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INTRODUCTION 
 
Conventionally, age is defined as the period that spans 
from birth to a given point in time. More rigorously, age 
may be defined as the time elapsed from conception of a 
zygote to a given time point. A more relevant concept 
than chronological age is biological age, which refers to 
the functional and structural status of an organism at a 
given age. A number of markers of biological age have 
been used over the years but none of them achieved 
sufficient accuracy for practical purposes [1–4]. The 
situation changed with the relatively recent discovery 
that the level of age-related methylation of a set of 

cytosine-guanine dinucleotides (CpG) located at 
specific positions on DNA throughout the genome, 
constitutes a highly reliable biomarker of aging defined 
by a mathematical algorithm, the multi-tissue age 
predictor also known as the epigenetic clock, devised by 
Stephen Horvath in 2013 [5]. Other epigenetic clocks 
have been devised [6–9] but since most are based on 
DNA methylation (DNAm) profiles, what will be 
discussed here for Horvath’s clock will apply to all of 
them. The features of the epigenetic clock have been 
extensively discussed in the literature [5, 10, 11] and 
will not be reviewed here. We will discuss different 
views of aging considered as an epigenetic mechanism, 
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ABSTRACT 
 
The view of aging has evolved in parallel with the advances in biomedical sciences. Long considered as an 
irreversible process where interventions were only aimed at slowing down its progression, breakthrough 
discoveries like animal cloning and cell reprogramming have deeply changed our understanding of postnatal 
development, giving rise to the emerging view that the epigenome is the driver of aging. The idea was 
significantly strengthened by the converging discovery that DNA methylation (DNAm) at specific CpG sites could 
be used as a highly accurate biomarker of age defined by an algorithm known as the Horvath clock. It was at 
this point where epigenetic rejuvenation came into play as a strategy to reveal to what extent biological age 
can be set back by making the clock tick backwards. Initial evidence suggests that when the clock is forced to 
tick backwards in vivo, it is only able to drag the phenotype to a partially rejuvenated condition. In order to 
explain the results, a bimodular epigenome is proposed, where module A represents the DNAm clock 
component and module B the remainder of the epigenome. Epigenetic rejuvenation seems to hold the key to 
arresting or even reversing organismal aging. 
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the role that the epigenetic clock may play in the 
process and rejuvenation as an interventive approach 
able to set back epigenetic age. 
 
Homeorrhesis, developmental program and aging 
 
From a physiological viewpoint, aging is characterized 
by a progressive decline in homeostatic potential with 
time [12] as well as by a drift in the set point of 
homeostasis, a process known as homeorrhesis. The 
term homeorrhesis, or moving homeostasis, was first 
used by Waddington in 1957 [13]. It refers to the fact 
that the set point of homeostasis changes during the 
different phases of life, as do other physiological 
parameters. What we usually call normal physiology is 
that of the young, optimally functioning adult, human or 
animal. From a developmental point of view, however, 
there is a sequence of normal physiologies, beginning in 
the egg and ending in the senescent individual. The 
homeostasis that gives us our frame of reference to 
define "normal" function is in fact homeostasis about a 
developmentally changing point. 
 
Although conventionally, the different stages of life are 
divided into development, adulthood, and aging, from a 
biological standpoint, all stages of life constitute a 
continuum and epigenetic age moves along that 
continuum. 
 
The nature and timing of the sequence of events that 
begins after fertilization and ends when sexual maturity 
is attained (developmental phase) must be genetically 
programmed and epigenetically driven. This program 
must be highly complex and must involve a great 
degree of coordination among different groups of cells, 
especially during the embryonic stage of the developing 
organism [14]. 
 
There are two possibilities after sexual maturity has 
been reached: (a) the aging process is also programmed; 
(b) the developmental program runs out shortly after 
sexual maturation occurs. In the latter scenario, the 
length of the reproductive period would be determined 
by the robustness of the homeostatic network of the 
adult organism. Senescence would appear when the 
network begins to run over tolerance [15]. The idea that 
aging is a programmed process has been previously 
proposed based on experimental data mainly from 
yeasts (Saccharomyces cerevisiae), worms 
(Caenorhabditis elegans) and mice [16]. The hypothesis 
that aging is a programmed process under the control of 
an epigenetic clock has also been proposed [17]. 
Another model of programmed aging proposes that 
organismal aging is the result of the combined action of 
many clocks, like DNA damage, telomere attrition, 
mitochondrial production of reactive oxygen and 

nitrogen species (ROS and RNS) at the cellular/ 
molecular level, as well as higher level clocks located in 
the central nervous system [18]. 
 
