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1. Introduction

Interest in non-commutative spaces has been renewed after the discovery that non-

commutative gauge theories naturally arise when D-branes with constant B fields are

considered [1, 2]. These works as well as that in [3] prompted many investigations

both in field theory and in string theory (see references in [3]). Concerning gauge field

theories, recent results on chiral and gauge anomalies [4]–[6] have shown that well-

known results on “ordinary” models extend naturally and interestingly to the case in

which non-commutative spaces are considered. In this work we consider a problem

which can be seen as closely related to that of anomalies, namely the evaluation of the

two-dimensional fermion determinant in non-commutative space-time. This problem

is of interest not only for the analysis of two-dimensional QED and QCD in non-

commutative space, but also in connection with abelian and non-abelian bosonization

since, as it is well-known, the knowledge of the fermion determinant leads more or

less directly to the bosonization rules.

We start by evaluating in section 2 the chiral anomaly in two-dimensional non-

commutative space-time in a way adapted to the calculation of fermion determinants

through integration of the anomaly. This last is done in section 3 where both the

abelian and (U(N)) non-abelian fermion determinant is calculated exactly. In both

cases we obtain for the determinant a Wess-Zumino-Witten term. Consequences of

our results and possible extensions are discussed in section 4.
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2. The chiral anomaly

2.1 Conventions

As usual, we define the ∗-product between a pair of functions φ(x), χ(x) as

φ ∗ χ(x) ≡ exp
(
i

2
θµν∂xµ∂yν

)
φ(x)χ(y)|x=y

= φ(x)χ(x) +
i

2
θµν∂µφ∂νχ(x) +O(θ

2) , (2.1)

and the (Moyal) bracket in the form

{φ, χ}(x) ≡ φ(x) ∗ χ(x)− χ(x) ∗ φ(x) , (2.2)

so that, when applied to (euclidean) space-time coordinates xµ, xν , one has

{xµ, xν} = iθµν , (2.3)

which is why one refers to non-commutative spaces. Here θµν is a real, anti-symmetric

constant tensor. Since we shall be interested in two dimensional space-time, one

necessarily has θµν = θεµν with εµν the completely anti-symmetric tensor and θ a

real constant. In the context of string theory, non-commutative spaces are believed to

be relevant to the quantization of D-branes in background Neveu-Schwarz constant

B-field Bµν [1]–[3]. In this context θ
µν is related to the inverse of Bµν . Afterwards,

this original interest was extended to the analysis of field theories in non-commutative

space and then, as signaled in [6] it becomes relevant to know to what extent old

problems and solutions in standard field theory fit in the new non-commutative

framework.

A “non-commutative gauge theory” is defined just by using the ∗-product each
time the gauge fields have to be multiplied. Then, even in the U(1) abelian case, the

curvature Fµν has a non-linear term (with the same origin as the usual commutator

in non-abelian gauge theories in ordinary space)

Fµν = ∂µAν − ∂νAµ − ie (Aµ ∗ Aν −Aν ∗ Aµ)
= ∂µAν − ∂νAµ − ie{Aµ, Aν} . (2.4)

This field strength is gauge-covariant (not gauge-invariant, even in the abelian case)

under gauge transformations which should be represented by U elements of the form

U(x) = exp∗(iλ) ≡ 1 + iλ−
1

2
λ ∗ λ+ · · · (2.5)

The covariant derivative implementing infinitesimal gauge transformations takes the

form

Dµ[A]λ = ∂µλ+ ie (λ ∗ Aµ − Aµ ∗ λ) (2.6)
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so that an infinitesimal gauge transformation on Aµ reads as usual

δAµ =
1

e
Dµλ . (2.7)

Concerning finite gauge transformations, one has

AUµ =
i

e
U(x) ∗ ∂µU−1(x) + U(x) ∗ Aµ ∗ U−1(x) . (2.8)

