� atPut is abstract locally = KeyedCollection invokes atPut and
atPut is abstract in KeyedCollection.

From the FCA representation viewpoint, the format of the some
properties will change compared to the format used in our previ-
ous explanation. When building the incidence table, the main idea
is to check if the element e fulfils (or not) a property p, such as
p(e).

� The properties involving self, super and delegates sends are
formulated similarly to invoked via self, invoked via super
and delegated via super as presented previously.

� The property involving local state or behavior (for example,
accesses local state) will not denote any explicit class because
in our interpretation the class in the property is the same as
mentioned in the element. For example, atPut is abstract
locally means that the element (KeyedCollection, atPut) ful-
fils the property is abstract locally if KeyedCollection invokes
atPut, KeyedCollection defines atPut and atPut is abstract in
KeyedCollection.

� However, when the property involves an ancestor or descen-
dant class, the property is slightly different. For example, if
we see the expression postCopy is concrete in ancestor Keyed-

Collection of RBSmallDictionary, we observe that the class
RBSmallDictionary of the element (RBD, postCopy) seems
to be part of the property, but in fact the expression mixes
the information regarding the element (RBD, postCopy)

and the property is concrete in ancestor KeyedCollection.
Thus, when the property involves an ancestor or a descen-
dant related to an element (C,m) or (C,a), the property keeps
the ancestor or descendant classname.

Thus, the properties in our sample example (shown in Table 2)
are invoked via self, invoked via super, is abstract locally, is concrete
locally, is concrete in descendantRBD, is concrete in descendantMD,
is cancelled in descendantMD and is concrete in ancestorKC. The first
four properties do not have an explicit class, and the other three in-
volve an ancestor or descendant class of the elements.

3 In Smalltalk it is possible to ‘‘cancel” a method inherited from a superclass by
causing it to raise an exception, effectively undefining it. In languages where this is
not possible, this property can simply be ignored.
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4.2. Incidence table and lattice construction

Once the elements and properties are chosen, we build the cor-
responding incidence table (shown in Table 2) and calculate the
lattice (shown in Fig. 5).

In our specific approach, the FCA elements are self and super
invocations of methods and accesses to attributes of the classes
in a class hierarchy expressed as pairs of (Invoking Class C, invoked
method m) and (Accessing Class C, accessed attribute a). And the FCA
properties identify dependencies between the class that defines a
method based on method invocation or an attribute based on its
access within a class.

Regarding the elements, as explained previously, we just keep
one representative of each call/access in a class (the first one that
we found when analyzing the subject system). This means that if
we have several calls to the method m or accesses to the attribute
a in several methods of the class C, we just keep one representative
of m or a related to the class C. This way, we avoid repeated infor-
mation in the incidence table, and reduce the amount of data to
deal with in the lattice.

Regarding the properties, if they do not have a corresponding
invoked method or an accessed attribute that fulfils them, we
do not use them in the incidence table. In our case, we do not
have the property is cancelled locally because there is no invoked
method in one class that has a cancelled definition in the same
class. Neither we have, for example, the property is concrete in

ancestor Collection, because there is no invoked method in one
subclass of Collection that has the respective concrete definition
in Collection.

From the viewpoint of FCA, we ease the lattice understanding
using a combined labelling of the concepts in the lattice. We use
a complete label in the intent, and a reduced label in the extent
of the concepts, because we are interested in identifying the set
of most restrictive properties that characterizes each invocation or
each access. For example, Fig. 6 shows the concepts c5, c6 and c7

with complete and reduced labelling. If we used the complete label
in the extent of the concepts and we analyzed c5, we could say a
candidate schema (described by c5) contains (Col, removeIfAbsent),
(KC, atIfAbsent), (KC, atPut) and (KC, keysDo) because they fulfil
the set of properties {invoked via self, is concrete in descendantRBD,
is abstract locally}. But in fact, the elements (Col, removeIfAbsent)

and (KC, atIfAbsent) are also contained in the candidate schema
(described by c7), and (KC, atPut) is contained in one described
by c6. We need every element to be an instance of only one schema
with most of the properties that characterizes it. The reduced label-
ling of the extent reveals this specific information. On the other
hand, if we kept the reduced labelling in the intent, we would have
that navigate through all the parent chain of concepts to recover
the information. For example, identifying the properties of concept
c6 with reduced labelling implies to recover also the properties of
c5. As we are interested in the complete definition of candidate
schema, the complete labelling reveals this information.

invoked via super,
is concrete in ancestor KC

RBD: postCopy()

invoked via self,
is concrete locally

MD: findIndexOfKey()
MD: findIndexToInsert()
RBD: growTo()

invoked via self

invoked via self,
is abstract locally, 
is cancelled in descendant MD,
is concrete in descendant in RBD

Col: removeIfAbsent()

invoked via self,
is abstract locally,

is concrete in descendant RBD, 
is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()

C8

C3

C4

C6C7

C5

C2

C1

C5

Fig. 5. Lattice calculated from the incidence table (shown in Table 2) of class hierarchy example.

invoked via self,
is abstract locally, 
is cancelled in descendant MD,
is concrete in descendant in RBD

Col: removeIfAbsent()

invoked via self,
is abstract locally,

is concrete in descendant RBD, 
is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()
KC: atIfAbsent()

KC: atPut()
Col: removeIfAbsent()

C8

C6

C7

C5C5

is cancelled in descendant MD

Col: removeIfAbsent()

is concrete in descendant MD

KC: atIfAbsent()
KC: atPut()

invoked via self,
is concrete in descendant RBD,

is abstract locally

KC: keysDo()

C8

C6
C7

C5C5

Fig. 6. Complete and reduced labelling of concepts c5, c6 and c7.
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With this combined labelling, we make sure that an invocation or
an access is involved in only one candidate schema (that means
that only one is contained in one Hierarchy Schema), and that we
contain the definition of each potential schema in the concept itself.

4.3. Identifying meaningful concepts

Once the lattice is computed, we apply specific filtering criteria
to identify the candidate concepts for describing hierarchy sche-
mas. The applied criteria comprises the following rules:

� Regarding the concepts, we keep only those concepts with a
non-empty extent in the combined labelling. This means that
if an invocation is contained in more than one concept, we
will just keep the concept that identifies the most restrictive
schema.

� Regarding the invocations in a class hierarchy, and the
dependencies between the different classes, all the meaning-
ful concepts must show information about at least one of the
three dependencies: local, ancestor and descendant, and have
at least one property of the set {invoked via self, invoked via
super, delegated via super}. Thus, the minimal information
shown by a concept is how the methods are invoked and
where they are implemented. Most schemas show several
properties of the first set {local,ancestor,descendant}, gener-
ating interesting schemas that show how different classes in
the hierarchy are related.

� Regarding the accesses to attributes in a class hierarchy, the
meaningful concepts must show at least one of the following
dependencies: {accesses local state without accessors, acces-
ses local state with accessors, accesses state without acces-
sors in ancestor }, and can show some dependencies of the
complete set of {local, ancestor, descendant, invoked via self,
invoked via super, delegated via super}.

The rest of the concepts are discarded. Thus, from our concepts
in Fig. 5, we keep the concepts c3, c4, c5, c6, and c7 which fulfil the
conditions described previously, and we discard the concepts c1, c2

and c8.