A strong source of evidence supporting programmed 
aging as a viable hypothesis comes from plants. In 
effect, plants are the only organisms where programmed 
cell death has a fairly well-established role during 
senescence (the word aging is seldom used for plants). 
Furthermore, senescence itself is a programmed event in 
some plants [19–22]. There are, however, views 
favoring alternative (b), namely, that aging is not  
a programmed process but a continuation of 
developmental growth, driven by genetic pathways such 
as mTOR [23]. It has also been proposed that biological 
aging may be a consequence of both developmental and 
maintenance programs, the molecular footprints of 
which give rise to epigenetic clocks [10]. 
 
The epigenetic clock and aging 
 
In humans, the epigenetic age calculated by the clock 
algorithm shows a correlation of 0.96 to chronological 
age and an error margin of 3.6 years, an unprecedented 
accuracy for a biomarker of age [5, 24]. Interestingly, 
the epigenetic clock predicts biological age with 
comparable high accuracy when applied to DNA taken 
from whole blood, peripheral blood mononuclear cells, 
occipital cortex, buccal epithelium, colon, adipose, 
liver, lung, saliva, and uterine cervix [5, 24]. The rate of 
change in DNA methylation at age-dependent CpGs 
represents the ticking rate of the epigenetic clock. The 
rate is very high in humans from birth to one year of 
age, from 1 to 20 years of age it progressively 
decelerates and from age 20 onwards it changes to a 
much slower rate [5, 10, 24]. It can also be said that the 
ticking rate of the epigenetic clock represents the 
changing rate of DNA methylation heterogeneity among 
cells in tissues [24]. 
 
There is compelling evidence that the ticking rate of the 
clock is significantly correlated with the rate of 
biological aging in health and disease. For instance, it is 
known that the rate of epigenetic aging is slower in 
supercentenarians and their descendants than in non-
centenarians [25]. Under pathological circumstances the 
epigenetic age displayed by the clock represents 
biological rather than chronological age. In humans, 
there are a growing number of pathologies associated 
with accelerated epigenetic aging, where evidence 
reveals a consistent and highly significant correlation 
between the rate of epigenetic and biological aging 
(Table 1). Such a consistent correlation between the rate 
of epigenetic and organismal aging suggests, although 
does not prove, that the DNAm clock may be the driver 
of organismal aging. It should be also considered that 
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the epigenetic pacemaker of aging may be a modular 
mechanism of which the epigenetic clock is a 
component (see below). 
 
Unfortunately, the possibility of moving from the realm 
of speculation into the field of experimentation seems 
elusive at present. Any experimental manipulation that 
either accelerates or slows down the rate of biological 
aging in an animal model is likely to act in the same 
sense on the rate of epigenetic aging. However, there 
would be no way to determine whether the primary 
effect of the manipulation was on the epigenome or on 
the downstream components of the DNA machinery. 
 
The above considerations apply to an epigenetic clock 
that ticks forward, that is in an organism that ages. 
Since we now have molecular tools, like the Yamanaka 
factors, that allow us to make the clock tick backwards, 
the time is ripe for opening a new dimension in 
gerontology, moving from aging research to epigenetic 
rejuvenation research. This is the main topic of the next 
sections. 
 
Rejuvenation by cell reprogramming 
 
Embryonic stem (ES) cells have the lowest possible 
chronological and epigenetic age that an organism may 
have. In biological terms, ES cells are fascinating as 
they may remain indefinitely young, that is, in a kind of 
suspended animation even if they keep proliferating. In 
ES cells, the epigenetic clock does not tick [5] nor does 
the circadian clock oscillate [26]. Only when ES cells 
differentiate, both clocks become active and cells begin 
to age. The first clues that somatic cells can be 
rejuvenated back to ES-like cells came from the 
development of animal cloning in the early 60s [27] and 
more recently, of cell reprogramming [28]. These 
seminal achievements paved the way for the subsequent 
implementation of cell rejuvenation [29–31]. 
 