Given a fermion field ψ, one can easily see that the combination

γµDµ[A]ψ = γ
µ∂µψ − ieγµAµ ∗ ψ (2.9)

transforms covariantly under gauge transformations (2.8),

γµDµ[A
U ]ψU = U ∗ γµDµ[A]ψ , (2.10)

with

ψU = U(x) ∗ ψ (2.11)

and

U(x) ∗ U−1(x) = U−1 ∗ U(x) = 1 . (2.12)

A gauge invariant Dirac action can be defined in the form

Sf =

∫
ddx ψ̄(x) ∗ iγµDµ[A]ψ(x) . (2.13)

2.2 The anomaly

Chiral transformations will be written as

ψ′(x) = U5(x) ∗ ψ , (2.14)

with

U5(x) = exp∗(γ5α(x)) = 1 + γ5α +
1

2
α(x) ∗ α(x) + · · · (2.15)

The chiral anomalyAd in d-dimensional space can be calculated from the formula
log Jd[α] = −2Ad , (2.16)

Ad = Tr γ5δα(x)|reg (2.17)

here Jd[α] is the Fujikawa jacobian associated with an infinitesimal chiral transfor-

mation U = 1 + γ5δα and Tr includes a matrix and functional space trace.

Let us specialize to the two dimensional case. We shall use the heat-kernel

regularization so that (2.17) will be understood as

A2 =

∫
d2x A2(x) ∗ δα(x) , (2.18)

A2(x) = lim
M→∞

Tr γ5 exp∗

( 6D∗ 6D
M2

)
. (2.19)
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After some standard manipulations, (2.19) takes the form

A2(x) = 1
4π
tr γ5 6D ∗ 6D = 1

4π
tr (γ5γ

µγν)Dµ ∗Dν . (2.20)

Here tr is just the matrix trace. Using tr(γ5γ
µγν) = 2i εµν , eq. (2.20) can be written

as

A2(x) = e

2π
εµν(∂µAν − ieAµ ∗ Aν) = e

4π
εµνFµν . (2.21)

This result coincides with that first obtained in [4].

3. The two-dimensional fermion determinant

Let us write the gauge field in the two-dimensional case in the form

6A = 1
e
(i6 ∂ exp∗ (γ5φ+ iη)) ∗ exp∗ (−γ5φ− iη)) . (3.1)

Note that in the θµν → 0 limit, eq. (3.1) reduces to the usual decomposition of a
two-dimensional gauge field in the form

eAµ = εµν∂
νφ+ ∂µη , (3.2)

which allows to decouple fermions from the gauge-field and then obtain the fermion

determinant as the jacobian associated to this decoupling [8]. Now, the form (3.1) was

precisely proposed in [9] to achieve the decoupling in the case of non-abelian gauge

field backgrounds, this leading to the calculation of the QCD2 fermion determinant

in a closed form. Afterwards [10], it was shown that writing a two dimensional gauge

field as in eq. (3.1) (without the ∗-product but in the U(N) case) does correspond
to the choice of a gauge condition . Eq. (3.1) is then the extension of this approach

for a case in which non-commutativity arises from the use of the ∗-product.
At the classical level, the change of fermionic variables

ψ = exp∗ (γ5φ+ iη) ∗ χ
ψ̄ = χ̄ ∗ exp∗ (γ5φ− iη) (3.3)

completely decouples the gauge field, written as in (3.1), leading to an action of free

massless fermions,

Sf =

∫
d2x χ̄ ∗ i6 ∂χ (3.4)

Of course, this is not the whole story: at the quantum level there is a Fujikawa

jacobian J [7] associated to change (3.3). In order to compute this jacobian, we

follow the method introduced in [8, 9]. Consider then the change of variables

ψ = Ut ∗ χt ,
ψ̄ = χ̄t ∗ U †t , (3.5)
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where