4.4. Hierarchy schemas

Hierarchy schemas are built using the set of properties of the fil-
tered concepts of the previous step. Let us see two examples

� The set of properties {invoked via self, is abstract locally, is
concrete in descendant C1} which element (C,m) fulfils, shows
that the class C invokes methods m via self that is defined as
abstract in the class C, and that is implemented as concrete
ones in the descendant C1. This concept reveals a good prac-
tice using a Template Method showing that the superclass
defines the behavior skeleton of the subclasses. Fig. 7 shows
this schema in our example represented in the concept c7.

� The set of properties {invoked via self, is abstract locally, is
concrete in descendant C1, m is cancelled in descendant C2}
which element (C,m) fulfils, shows that the class C defines
a protocol that subclasses should implement, but the sub-
class C2 cancels partially the inherited protocol. This set
shows a bad coding practice, because it is based on an inap-
propriate use of subclassing. Fig. 8 shows this schema in our
example represented in the concept c6.

Based on the interpretation of the set of properties contained in
the concepts, we have named each Hierarchy Schema and we have
categorized these into three groups: Classical, Irregular and ‘‘Bad
Smell”. In the following we describe each category and we detail
each specific schema with a description and the set of dependen-
cies that define them as concepts in the lattice. In some cases,
we observe that several sets of dependencies can define the same
schema. Note that we use the notation Cn or Cn (n: 1. . .m) to indi-
cate the (ancestor or descendant) class(es) related to the invoker

atIfAbsentPut() 
atIfAbsent() 
atPut() 

«Abstract»
KeyedCollection

atIfAbsent() 
atPut() 

Method Dictionary

atIfAbsent() 
atPut() 

RBSmallDictionary

…. 
self.atIfAbsent();
self.atPut()
…. 

Fig. 7. Template method represented in concept c7 of the class hierarchy example.

remove() 
removeIfAbsent()

«Abstract»
Collection

«Abstract»
KeyedCollection

removeIfAbsent()

Method Dictionary

removeIfAbsent()

RBSmallDictionary

…. 
self.removeIfAbsent()
…. 

<<cancelled>>

Fig. 8. Cancelled local or inherited behavior represented in concept c6 of the class hierarchy example.
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class of the invocations or accesses. Unless stated explicitly, ances-
tor or descendant classes are not necessary direct ones.

� Classical Schemas represent common idioms/styles that are
used to build and extend a class hierarchy, i.e., best practices
identified by existing literature [8,43,67].

� ‘‘Bad Smell” Schemas represent doubtful designs decisions used
to build a hierarchy. They are frequently a sign that some parts
should be completely changed or even rewritten from scratch.

� Irregular Schemas represent irregular situations used to build
the hierarchy. Often the implementation can be improved using
minimal changes. They are less serious than ‘‘Bad Smell”
schemas.

Classical

Name Description

Local Direct State Access Identifies methods that directly
access instance variables.
Variations: using or not using
accessors.
Properties: (1) accesses local
state without accessors, (2)
accesses local state with
accessors.

Local Behavior Identifies methods defined and
used in the class that are not
overridden in subclasses. Often
represent internal class
behavior.
Properties: invoked via self, is
concrete locally

Template and hook Identifies methods that define
template and hook methods.
Variations: default hooks are
abstract or represent a default
behavior.
Properties: invoked via self, is
abstract locally, is concrete in
descendant Cn.

Redefined Concrete Behavior Identifies concrete inherited
methods that are redefined in
the class or in the subclasses.
Properties: invoked via self, is
concrete locally, is concrete in
ancestor Cm, (2) invoked via self,
is concrete in descendant Cn, is
concrete in ancestor Cm.

Extended Concrete Behavior Identifies concrete inherited
methods that are extended in
the class (only super send).
Properties: delegated via super, is
concrete locally, is concrete in
ancestor Cn.

Reuse of Superclass/State
Behavior

Identifies concrete methods that
invoke superclass methods by
self or super sends. Variation:
Extended Concrete Behavior.
Properties: (1) invoked via self, is
concrete in ancestor Cn, (2)
invoked via super, is concrete in
ancestor Cn, (3) accesses state
with accessors in Cn (n: 1 ..m).

Local Behavior overridden in
Subclasses

Identifies methods that are
overridden in subclasses.
Properties: invoked via self, is
concrete locally, is concrete in
descendant Cn.

Bad smells

Name Description

Ancestor Direct State
Access

Identifies methods that directly
access the instance variable of an
ancestor, bypassing any accessors.
This schema is the consequence of
bad use of Reuse of Superclass/State
Behavior regarding the ancestor
state.
Properties: accesses state without
accessors in ancestor Cn (n: 1 ..m )

Cancelled Local
Behavior but
Superclass Reuse

Identifies concrete inherited
methods whose behavior is cancelled
in the class but whose corresponding
superclass behavior is invoked i.e.,
via a super send from a different
method. This work around is a
common sign of difficulty
improperly factoring out common
behavior.
Properties: invoked via super, is
cancelled locally, is concrete in
ancestor Cn (n: 1 ..m)

Abstracting Concrete
Methods

Identifies abstract methods
overriding concrete ones.
Properties: (1) invoked via self, is
concrete locally, is abstract in
descendant Cn (n: 1 ..m) (2) invoked
via super, is abstract locally, is
concrete in ancestor Cn (n: 1 ..m)

Cancelled local or

inherited behavior

Identifies concrete local or inherited
methods that are invoked i.e., via self
send in a class or its superclasses,
but are cancelled in subclasses.
Method cancellation is a sign of
inheritance for code reuse without
regard for subtyping.
Properties: (1) invoked via self, is
cancelled locally, is concrete in
ancestor Cn, (2) invoked via self, is
concrete locally, is cancelled in
descendant Cn

Broken super send
Chain

Identifies methods that are extended
(i.e., via a super send) at some point
in the hierarchy, but are then simply
overridden lower in the hierarchy.
This can be the sign of a broken
subclassing contract.
Properties: delegated via super, is
concrete locally, is concrete in ancestor
Cn.
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Remarks. From the FCA viewpoint, it is important to remark that:

� We can have Equivalent Concepts. Although each concept is a
candidate to be a schema, several concepts represent the
same schema. This happens in two different situations. The
first one is that one schema can have equivalent concepts
if we have several concepts with the same set of properties,
except that the superclass and subclasses names of the prop-
erties change. For example, the concept c7 represents an
instance of the schema Template Method, described by the
set of properties invoked via self, is abstract locally, is concrete
in descendant RBD and is concrete in descendant MD. If we do
not consider the classes that are the parameters of the prop-
erties, we obtain the set {invoked via self, is abstract locally,
is concrete in descendant} that describes the mentioned
schema. In this way, any concept that contains the same
set of properties but not with the same parameters, is con-
sidered an equivalent concept of c7. The second situation is
that one schema can have different set of properties as its
definition. For example, the schema Cancelled Local or inher-
ited behavior can be defined with two following intents: (1)
invoked via self, is cancelled locally, is concrete in ancestor Cn,
(2) invoked via self, is concrete locally, is cancelled in descen-
dant Cn. Both definitions are valid, because they represent
the same schema where the method cancellation varies if it
is implemented locally or in a descendant.