There is clear evidence that cell reprogramming 
rejuvenates cells. Thus, it has been demonstrated that 
when somatic cells are reprogrammed to induced 
pluripotent stem (iPS) cells, which are embryonic-like 
cells, their epigenetic clock stops ticking, and circadian 
clocks stop oscillating [5, 26]. Furthermore, epigenetic 
age in human- and mouse-derived iPS cells is set back 
to zero or near zero, which is consistent with their 
blastocyst-like characteristics [5, 32]. 
 
In some instances, reprogramming cells from old 
individuals requires specific approaches. Thus, skin 
fibroblasts from old (18 months) mice were rejuvenated 
into ES cells by somatic cell nuclear transfer (SCNT) 
followed by collection of the inner cell mass from the 
resulting embryonic blastulas [33]. If the blastocysts 

were differentiated back into fibroblasts the newly 
generated cells would be rejuvenated. Cell rejuvenation 
has been also achieved in skin fibroblasts from healthy 
centenarians [34]. When placed in culture, skin 
fibroblasts from centenarians display a number of 
morphologic, molecular and functional deficits 
consequential to the highly advanced age of the donor. 
In 2011 a French group led by JM Lemaitre was able to 
reprogram skin fibroblasts from healthy centenarians 
using a cocktail of six reprogramming genes, Oct4, 
Sox2, Klf4, c-Myc, Nanog and Lin28 [34]. This 6-factor 
combination reprogrammed fibroblasts from very old 
donors into typical iPS cells. The iPS cells so generated 
were incubated with a differentiation cocktail that 
induced them to differentiate back into fibroblasts whose 
transcriptional profile, mitochondrial metabolism, 
oxidative stress levels, telomere length and population 
doubling potential were indistinguishable from those of 
skin fibroblasts from young counterparts (Figure 1). 
After taking the data together, the authors concluded that 
the centenarians’ fibroblasts had been rejuvenated. The 
implications of this and other reports [35–39] are far-
reaching and place the view of aging under a new 
perspective, which in such a novel field, leads to 
avenues that at present are of necessity hypothetical, 
essentially new ideas to test. For the sake of clarity, we 
resort to an analogy presented by Alex Comfort to 
illustrate the determination of lifespan, which imagines 
an interplanetary probe whose mission is to fly past 
Mars [40]. The probe carries an onboard computer that 
acts as a homeostatic system monitoring the correct 
functioning of the different components of the probe. In 
such device the lifespan of each component has been 
programmed to last until the end of the mission allowing 
for some tolerance to compensate for any unforeseen 
extensions of the mission. During the flight, the 
computer will correct any malfunction consequential to 
wear and tear of individual components. Upon arrival to 
Mars (analogous to successful reproduction in biological 
systems) the probe will continue functioning for some 
time but its different components will be expected to 
become progressively damaged by environmental factors 
and endogenous wear and tear (cumulative damage). The 
computer software will also be expected to undergo 
progressive deterioration (loss of information) and at a 
certain point fuel will be exhausted. The probe would be 
approaching the end of its functional life. Let’s assume 
that the probe is somehow refueled and mission control 
on earth sends to it wireless computer commands to 
reignite engines and return to earth. If the cumulative 
damage of computer hardware and loss of information in 
the software have gone beyond a critical point, the probe 
will not be able to effectively respond to mission control 
telecommands. But if the probe responds appropriately 
to all commands and successfully returns to earth,  
the engineers that built the device will be compelled 
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Table 1. Conditions that affect the rate of epigenetic aging in humans. 

Condition Aging rate References 
Down syndrome Fast [56] 
Vasomotor symptoms Fast [57] 
Werner syndrome Fast [58] 
Bipolar disorder Fast [59] 
Huntington's disease Fast [60] 
Obesity Fast [61, 62] 
Menopause Fast [63] 
Parkinson Fast [64] 
Cancer Fast [65–67] 
Centenarian or Supercentenarian Slow [24] 
Allergy and asthma Fast [68] 
HIV Fast [69–71] 
Alzheimer Fast [72] 
Alcohol use disorder Fast [73] 
Osteoarthritis Fast [74] 

 

 
 