Ut = exp∗ (t (γ5φ+ iη)) , (3.6)

and t is a real parameter, 0 ≤ t ≤ 1. Given the fermion determinant defined as

det(6∂ − ie 6A) =
∫
Dψ̄Dψ exp (−Sf [ψ̄, ψ]) (3.7)

we proceed to the change of variables (3.5) which leads to

det(6∂ − ie 6A) = J [φ, η; t]

∫
Dχ̄tDχt exp (−Sf [χ̄t, χt])

= J [φ, η; t] detDt , (3.8)

where J [φ, η; t] stands for the jacobian

Dψ̄Dψ = J [φ, η; t]Dχ̄tDχt (3.9)

and we have defined

Dt = U
†
t ∗ (6∂ − ie 6A∗)Ut . (3.10)

Now, since the l.h.s. in (3.8) does not depend on t we get, after differentiation,

d

dt
log detDt = − d

dt
log J [φ, η; t] (3.11)

or, after integrating on t and using that D0 = 6∂ − ie 6A and D1 = 6∂

det(6∂ − ie 6A) = det 6∂ exp
(
−2
∫ 1
0

dtA2(t)

)
, (3.12)

where we have used

A2(t) =
d

dt
log J [φ, η; t] . (3.13)

Now, it is trivial to identifyA2(t) with the two-dimensional chiral anomaly as defined

in eq. (2.17), just by writing δα = φdt,

A2(t) = Tr (γ5 ∗ φ)|reg . (3.14)

In order to have a gauge-invariant regularization ensuring that the η part of the

transformation does not generate a jacobian, we adopt, in agreement with (2.18)

and (2.19),

A2(t) = lim
M→∞

Tr

(
γ5 exp

( 6Dt∗ 6Dt
M2

)
∗ φ
)

(3.15)

so that finally one has

A2(t) =
e

2π

∫
d2xεµν

(
∂µA

t
ν − ieAtµ ∗ Atν

) ∗ φ = e

4π

∫
d2xεµνF tµν ∗ φ , (3.16)
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where we have introduced

γµA
t
µ = −

1

e
(i6 ∂Ut) ∗ U−1t (3.17)

and analogously for F tµν . In summary, we can write for the U(1) fermion determinant

det(6∂ − ie 6A) = exp
(
− e

2π

∫
d2x

∫ 1
0

dt εµνF tµν ∗ φ
)
det 6∂ . (3.18)

It will be convenient to use the relation

γµγ5 = −iεµνγν (3.19)

to rewrite (3.18) in the form

det(6∂ − ie 6A) = exp
(
ie

2π
tr

∫
d2x

∫ 1
0

dtγ5φ ∗
( 6∂ 6At − ie 6At∗ 6At)

)
det 6∂ . (3.20)

Then, one can exploit the identity

tr

∫
d2x
1

2

d

dt
6At∗ 6At = 1

e
tr

∫
d2xγ5i6 ∂φ∗ 6At + 2 tr

∫
d2xγ5 6At ∗ φ∗ 6At +

+
1

e
tr

∫
d2x(6Dη)∗ 6A (3.21)

and find for (3.20)

log det( 6∂ − ie 6A) = − e
2

4π
tr

∫
d2x 6A∗ 6A + e2

2π
tr

∫
dt

∫
d2x γ5φ∗ 6A∗ 6A +

+
e

2π

∫
dt

∫
d2x (6Dη)∗ 6A + log det 6∂ . (3.22)

This is the final form for the fermion determinant in a U(1) gauge theory. In

order to write it in a more suggestive way connecting it with the Wess-Zumino-

Witten term, let us consider the light-cone gauge A+ = 0, Then, one can see after

some algebra that [11]

log

(
det(6∂ − ie 6A)
det 6∂

)
= − 1
8π

∫
d2x
(
∂µg(x)

−1) ∗ (∂µg(x)) +
+

i

12π
εijk

∫
B

d3y g(x, t)−1 ∗ (∂ig(x, t)) ∗ (3.23)

∗ g(x, t)−1 ∗ (∂jg(x, t)) g−1 ∗ (∂kg(x, t))

here we have written A− = (i/e)g(x) ∗ ∂−g−1(x) with g(x) = exp∗(2φ(x)), g(x, t) =
exp∗(2φ(x)t) and d3y = d2xdt so that the integral in the second line of eq. (3.24)

runs over the three dimensional manifold B, which in compactified euclidean space
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can be identified with a ball with boundary S2. Index i runs from 1 to 3. As in

the ordinary commutative case, because the determinant was computed in euclidean

space, elements g should be considered as belonging to U(1)C (the complexified

U(1)) [11, 12].