� A concept with the intent containing the properties is con-
crete locally, is cancelled locally or is abstract locally, and with-
out those ones that describe a dependency with other
superclass(es) or subclass(es) (for example, is concrete in
descendantRBD) can represent a schema that is present in
several classes, though the classes in the extent of that con-

cept have no relation to each other. For example, the concept
c4 represents the schema Local Behavior, but this schema
appears in the classes MethodDictionary and RBSmallDiction-

ary (according to our example). MethodDictionary and
RBSmallDictionary are not related based on the properties
of the concept. This happens because the methods findInd-

exOfKey and findIndexToInsert are defined in MethodDiction-

ary and the method growTo is defined in RBSmallDictionary,
and they do not have a property in common in terms of a
superclass or subclass of MethodDictionary or RBSmallDic-

tionary respectively. This happens because when using is con-
cretejabstractjcancelled locally, these properties do not specify
any explicit class in their parameters, because the relation of
the property with the element is implicit.

FoCARE’s architecture is implemented as a tool to make it easier
to analyze the results regarding a class hierarchy. Fig. 9 shows a
screenshot of the tool, in which we see the Hierarchy schemas in
the left pane. Clicking on a particular instance of a schema will
cause its classes to be displayed in the right pane.

5. Detected hierarchy schemas in the Collection hierarchy

We present here the results of our analysis of the Smalltalk Col-
lection hierarchy. This hierarchy is especially interesting because
(i) it is part of the core of Smalltalk system, (ii) it makes heavy
use of subclassing as well as subtyping, (iii) it is an industrial qual-
ity class hierarchy that has evolved over more than 20 years, and
(iv) has been studied by other researchers [35,17,11,46]. It has also
influenced the design of current C++ and Java collection hierar-
chies. In VisualWorks, the Smalltalk Collection hierarchy is com-
posed of 104 classes distributed over 8 levels of inheritance.
There are 2162 defined methods in all the classes, with 3117 invo-
cations of these methods within the hierarchy and 1146 accesses
to the state of the classes defined in the hierarchy.

This case study shows that the approach can effectively identify
non-trival schemas in professional software system. We first pro-
vide a global overview of the identified schemas, and then we focus
on the role of the class SortedCollection within the collection. We
chose this class because it is a good example where several sche-
mas are overlapped in the same class, and this fact helps the devel-
oper to understand how it was built and how it works.

5.1. Global view on Collection hierarchy

Analyzing Collection hierarchy, we discovered 451 instances of
16 different identified hierarchy schemas. Table 3 shows the num-
ber of detected instances of each schema.

The descriptions of hierarchy schemas provided in Section 4.4
are generic. In what follows we provide detailed analysis of specific
instances of some hierarchy schemas, that we consider the most
interesting ones.

Classical: Local Direct State Access. This schema identifies classes
that define and use their own state directly (using or not the acces-
sors). In the Collection hierarchy, there are 55 classes contained in
this schema. Most of the classes are leaves of the hierarchy. This
shows that the hierarchy is built using subclassing, since each class
extends inherited behavior from the superclasses and provides
specific functionality of its own. Only the subhierarchies starting
from String and WeakDictionary have no leaf classes that match this
pattern, meaning that eventually these classes either use state of
the superclasses or only extend the behavior of the superclasses
without extending the state of the superclasses. This schema helps
us identify which parts of the hierarchy have behavior oriented or
state oriented classes [7].

Irregularities

Name Description

Inherited and Local
Invocations

Identifies methods that are invoked
by both self and super sends within
the same class. This may be a
problem if the super sends are
invoked from a method with a
different name.
Properties: (1) invoked via self,
invoked via super, is concrete locally,
is concrete in ancestor Cn, (2) invoked
via self, invoked via super, delegated
via super, is concrete locally, is
concrete in ancestor Cn.

Unused Local Behavior
but Superclass Reuse

Identifies concrete inherited
methods whose behavior is
overridden but unused in the class,
and whose corresponding superclass
behavior is invoked i.e., via a super
send from a different method.
Properties: invoked via super, is
concrete locally, is concrete in
ancestor Cn.

Accessor Redefinition Identifies methods that are
accessors in a class but are redefined
in the subclass as non-accessor
methods.
Properties: invoked via self, is
concrete locally, accesses state with
accessors in ancestor Cn.
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‘‘Bad Smell”: Ancestor Direct State Access. This schema identifies
classes that access (read or modify the values of) the state of an
ancestor class without using the accessors defined in the ancestor
classes. We identified 19 classes that are part of the subhierarchies
determined by GeneralNameSpace, Dictionary, OrderedCollection

and LinkedList. In most of the cases, the classes are accessing state
of the immediate superclass, but in the subhierarchy of Ordered-

Collection we detected several classes that access state of ancestors
higher up in the chain of their superclasses. This is a not good

coding practice since it introduces an unnecessary dependency
on the internal representation of ancestor classes, and thereby vio-
lates encapsulation. Note that this happens in particular in our case
study, because there are no protected visibility modifiers in Small-
talk. Fig. 10 illustrates this schema.

‘‘Bad Smell”: Cancelled local or inherited behavior. This schema
identifies concrete local or inherited methods that are invoked
via a self send in a class or its superclasses but are then cancelled
in subclasses. Method cancellation is a sign that inheritance is
being applied purely for code reuse purposes, without regard for
subtyping. Since methods of the superclass calling the cancelled
methods can still be called on the cancelling class, this may lead
to runtime errors. In the Collection hierarchy it occurs in the

Fig. 9. Main window of the FoCARE methodology implemented in Smalltalk.

Table 3
Left: Commonly Identified Classical Schemas – Right: Commonly Identified bad smell
and Irregularities Schemas.

Name Nr. Name Nr.
Classical Bad smells

Local Direct State Access 72 Ancestor Direct State Access 19
Local Behavior 69 Cancelled Local Behavior but

Superclass Reuse
1

Template and hook 17 Abstracting Concrete Methods 8
Redefined Concrete Behavior 43 Cancelled local or inherited

behavior
6

Extended Concrete Behavior 37 Broken super send chain 7
Reuse of Superclass/State

Behavior
111 Irregularities

Local Behavior overridden in
Subclasses

29 Inherited and Local Invocations 15

Abstract and Concrete Chain 10 Unused Local Behavior but
Superclass Reuse

3

Accessor Redefinition 4

noCheckAtPut() 

WeakDIctionary

 tally:Integer
Set

…. 
tally
…. 

Fig. 10. Ancestor Direct State Access.
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subhierarchies of SequenceableCollection and OrderedCollection.
Fig. 11 illustrates this schema.

Irregular: Inherited and Local Invocations. This schema shows
methods that are invoked by both self and super sends within the
same class. In certain cases, this schema can be a good practice cod-
ing (as shown in Fig. 12), but a problem occurs when the super
sends are invoked from a method with a different name. This spe-
cial case of the schema occurs in the classes LinkedOrderedCollec-

tion, LinkedWeakAssociationDictionary and XMainChangeSet. All
these classes have a special form: the class overrides a method
m, and m invokes a method named own-m via self send, and this
last method calls m via a super send implemented in the superclass.
Fig. 13 illustrates this schema. This is an irregular case of the sche-
ma Redefined Concrete Behavior because the class is overriding the
superclass behavior but is indirectly using the superclass behavior.