Figure 1. Rejuvenation by cell reprogramming of fibroblasts from healthy centenarian individuals. In culture, fibroblasts from 
old individuals display a typical transcriptional signature, different of that from young counterparts as well as shortened telomeres, reduced 
population doubling (PD) potential, dysfunctional mitochondria and higher levels of oxidative stress. When cells were reprogrammed to iPS 
with a 6-factor cocktail the above alterations were fully reversed. Then iPS cells were differentiated back to fibroblasts by culture in the 
presence of an appropriate set of differentiation factors. In the resulting cells, all of the above variables had levels typical of fibroblasts taken 
from young individuals. See [34] for further details. 
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to conclude that the integrity of the critical components 
and the information on the computer were fully 
preserved. Cell rejuvenation studies like the two 
summarized above, suggest that even at advanced ages 
the epigenome remains responsive to command signals 
like the OSKM genes which is compatible with the 
hypothesis that aging, even at advanced stages, is not 
associated with critical deterioration of the epigenetic 
mechanisms that control cell function. Recently, an 
alternative hypothesis has been drawn from studies in 
transgenic mice known as ICE mice (for inducible 
changes to the epigenome). In these animals several 
aging features can be attained by inducing non-mutagenic 
double breaks in DNA which disrupt epigenetic 
information. The results led to the view that aging is not 
due to DNA mutations but to progressive epigenome 
disorganization and consequential loss of epigenetic 
information [41, 42]. 
 
The possibility is also considered that a backup copy of 
epigenetic information could be stored somewhere 
within cells. In order to explain the ability of cells from 
aged individuals to be reprogrammed into iPS cells in 
the framework of this alternative hypothesis [43], one 
must assume that cells can retrieve this putative backup 
information in response to reprogramming factors. An 
implication of the epigenetic backup hypothesis is that 
in mammals, a complex molecular mechanism evolved 
to keep a backup copy of epigenetic information  
in somatic cells. It is difficult to imagine what 
evolutionary purpose such storage mechanism may 
serve, as rejuvenation does not occur naturally in 
mammals. In this context, it seems reasonable to apply 
the philosophical principle known as the Occam’s razor 
or simplicity principle, which states that when there are 
two or more alternative hypotheses to explain an 
occurrence, the one that requires the smallest number of 
assumptions is likely to be correct [44]. In this case, the 
simplest hypothesis is that aging, even at advanced 
stages, is not associated with critical deterioration of the 
epigenome. 
 
Rejuvenation by cyclic partial cell reprogramming 
 
Although the OSKM genes have been successfully and 
repeatedly used to rejuvenate somatic cells, the same 
protocol cannot be used in vivo as the dedifferentiation 
process associated with rejuvenation during cell 
reprogramming would induce multiple teratomas in vivo 
[45, 46]. This hurdle seems to have been overcome by 
the development of cyclic partial cell reprogramming, a 
strategy based on the use of multiple cycles of 
interrupted reprogramming in which the OSKM genes 
transcription is turned on briefly and then turned off by 
means of regulatable promoters (Figure 2-middle and 
bottom diagrams). In each cycle the process seems to 

erase some epigenetic marks of age, sparing the 
epigenetic marks of cell identity [47]. To our 
knowledge, there are only two documented studies 
reporting the implementation of cyclic partial cell 
reprogramming in vivo. In one of the studies the 
treatment, applied to transgenic progeric mice, 
significantly prolonged their survival and partially 
rejuvenated some tissues although it did not rejuvenate 
the mice themselves [48]. In the other study, cyclic 
partial reprogramming in the hippocampus of middle-
aged mice partly reversed the age-dependent reduction 
in histone H3K9 trimethylation. The treatment elevated 
the levels of migrating granular cells in the dentate 
gyrus and also improved mouse performance in the 
object recognition test [49]. 
 
In the studies that achieved cell rejuvenation by means 
of conventional reprogramming followed by subsequent 
redifferentiation of resulting iPS cells to the cell type of 
origin, the phenotype was completely rejuvenated. 
However, the outcome may not be the same when cyclic 
partial reprogramming is used. If for instance, it is 
assumed that the epigenetic pacemaker of aging is a 
modular mechanism composed of the epigenetic clock 
(module A) and a non-clock component (module B), 
then three possibilities can be contemplated a) a default 
scenario where conventional (full) reprogramming is 
used. (Figure 2-upper diagram). In this case, all 
epigenetic marks of age and cell identity are erased 
leading to a fully rejuvenated phenotype, the iPS cell; b) 
a partial reprogramming scenario where all epigenetic 
marks of age are erased from module A and B, but the 
epigenetic marks of cell identity are fully spared. 
Conceivably, this could lead to an outcome where the 
phenotype is fully rejuvenated in every aspect (Figure 
2-middle diagram); c) a partial reprogramming scenario 
where the epigenetic marks of age are erased from 
module A but not module B; as before, the epigenetic 
marks of cell identity are fully spared. This could lead 
to an outcome where the epigenetic clock is set back to 
a young age, but the phenotype is only partially 
rejuvenated (Figure 2-bottom diagram). As mentioned 
above, we are aware of two documented studies 
reporting the implementation of cyclic partial cell 
reprogramming in vivo [48, 49]. Unfortunately, in 
neither study epigenetic age was measured which 
prevented the determination of the extent to which the 
epigenetic clock was set back. 
 