So, we have found for the two-dimensional non-commutative fermion determinant

that, even for a U(1) gauge field background, a Wess-Zumino-Witten term arises due

to non-commutativity of the ∗-product. Of course, in the θµν → 0 limit in which the
∗-product becomes the ordinary one, the U(1) fermion determinant contribution to
the gauge field effective action reduces to (−1/2π) ∫ d2xφ∂µ∂µφ which is nothing but
the Schwinger determinant result expressed in a gauge-invariant way.

The method we have employed has the advantage that it can be trivially gen-

eralized to the case of a U(N) gauge group. One has just to take into account that

in (3.1) one has

φ = φata , η = ηata , (3.24)

with ta the U(N) generators. Then, as originally shown in [9] for the commutative

case, the fermion determinant can be seen to be given by

det(6∂ − ie 6A) = exp
(
− e

4π
trc
∫
d2x

∫ 1
0

dtεµνF tµν ∗ φ
)
det 6∂ , (3.25)

where trc is a trace over the U(N) algebra. Then, following the same steps leading

to (3.24), one gets, in the U(N) case

log

(
det(6∂ − ie 6A)
det 6∂

)
= − 1
8π
trc
∫
d2x
(
∂µg

−1) ∗ (∂µg) + (3.26)

+
i

12π
εijk tr

c

∫
B

d3yg−1 ∗ (∂ig) ∗ g−1 ∗ (∂jg) g−1 ∗ (∂kg) ,

where again, in the light-cone gauge we have written

A− = − i
e
g ∗ ∂−g−1 , A+ = 0 (3.27)

g = exp∗(2φ
ata) . (3.28)

Eq. (3.27) is the generalization of the expression given in [13] for the two-dimensional

non-abelian fermion determinant to the case of non commutative space-time.

4. Conclusion

We studied in this article the effective action of the gauge degrees of freedom in

a two dimensional non-commutative Field Theory of fermions coupled to a gauge

field. Using Fujikawa’s approach, we computed the chiral anomaly and, from it, the

fermionic determinant of the non-commutative Dirac operator.
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As it was to be expected, the result for the fermion determinant corresponds to

the ∗-deformation of the standard result. Now, the fact that a Moyal bracket enters
in the field strength curvature even in the abelian case, has important consequences,

some of which have already been signaled in [4]–[6] where chiral and gauge anomalies

in non-commutative spaces have been analyzed.

In our framework, where the anomaly was integrated in order to obtain the

fermion determinant, this reflects in the fact that a Wess-Zumino-Witten like term

arises both in the abelian and in the non-abelian cases (eqs. (3.24) and (3.27) re-

spectively). This should have, necessarily, implications in relevant aspects of two-

dimensional theories since, as it is well-known, bosonization is closely related to the

form of the fermion determinant [15]. Indeed, the bosonization rules for fermion cur-

rents as well as the resulting current algebra can be easily derived by differentiation

of the Dirac operator determinant det(6d− i6s) with respect to the source sµ (see [16]
for a review). Now, as one learns from ordinary non-abelian bosonization, where the

Polyakov-Wiegmann identity plays a central rôle in the bosonization recipe, here one

should have an analogous identity which will lead to non-trivial changes at the level

of currents and, a fortiori, for the current algebra. In view of the relevance of these

objects in connection with two-dimensional bosonic and fermionic models, it will be

worthwhile to pursue the investigation initiated here in this direction.
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