5.2. ‘‘Class-based” view on SortedCollection

With the global view we analyze a class hierarchy, but our ap-
proach also helps us to analyze how a class is built in the context
of its superclasses and subclasses.

We chose to analyze the class SortedCollection (a subclass of
OrderedCollection), because it is a good example where several
schemas are overlapped in the same class, and this fact helps the
developer to understand how it was built and how it works. A Sort-

edCollection is an ordered collection of elements, using a sorting
function for the elements order. The class has one attribute sort-

Block which holds the sorting function; it has one class variable
DefaultSortBlock that holds the default sorting function. As a sub-
class of OrderedCollection, it inherits two instance variables firstIn-

dex and lastIndex and an indexed variable objects. Regarding its
methods, it defines 10 methods and overrides 19 methods from
the 403 inherited.

In this class we identify twelve different instances that corre-
spond to four different schemas that involve this class.

Within the Classical category we report one case.

� Reuse of Superclass/State Behavior: This schema shows us that
the class SortedCollection calls via self the methods copy-

Empty, insertBefore, reverseDo, asArray, isEmpty and that
these methods are not defined in the class itself but in differ-
ent superclasses. Specifically, we see that the methods copy-

Empty, insertBefore and isEmpty are defined in the class
OrderedCollection, reverseDo and asArray are defined in the
class SequenceableCollection. We see which are the super-
classes that determine the behavior of the class. Fig. 14 illus-
trates this schema.

Within ‘‘Bad Smell” category, we report two cases:

� Broken super send Chain: This schema identifies methods that
are extended (i.e., performing a super send) in a class but
redefined in their subclasses without calling the overridden
behavior. SortedCollection has an extension contract with
its direct superclass calling the methods = and representBin-

aryOn: via a super send from the methods with the same

add() 
addLast()

OrderedCollection

addLast() 

MethodDictionary

addLast()

RBSmallDictionary

…. 
self.addLast()
…. 

<< cancelled >>

Fig. 11. Cancelled inherited behavior.

matchAtIfAbsent()

ColorPreferencesCollection

bindConstantCodeArray()

matchAtIfAbsent()

ColorPreferencesDictionary

…. 
self.removeIfAbsent()
…. 

…. 
self.matchAtIfAbsent() 
…. 

…. 
super.matchAtIfAbsent()
…. 

Fig. 12. Inherited and Local Invocations – Case 1.

isEmpty()

OrderedCollection

ownIsEmpty()

isEmpty()

notEmpty()

LinkedOrderedCollection

…. 
self.isEmpty().not()
…. 

…. 
self.ownIsEmpty()
…. 

…. 
super.isEmpty()
…. 

Fig. 13. Inherited and Local Invocations – Case 2.

isEmpty()

OrderedCollection

add()

reverse()

SortedCollection
…. 
self.isEmpty()
…. 

reverseDo()

«Abstract»
SequenceableCollection

…. 
self.reverseDo()
…. 

Fig. 14. Reuse of superclass behavior.
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name. But the methods in the subclass SortedCollectionWith-

Policy do not invoke the corresponding inherited method
defined in SortedCollection via a super send. This means that
the subclass is overriding the method and is defining its own
behavior but it is not respecting the behavior predefined by
its superclass. Such a behavior can lead to unexpected results
when the classes are extended without a deep knowledge of
the implementation. Fig. 15 illustrates this schema.

� Cancelled Local Behavior but Superclass Reuse: This schema
shows that the method addAll is called via a super send and
this method is defined in the immediate superclass Ordered-

Collection, meaning that the class is reusing the behavior of
the superclass. But this method is also implemented in the
class SortedCollection but the behavior is cancelled. Although
it is not a good practice, it seems a normal situation because
the elements in a sorted collection cannot be added to the end
of the collection, but only in a predefined position defined by
the sorting function of the class. As we said previously, this is
a case where the inheritance is used as code reuse without
regarding subtyping. Specifically, this means that SortedCol-

lection is a kind of OrderedCollection but not all the inherited
methods can be applied. Fig. 16 illustrates this schema.

Within the Irregular category, we only found one case:

� Inherited and Local Invocations: This schema shows that the
method copyEmpty is invoked with self sends and super
sends in the class SortedCollection. It is implemented in the
class itself, has an implementation in the superclass Collec-

tion and an implementation in the subclass SortedCollection-

WithPolicy. When checking the code, we see that only
copyFromTo calls copyEmpty within SortedCollection, and
that the method copyEmpty has only one line of code, which
makes only a super call to its overriden superclass method.
From the viewpoint of internal behavior within SortedCollec-

tion, copyEmpty (with only one codeline) adds a level of indi-
rection to the call flow considering that the behavior of this
method is determined by the superclasses. A further analysis
can help us to determine if copyEmpty in SortedCollection

could be deleted and how we should adapt the behavior of
copyEmpty in SortedCollectionWithPolicy and copyFromTo

in SortedCollection to call directly the method copyEmpty

defined in Collection. Fig. 17 illustrates this schema.

The identified schemas in our approach provide another view
on the class. They present some unanticipated dependencies be-
tween the methods of the classes and their relationships in the
hierarchy. Summarizing, our analysis confirms that although the
Collection hierarchy offers many of the most powerful classes in
Smalltalk, it is a rich and complex case study. However, it is not
easy to modify or extend it, because our schemas show that the
main used building mechanisms are subclassing and code sharing.
Inheritance used for implementation reuse can lead to fragility in
the design of the class hierarchies [56]. An analysis of relevant
refactorings can be proposed to improve how the classes should
be defined in this class hierarchy. The case study shows that our
approach helps in identifying unanticipated contracts and relation-
ships between classes within an inheritance hierarchy. It reveals
patterns that are otherwise complex to spot due to method cancel-
lations, local redefinitions and the yoyo effect.

6. Discussion and threats to validity

In this section, we discuss some issues related specifically to the
use of FCA and we analyze some threats to validity of the current
approach.

6.1. Discussion

Partial usage of lattice: We pointed out that once the concepts
and the corresponding lattice are built, each concept represents a

representBinaryOn()

SortedCollection
…. 
super.representBinaryOn()
…. 

representBinaryOn()

«Abstract»
SequenceableCollection

representBinaryOn()

SortedCollectionWithPolicy

Fig. 15. Broken super send chain.

addAll()

OrderedCollection

addAllWithoutSorting()

addAll()

SortedCollection

<< cancelled >>

…. 
super.addAll()
…. 

Fig. 16. Cancelled Local Behavior and Behavior Reuse of Superclasses.

copyEmpty()

copyFromTo()

SortedCollection

…. 
self.copyEmpty()
…. 

copyEmpty()

<<Abstract>>
Collection

super.copyEmpty()

copyEmpty()

SortedCollectionWithPolicy

…. 
super.copyEmpty()
…. 