Despite the promise offered by partial cell 
reprogramming for safe rejuvenation in vivo, it should 
be pointed out that the OSKM genes are unlikely to 
have evolved as a physiological mechanism to regulate 
the epigenetic clock during adult life, rather their most 
plausible role seems to be the resetting of epigenetic age 
to zero in the zygote [31]. 
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Dual effects of Yamanaka genes according to the 
delivery method 
 
Recent results have revealed that the Yamanaka genes 
have a dual behavior when expressed continuously in 
vivo, being regenerative when delivered via viral 
vectors but lethally toxic when expressed in transgenic 
mice. Thus, a recent report shows that delivery of the 
OSK genes by intravitreally injecting a regulatable 
adeno-associated viral vector type 2 (AAV2) expressing 

the polycistron OSK, can reverse vision deficits in two 
mouse models [50]. One of them consists of an 
experimental model of glaucoma in mice. OSK-AAV2 
injection into the vitreous body resulted in DOX-
responsive OSK gene expression in around 40% of the 
retinal ganglion cells (RGC) and after 4 weeks of 
continuous OSK expression, an optometric test revealed 
a significant recovery of vision which was associated 
with RGC axon regeneration. The same treatment 
reversed the typical age-related vison impairment in 

 

 
 

Figure 2. Modular epigenome model to explain in vivo rejuvenation results. A bimodular epigenome is considered, where Module 
A represents the DNAm clock component which encompasses all age-dependent DNA methylation epigenetic marks. Module B represents 
the remainder of the epigenome, including but not limited to cell identity marks. The model does not make further assumptions on the 
properties of each module. In this context, the existence of, for instance, age-dependent cell identity marks (bivalent marks) is not ruled out. 
The upper diagram (path 1) proposes that ex vivo, conventional reprogramming erases all age and cell identity marks from both modules, and 
can turn an old (brown color represents old) neuron or any other cell, into an iPSC that can then be differentiated back to a rejuvenated (blue 
represents young) neuron. In vivo, continuous expression of the OSKM genes leads to the genesis of multiple teratomas and the death of the 
animal. The middle diagram (path 2) illustrates the hypothesis that several cycles of partial reprogramming can progressively rejuvenate cells 
by erasing all epigenetic marks of age without affecting cell type identity marks. This means that in principle, the strategy could lead to major 
phenotype rejuvenation in vivo. The lower diagram (path 3) illustrates an alternative outcome for partial reprogramming. In this case, partial 
reprogramming erases age marks from the DNAm clock (module A) but spares age marks of module B. This outcome is compatible with a 
major resetting of DNAm age but partial rejuvenation of the phenotype. 
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12 months old mice. Long-term (12-16 weeks) continuous 
expression of OSK genes in RGC, induced neither 
pathological changes nor RGC proliferation. Also, 
continuous expression (for up to 10-18 months) of OSK in 
intravenously OSK-AAV2-injected young and old mice 
was devoid of any adverse side effects. In contrast, DOX-
induced expression of OSK in OSK transgenic mice, 
induced rapid weight loss and death, likely due to severe 
dysplasia in the digestive system [50]. It is of interest that 
intravenous OSK-AAV2 vector injection in mice and 
long-term expression of OSK did not induce weight loss 
or gastrointestinal abnormalities. 
 