Fig. 17. Inherited and Local Invocations.
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group of invocations and accesses that relate a group of classes. But
not all the concepts are relevant, and we keep only the meaningful
concepts. There are mainly three points to take into account. First,
if we analyze the position of those concepts in the lattice, we see
that most of them are located in the lower part of the lattice, and
we filter out the concepts located in the middle and upper part
of the lattice. This is because the concepts in the lower part of
the lattice contain more properties (inversely, few elements with
those commonalities) than concepts higher up in the lattice (inver-
sely, more elements with fewer commonalities). The lower con-
cepts provide more ‘‘interesting” information (based on the
combination of properties) and allow us to map them to non-trivial
schemas of classes in a hierarchy. Secondly, we only use 64 of 174
concepts in total, meaning that just 1/3 of the lattice is used. Final-
ly, we note that, in this particular application of FCA, we do not ex-
ploit the possible relationships (defined by the partial order)
between the schemas (mapped from the concepts) because to
our knowledge so far, there is no corresponding relationship be-
tween our Hierarchy Schemas in terms of software engineering
concepts. However, we build the lattice because we need to calcu-
late the reduced extent of the concepts to be sure that the invoca-
tions and accesses appear in only one concept, and participates in
the most restrictive schema in the class hierarchy.

Compact number of elements and properties: In Section 3, we saw
that we need to map the model entities (in our specific case, the
invocations and accesses) to FCA elements and build different prop-
erties based on them. Due to a performance limitation imposed by
the FCA algorithm [45], we reduce dramatically the number of
FCA elements keeping only one representative of an invoked meth-
od and accessed attribute in a class. We compute the concepts and
the lattice without losing information about the class hierarchies,
and we reduce also the computing time from around 1 hour to 10
minutes compared to the approach presented in previous work [4].

FCA as a classification mining tool: As expressed previously, we
focus on analyzing (groups of) related dependencies between clas-
ses in a hierarchy based on self and super invocations. Without FCA,
we should generate all the possible combinations of (explicit and
implicit) dependencies between classes, resulting an exponential
number of candidates contracts. Each combination can define a
known or an unexpected contract that should be identified and
verified if it occurs in the class hierarchy. For example, if we had
three properties P1, P2 and P3, without FCA we should generate
the following sets {P1}, {P2}, {P3}, {P1, P2}, {P1, P3}, {P1, P4}, {P2, P3},
{P2, P4}, {P3, P4} and {P1, P2, P3, P4}. Once the sets are generated, we
should test if every invocation to a method and access to an attri-
bute fulfils or not any set of properties. We should also check if we
can group elements with same set of properties, and also if there is
any relationship between the different identified sets. Clearly, we
see that the process can be expensive in terms of performance
and processing, and FCA seems a better choice in our context to
avoid these difficulties.

FCA vs. query-engine: One of the main results of this approach is
a catalog of schemas to characterize a class hierarchy. As we see in
Section 4, each schema is the interpretation of a conjunction of
properties in the concepts. Each schema can be expressed as a logic
predicate (mapped from the properties) and a query engine can be
run in a class hierarchy to identify the occurrences of the different
schemas. The main difference between the use of FCA and a query-
engine is that FCA helps us mainly to discover previously unknown
schemas introduced in a class hierarchy, because we do not know
in advance which are the properties that define them. In the case of
the use of a query approach, we need to know which are the differ-
ent properties that characterize a schema. We consider that the
two approaches are complementary, because the catalog of sche-
mas can be complete after the analysis of several class hierarchies,
and in that case, the application of query-engine is more suitable

than FCA. We can have an adapted architecture where the step
FCA Mapping is converted into Query-based Mapping, and the steps
ConAn Engine and Post-Filtering are not present any more.

6.2. Threats to internal validity

Use of language-dependent properties: In spite of the fact that our
approach is language independent, how the properties are ex-
tracted from source code depends on language-specific mecha-
nisms or idioms. Let us enumerate some of them in the analysis
of class hierarchies in Smalltalk code (presented in this paper)
compared to some initial experiments in Java [14].

� The property m is cancelled in C is used to indicate that a sub-
class cancels a method defined in a superclass. It can be
detected when the method body contains only the call self
shouldNotImplement, which generates a runtime error in
execution time. The property m is abstract in C is detected
when the method body contains only the call self sub-

classResponsibility. When applying the approach to
another object-oriented language, we have to adapt the
extraction of properties, and should consider specific proper-
ties regarding the chosen language. In Java, we have seen
that the properties m is cancelled in C, m is abstract in C, C
accesses a and invoked via self have the same meaning as in
Smalltalk code analysis but are extracted in a different way
[14]. We chose to define the property m is cancelled in C
when the method body only raises an exception. The prop-
erty m is abstract in C is detected using the abstract modifier
of the method declaration. The property C accesses a can be
set up with and without accessors as in Smalltalk code,
except that in Java we can have the direct access to the state
with the expression this.<variable name>. Finally, the
property invoked via self can be extracted by looking for the
call where the receiver is the keyword this, but also for calls
where there is no explicit receiver. In this case, it is implicit
that the receiver is this.

� There are several properties specific to Java that are worth
mentioning. Firstly, we have to build properties to represent
the restrictive visibility of the methods (public, private, pro-
tected). We also have to map interfaces and anonymous clas-
ses to our FCA approach.

� The added properties increase the catalog of possible Hierar-
chy Schemas detected in Java code, and helped us to identify
which Hierarchy Schemas are common to several object-ori-
ented languages, and which ones are specific to a particular
object-oriented language. For example, in Smalltalk all meth-
ods are public (there being no visibility modifiers). The
schema called Cancelled Local Behavior but Superclass Reuse
is defined with the set of properties invoked via super, is can-
celled locally, is concrete in ancestor Cn (n: 1 ..m). If we consider
Java code, the same schema is represented with the set of
properties is public, invoked via super, is cancelled locally, is
concrete in ancestor Cn (n: 1.. m). As we see, the only different
property between both definitions is is public, and this prop-
erty is needed in Java code due to the presence of visibility
modifiers, and we need them to identify this characteristic
in the methods. However, this property is implicit in the
detected schema in Smalltalk code. In spite of this slight dif-
ference, we can infer that Cancelled Local Behavior but
Superclass Reuse is a common schema in both Java and
Smalltalk code. However, any schema that contains any
property such as is protected or is private clearly is specific
to Java or C++ code. Busch et al. present some preliminary
results [14].
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Table 4 shows some initial results from analyzing the Java Col-
lection Package with 162 classes. From our initial analysis, the use
of interfaces and anonymous classes hides the occurrences of other
schemas in this case study. We have to deepen our analysis includ-
ing Java building mechanisms.

Mapping from concepts to schemas: Of the 64 concepts we identi-
fied as ‘‘interesting”, we derived 15 dependency schemas. This
means that in most cases, a schema is represented by several con-
cepts, meaning that a schema can be described by different combi-
nations of properties. The mapping policy is decided by the
reengineer, meaning that when we interpret the contents of the con-
cepts, we must decide which are concepts corresponding to the dif-
ferent schemas. For example, the schema Reuse of Superclass/State
Behavior is represented by three types of concepts because there
are three different combinations of properties to describe the men-
tioned schema (as shown in the table of Hierarchy Schemas). On the
other hand, the schema Local Behavior is represented by just one
concept. In other cases, one schema could represent a good or an
irregular design practice. In this specific case, we see that the schema
Inherited and Local Invocations is irregular only when the super sends
are invoked from a method with a different name.

Building elements and properties. We map the attributes accesses
and methods calls directly from the metamodel FAMIX [60]. The
choice of properties requires some analysis (done in the iterative
phase Modelling of FoCARE), because we need to cover the different
possible inheritance dependencies of the elements. The properties
invoked via self and invoked via super are mapped directly from the
metamodel. The rest of the properties are calculated based on the
dependencies expressed in the metamodel.

Number of concepts: The policy of mapping from concepts to
schemas is manual in initial experiments, until their identification
can be automatized. To determine the correct mapping, we have to
go through some cycles of Interpretation using only parts of the
case study. The main drawback in this phase is the number of gen-
erated concepts in the lattice, especially when there are not so
many elements that share common properties and this can gener-
ate an explosion in the number of concepts. This happens because
in the first experimental Interpretation, we have to analyze the con-
cepts manually until we get the right definition of each schema,
and this is not trivial when the number of concepts is large.

6.3. Threats to external validity

We note that the approach can succeed or fail depending on
several factors.

‘‘Non-invoked” Methods: Our approach is limited to analyzing
methods and attributes that are effectively used in the context of
the class hierarchy. If there are methods that are defined in some
class but are not invoked in the class itself or in any subclasses
or in any superclasses, those methods are not included in our anal-
ysis. Clearly, we lose some information about the classes in the
hierarchy, because we only concentrate on usage of behavior and
state of the class.

Incrementing the catalog of schemas: Although we consider our
approach to be mature enough to detect interesting hierarchy
schemas, during new applications of the approach to other Small-
talk class hierarchies or to other object-oriented languages, we
may discover new schemas to augment the hierarchy schemas cat-
alog. Note that this threat is not negative since we identify them
and simply build incrementally our catalog. This illustrates the
usefulness of FCA as a classification mining tool. When we reach
a fix point for given schema catalog (meaning that when running
the approach there are no new identified Hierarchy Schemas),
FCA ceases to be useful as a mining tool and can be replaced by a
query-based engine. This replacement implies only to change a
layer in the our architecture. Thus, we show that the architecture
is adaptable to changes like this one.

Choice of properties and elements: The choice of properties and
elements is critical in this approach. Without adequate elements
and properties, the approach cannot produce meaningful concepts,
and therefore we cannot detect any practical schema. Therefore, it
is crucial to test them in parts of the case studies going through
several cycles of Modelling and Interpretation of the phases of the
FoCARE architecture. The reengineer can decide if the conceptual
mapping the useful for analyzing a piece of software (in our spe-
cific case, class hierarchies).

Good programming style: When applying this approach, we focus
on detecting not only good practices in coding, but also bad smells
and irregularities in class hierarchies, and we propose refactorings
to improve the code. If the class hierarchy is well designed, this ap-
proach only shows good practices in coding. We consider that
applying this approach is too expensive to use merely to confirm
that the class hierarchy is well-designed.

Small hierarchies: Similarly, in the case of small hierarchies,
applying this approach is too expensive compared to analyzing it
manually. In this paper, we have shown how useful is FoCARE in
Collection class hierarchy, which has around 100 classes.

Exponential number of concepts and schemas: Another critical is-
sue from the FCA viewpoint is the large (eventually, exponential)
number of concepts that FCA can generate. This situation can arise
if the properties are too specific for a small set of elements and/or
the incidence table density is low, meaning that there are only few
pairs of (element, property) that are valid. From a coding perspec-
tive, this means that the dependencies are dispersed and do not re-
cur in the class hierarchy. With too many results, it is hard to
analyze new schemas because they are interpreted manually (be-
fore including them in the catalog), and the results depend on
the knowledge of the reengineer.

Performance of FCA algorithm: As mentioned previously, the
algorithm is also an essential factor in this approach. The perfor-
mance can be affected by two circumstances. The first one is re-
lated to implementation issues. It is known the performance
limitation analyzed by Kuznetsov and Obëdkov [45], so the reengi-
neer should be careful when implementing it, or should use an
existing implementation that exhibits good performance. The sec-
ond circumstance is when the incidence table has low density, and
this can generate an exponential number of concepts, and the cal-
culation of partial order can be time-consuming.

Biased evaluation: As we have developed the approach and car-
ried out the experiment ourselves, the results may be biased. This
effect is mitigated by the fact that we have chosen to analyze the
Smalltalk Collection hierarchy as a case study which has previously
been studied by several other researchers [11,17,35,46].

7. Related work

Within the related approaches, we identify three main fields:
Understanding (and evolution of) class hierarchies, Query-based en-

Table 4
Results in Java Collection Package. Left: Commonly Identified Classical Schemas –
Right: Commonly Identified bad smell Schemas.

Name Nr. Name Nr.
Classical Bad smells

Redefined Concrete
Behavior

3 Ancestor Direct State Access 2

Extended Concrete
Behavior

1 Cancelled Local Behavior but
Superclass Reuse

3

Reuse of Superclass/State
Behavior

45
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gines to understand object-oriented applications and Detection of de-
sign patterns.

7.1. Understanding (and evolution) of class hierarchies

Various existing approaches have explored techniques to sup-
port the understanding (and evolution of) class hierarchies. We
survey them according whether or not they use Formal Concept
Analysis (or related structures) in their approaches.

Cook [17] proposes to reorganize the Smalltalk-80 collection
class library based on the hierarchy of interfaces, which is indepen-
dent of inheritance. With this approach, he can identify several
problems such as inherited methods that violate the subclass
invariant; methods that have the same name but unrelated behav-
iors; methods that have the same (or related) behavior but differ-
ent names. Once the problems are identified, he can suggest
improvements to the analyzed class hierarchy.

Black et al. [11] report on their experience refactoring the
Smalltalk Collection classes using traits [64]. After manually iden-
tifying duplication of code and lack of uniformity in the protocols
of the classes, they could refactor the hierarchy with traits and re-
duce the number of methods by approximately 10%. The new hier-
archy improves maintainability and reuse of the code base.

Based on the lack of adequate documentation and the absence
of mechanisms to manage the propagation of changes of evolving
class hierarchies, Steyaert et al. [72] introduce the concept of reuse
contracts. The goal is to separate a particular kind of design infor-
mation from the implementation. This is achieved by recording
the protocol (specialization interface) between classes and its sub-
classes. When classes change, this (explicit) documentation allows
one to identify which contracts are no longer valid and what part of
(analyzed) class hierarchy should no longer be trusted. Focusing
also the class evolution, Casais [15] analyzes class hierarchies
and extracts design flaws when a (new) class may refine or override
the properties inherited from its ancestors. With an incorrect use
of inheritance mechanisms, some defective structures can appear
in the class hierarchy. To avoid them, the redefinitions are ana-
lyzed and are adapted (if necessary) to improve subclassing pat-
terns using decomposition or refactoring. The approach has been
validated in Eiffel systems.

The following four approaches use visualization techniques.
Program Explorer [47] proposes to query and visualize both dy-
namic and static information of classes via simple graphs to under-
stand and verify hypotheses about function invocations, object
instantiation and attribute accesses. This approach is validated in
C++ applications. Using basic graph visualizations to represent var-
ious relationships and navigation features, Mendelzon and Samet-
inger [53] show that they can express metrics, constraints
verification, and design schema identification in large-scale soft-
ware systems. Ducasse and Lanza [48] introduce the notion of a
Class Blueprint, a semantically enriched visualization of the internal
structure of classes, which allows a software engineer to develop a
mental model of the classes, and offers support for reconstructing
the logical flow of method calls. Identifying visual patterns, the
engineer can identify not only good hierarchy practices, such as
classes that add, extend, or override inherited behavior of super-
classes, but also bad smells, such as duplicated code between clas-
ses. With this approach, the engineer can perform the analysis and
browse the code to validate his hypotheses. Focusing on class hier-
archy understanding, Denier and Sahraoui [21] propose a similar
approach. They provide a compact view of class hierarchies using
a custom Sunburst layout. Then, they map class properties to
graphical attributes of a 3D visualization, and using metrics to
characterize similar children classes, they derive a set of visual pat-
terns. These patterns can identify good and bad practices intro-
duced in the analyzed class hierarchy.

Considering the useful potential specialization/generalization of
the lattices, several researchers have also applied FCA to the prob-
lem of understanding (and reengineering) class hierarchies.

In reengineering class hierarchies, Godin et al. [33] categorize
the existing work according to the structure of the output hierar-
chy of the approaches. Snelting et al. [70,69] use a (concept) lattice
as a final result of their analysis. Godin et al. [34,35], Dicky et al.
[22,23], Huchard et al. [41] and Moore [57] use Galois subhierar-
chy4 as a final results of their hierarchy. To this classification, we
added the approach of Falleri et al. [28], based on a derived structure
named RCA.

Snelting et al. [70,69] presented a methodology to find design
problems in a class hierarchy by analyzing the usage of the hierar-
chy by a set of C++ applications. They analyzed a class hierarchy
making the relationship between class members and variables ex-
plicit. They were able to detect design anomalies such as class
members that are redundant or that can be moved into a derived
class or where a splitting of a class is needed. As a result, they pro-
pose a new class hierarchy that is behaviorally equivalent to the
original one. The implementation of this approach for refactoring
Java class hierarchies is proposed by Streckenback and Snelting
[73] using KABA. Additionally, the transformed hierarchy can then
be subject to further manual refactorings, while the semantics are
guaranteed to be preserved. The new code contains the same state-
ments as the original code, except that the hierarchy has changed
and for all variables a new type (i.e., class) has been computed.

Godin et al. [34,35] proposes an approach to build an initial
class hierarchy from a set of class specifications, or reorganize an
existing one or detect inconsistencies following class updates using
concept lattices and related structures. They show how Cook’s [17]
earlier manual attempt to build a better interface hierarchy for this
class hierarchy (based on interface conformance) could be auto-
mated. Their approach has added a set of metrics to measure
redundancy, specialization and aggregation complexity and devia-
tion from specialization. Therefore, they could compare variants of
concept lattices among themselves, and to other manually or auto-
matically-built class hierarchies. They have applied their approach
to the Smalltalk Collection hierarchy, and also to a set of class spec-
ifications pertaining to telecommunication network management
functionalities.

The GURU approach developed by Moore [57] analyzes classes
(eventually without inheritance links) in Self and infers a hierarchy
with no duplication of features (instance variables and methods).
The new hierarchy includes replacement classes defining or inher-
iting exactly the same sets of features as defined by the original
classes. Thus, the hierarchies are produced and based only on max-
imizing sharing and minimizing duplication of features (mostly
methods) of classes.

Preserving a ‘‘maximal factorizing” of class properties, Huchard
et al. [41], Dicky et al. [23] and Leblanc [50] focus on the automatic
insertion of classes into inheritance hierarchies. They use two
incremental algorithms (ARES in first two cases and CERES in last
case) to factor out features using overloading and overriding. They
guarantee an optimal refactoring of features of classes by using a
Galois subhierarchy, which also provides a partial order on attri-
butes and methods (signatures). To measure the quality of the gen-
eralization/specialization in the new class hierarchy, Roume [63]

4 By analogy with normalization for database design, the concept lattice can be
considered as a kind of normal form for the design of class hierarchies. Some of the
generalizations of the concept lattice are empty in that they do not possess their own
attributes or objects: all their attributes appear in at least one super-concept
(inheritance) and dually, all their objects appear in a sub-concept (extension
inclusion). These concepts could be eliminated without loss of information thus
leading to a structure called a Galois subhierarchy. This structure is not necessarily a
lattice but, when interpreting its nodes as classes, it is optimally factored, consistent
with specialization, while defining a minimal number of classes.
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and Dao et al. [18] introduce a set of metrics that measures refac-
toring at the level of classes and features. With this set of metrics,
they can quantify the improvements carried out by a reconstruc-
tion tool and highlight design defects connected with feature refac-
toring, such as features that are obviously redundant or classes
that are useless.

Using Relational Context Analysis (RCA), a derived structure
from FCA, Falleri et al. [28] propose a generic approach for normal-
izing class hierarchies that follows the work of Huchard et al. [41],
Dicky et al. [23] and Leblanc [50]. This approach can be applied to
any class model that can be described by a metamodel. Some pre-
vious work [6] showed that FCA was able to deal with only special-
ization/generalization of classes. Falleri et al. [28] use RCA in this
approach in order to deal with entities described by binary attri-
butes and by relations with other entities. RCA will allow to sup-
port constructions, such as invariant or covariant method
redefinition and covariant attribute redefinition. This approach is
validated in applications based on Ecore and Java.

Within the context of traits [64], Lienhard et al. [51] propose a
semiautomatic approach to identify traits in an existing class hier-
archy using FCA. Their tool proposes a refactoring of the class hier-
archy with traits that preserves the original behavior of each of the
classes. Their approach is carried out in two main steps. First, they
analyze the protocol of classes to identify the potential traits, and
then they analyze the invocation relationships between methods
to detect fine-grained traits. The case study shows that they obtain
similar results to those obtained manually by Black et al. [11].

7.2. Query-based engines to understand object-oriented applications

Using the notion of Micro Patterns in Java code, Gil et al. [31] ex-
tract the various kinds of features that a Java class may have, and
how they can be related. Then, the relationships are translated into
a condition on the code, and classes are inspected to match those
conditions. Manual inspection of the code of these classes leads
to refinement, removal, merging or splitting of the definitions until
an acceptable catalog of micropatterns is built.

Using queries that define Inheritance or Composition Template
Methods, Schauer et al. [65] focus on identifying hook and template
methods, which capture the flexible parts of an application do-
main. With tool support named SPOOL, they provide a visualiza-
tion of the hotspots, so it helps the programmers to identify key
design abstractions as well as their implementation style, based
on inheritance or composition.

Analyzing class hierarchies with criteria of code or interface re-
use, Mihancea [54,55] introduce the concept of comprehension pit-
fall as a design situation in which the polymorphic manipulation of
a design entity (e.g., method) can be easily misunderstood. The pit-
falls are defined using metric-based rules to support their auto-
matic detection. They applied their approach to three medium-
sized Java programs, using an iterative approach where the manual
analysis has helped to maximize the precision of detection rules, to
be able to detect meaningful pitfalls.

Focused on testing of object-oriented applications, Ducasse
et al. [25] propose the logic representation of program execution
and the specification of tests as logic queries using Smalltalk Open
Unification Language (SOUL), a logic engine implemented in Small-
talk. Thus, complex sequences of message exchanges, sequence
matching, or expression of negative information are expressed in
compact form. Although the implementation is in Smalltalk, the
approach itself is not specific for Smalltalk but can be applied to
other languages as well, such as Java.

Analyzing software evolution, Lanza et al. [49] propose a flexi-
ble query-engine to perform queries on different versions of a sys-
tem. The queries make the inheritance operations explicit, such as
introducing a class on top of a large hierarchy, classes that have

been merged, renamed or pushed up one hierarchy level, or any
entity which has been added to or removed from software at a cer-
tain point.

Ciupke [16] presents a technique for analyzing legacy code,
specifying frequent design problems as queries and locating the
occurrences of these problems in a model derived from source
code. He can check violations of a number of well-known design
rules in existing source code taken from several case studies, show-
ing that the task of problem detection in reengineering can be
automated to a large degree, and that the technique presented
can be efficiently applied to real-world code.

In Krämer and Prechtel’s approach[44], the patterns are stored
as Prolog rules. Their Pat tool takes the meta-information directly
from the C++ header files and queries them. Similarly, Wuyts
[78] reasons about and extracts a system’s structure using SOUL,
and by developing a declarative framework aimed at reasoning
about Smalltalk code.

Focusing on understanding how a framework works, Lange et al.
use an interactive visualization of design patterns to understand
the underlying the software architecture [47]. They represent both
static and dynamic information as logic facts to generate interac-
tive design views.

7.3. Detection of design patterns

Design patterns are used as ways of communicating design
information. Beck and Johnson [9] show that patterns can be used
to derive an architecture, and the resulting description makes it
easier to understand the purpose of the various architectural
features.

Gueheneuc, Mens and Wuyts propose a framework to compare
design recovery tools [38], to understand their differences, to ease
replication studies, and to discover what tools are lacking.

Shull et al. propose a method to manually identify workable do-
main-specific design patterns and create customized catalogs of
the identified patterns [68]. Brown [12] presents a tool to detect
design patterns in Smalltalk environments. He explains how to
deal with the typeless language Smalltalk. Keller et al. [42] present
an environment for the reverse engineering of design components
based on the structural descriptions of design patterns. Their vali-
dation is made with SPOOL on three large-scale C++ software sys-
tems. Bergenti and Poggi provide critiques about the design
patterns identified in UML documents [10]. Philippow et al. pro-
mote a design pattern-based approach to reconstruct the reference
architecture of a product line [62].

Seemann et al. [66] use a compiler to generate graphs from the
source code. This graph acts as the initial graph of a graph grammar
that describes the design recovery process. The validation is made
with respect to well-known design patterns such as Composite and
Strategy in the Java AWT package.

Niere et al. [58] provide a method and a corresponding tool
which assist in design recovery and program understanding by rec-
ognizing instances of design patterns semi-automatically. The
algorithm works incrementally and needs the domain and context
knowledge given by a reverse engineer. An evaluation of the ap-
proach is made with the Java AWT and JGL libraries.

Albin-Amiot et al. [1] show how to automate the instantiation
and detection of design patterns. To cope with these objectives,
they define a Pattern Description Language to describe design pat-
terns as first-class entities. Thus they can manipulate and adapt de-
sign patterns models to generate source code.

One of the main problems in pattern identification is the size of
the search space. To reduce it, Wendehals [76] and Heuzeroth et al.
[40] combine static and dynamic analysis, the first one reducing
the search space of the second one: the static analysis searches
for sets of candidates that respect the static structure of the design
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pattern, while the dynamic analysis monitors candidates and
checks whether the observed interactions satisfy the behavioral
rules of the design patterns. Gueheneuc et al. used explanation-
based constraint programming to report problems when failing
to identify design patterns [37]. Antoniol et al. propose a multi
stage reduction strategy: software metrics and structural proper-
ties computed on design patterns become constraints that design
pattern candidates must satisfy [3]. Guenehec [39] reduces the
search space using metrics to define design pattern fingerprints
of the design pattern participants. A design pattern has several de-
sign variants and can be implemented in different ways; Niere [59]
overcomes both problems with fuzzy logic, and Wendehals [76]
rates instance candidates with fuzzy values to support inexact
mismatch.

Differences with existing approaches. Our approach exhibits two
main differences compared to existing approaches: (1) input infor-
mation and (2) discovery of new patterns (in our case called
schemas).

Regarding the input information, most of the approaches (re-
lated to understanding class hierarchies) take into account which
selectors are implemented by which classes (interface). They do
not consider behavioral information (i.e., based on self and super
sends) or usage of the state defined in the classes. As shown in
this paper, such information helps us to identify different behav-
ioral and state dependency schemas. With these schemas, we eval-
uate the reuse of methods and state defined in classes, and we
discover different design decisions used in building the class hier-
archies. Black et al. [11], Steyaert [72] and Lienhard et al., [51]
have similarities to our approach because they use behavioral
information of the class hierarchies. In the case of Black et al.
[11] and Steayaert [72], the information is extracted manually
and does not depend on the language. In Lienhard et al. [51],
the behavioral information is focused specifically on classes where
potential traits can be extracted; it is not a global analysis as in
our approach.

Regarding the discovery of new patterns, the main difference
with the existing approaches related to query-based methodolo-
gies and detection of design patterns is that in all the approaches
the user must know in advance which is the definition of the rela-
tionships or the software artifacts one is looking for in the target
system. For example, to detect design patterns, one needs to know
how the design pattern is defined structurally to express it as a
query (e.g., as rules in Prolog). In our approach, we work with sim-
ple relationships and properties of the source code, and we infer
the definition of the schemas or patterns using FCA.

8. Conclusion and future work

In this paper, we show how the automatic generation of sche-
mas using FCA helps us to discover different implicit and undocu-
mented dependencies in class hierarchies in terms of the behavior
and state usage. The categorization of these schemas into good,
irregular and bad design decisions helps us to:

� Generate the first conceptual model of a hierarchy.
� Localize where different irregularities or problems occur in

the implementation of a class hierarchy.
� Identify which are the main constraints that a specific class

has in the context of a hierarchy. When a developer wants
to use or extend a class, he needs to understand which are
the different dependencies a class has regarding its subclass-
es and superclasses. These dependencies include if the class
is overriding or reusing the behavior inherited from the
superclasses or if the class has template methods and hooks
that its subclasses should implement.

As a summary, we conclude that specific object-oriented reen-
gineering tasks (such as understanding how a system is built)
can be solved using techniques coming from graph theory (such
as Formal Concept Analysis), and this technique gives the possibil-
ity of discovering (un)expected contracts between the classes. This
FCA-based approach can be complemented with existing ap-
proaches (such as metrics) to enrich our analysis and our results.

As future work we plan the following next steps:

� Application of the approach to other class hierarchies to
check if the catalog of schemas identified so far covers all
the interesting possible cases or if we discover new cases
of implicit contracts.

� Extended analysis comprising methods that are invoked and
those that are not invoked but are declared in the classes.
This kind of approach can measure how much information
defined in the class hierarchy is used or not.

� Refinement of properties to obtain a bijective mapping from
concepts to schemas, and thus, reduce the complexity of the
lattice in terms of number of concepts.

� Analysis of relationships given by the partial order between
the different schemas – mapped from the concepts in the lat-
tice – to find a possible mapping in terms of software
reengineering.

� Deep analysis of some initial experiments to other object-
oriented languages, such as Java [14], where we have other
building mechanisms, such as interfaces, inner classes and
anonymous classes, and see how the approach can be adapted
or modified to consider new properties. Surely, adding new
properties will generate new schemas in our catalog.
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