It is well-established that continuous in vivo expression 
of OSKM genes in transgenic mice induces teratomas 
and other toxic effects that lead to prompt death [38, 44, 
47, 48]. Interestingly, in human umbilical cord  
cells transduced with a Tet-Off regulatable helper-
dependent adenovector expressing an OSKM-GFP 

polycistronic cassette [52], continuous expression of the 
five transgenes for over 15 weeks, induced neither 
toxicity nor proliferation although it did induce a 
significant redistribution of the cells in the cultures 
(Figure 3). It is also of interest that transient (4 days) 
transfection of a cocktail of mRNAs expressing Oct4, 
Sox2, Klf4, c-Myc, Lin28, and NANOG (OSKMLN) 
induced a rapid reversal of cellular aging in human 
fibroblasts and endothelial cells, in each case without 
altering cellular identity. However, longer (15 days) 
expression of this mRNA cocktail did reprogram the 
cells [52]. 
 
Taken together, these initial results suggest that 
although the Yamanaka genes remain silent in Tet-On 
transgenic mice during embryogenesis and early life, 
transgenesis might in some way sensitize the animals to 
them when continuously expressed in adult life. In 
contrast, expression of Yamanaka genes delivered via

 

 
 

Figure 3. Morphological changes induced by long-term OSKM gene action in human umbilical cord perivascular cells 
(HUCPVC). (A) HUCPVC incubated for 7 days with an adenovector expressing a polyscistron harboring OSKM and GFP genes. Phase contrast 
microscopy; (B) The same field observed under fluorescence microscopy. (C) HUCPVC incubated for 85 days with the above OSKM-GFP 
adenovector. Phase contrast microscopy; (D) The same field as in C observed under fluorescence microscopy. Inset (E) Control intact HUCPVC 
on Experimental day 7. Obj X 4 in all panels. (Goya et al., unpublished results). 



www.aging-us.com 4741 AGING 

viral vectors, and expressed continuously, appears to 
have regenerative activity at least in certain cell types. 
 
Another important implication of the above evidence is 
that continuous expression of the Yamanaka genes in 
cells does not necessarily lead to dedifferentiation when 
the genes are delivered via viral vectors. 
 
Rejuvenation by non-reprogramming strategies 
 
It has been reported that a one-year combined treatment 
with human recombinant growth hormone metformin, 
and dehydroepiandrosterone, of a group of men aged 
from 51 to 65 years, rejuvenated their epigenetic age by 
approximately 1.5 years. The treatment, which was 
designed to rejuvenate the thymus, improved a number of 
immune parameters [53]. Furthermore, in a recent 
preliminary study in male rats, results showed that a 
protein fraction from young plasma can markedly set 
back the epigenetic age of some tissues in old rats [54]. 
Specifically, the authors report that repeated intravenous 
administration of a plasma fraction (termed elixir) from 
young rats to old counterparts during 5 months (begun at 
age 20 months until 25 months), sets back the epigenetic 
age of liver, blood and heart tissue of the treated old rats 
to nearly that of adult rats (7 months old). The effect of 
the plasma fraction on the DNAm clock was paralleled 
by significant functional improvements in a number of 
hematological, biochemical and functional parameters. 
The hypothalamus was an exception as the treatment 
showed a modest although still significant rejuvenation 
effect on DNAm age. Interestingly, despite the reported 
improvement of the parameters mentioned above, the old 
rats were not brought back to a complete young 
condition. For instance, their body weight, known to 
increase significantly with age in male rats, was not 
reduced by the treatment [54]. It seems likely that what 
this study achieved was a marked reversal of epigenetic 
age associated with partial rejuvenation of the phenotype. 
The findings would be compatible with the hypothetical 
scenario illustrated in the bottom diagram of Figure 2. 
However, in this particular case a more complete 
interpretation of results requires a refinement of the model 
by assuming a trimodular epigenome, where module A 
encompasses the clock component, module B, represents 
a non-clock component that is responsive to elixir, and 
module C represents the portion of the epigenome that is 
insensitive to the rejuvenating effect of elixir. 
 
CONCLUSIONS 
 
Gerontology is perhaps the biological discipline that has 
given rise to the largest number and variety of theories 
even before the development of modern science. Most 
theories aimed not only at elucidating the mechanism of 
aging but also at providing effective interventions to 

slow aging down. In fact, the field of endocrinology 
was born from experiments -- aimed at testing a theory 
of aging -- reported at the end of the XIX century, by 
Charles E. Brown-Séquard, who injected himself 
subcutaneously on 10 occasions over a 3-week period, 
with testicular extracts derived from dogs and guinea 
pigs in an attempt to counter the effects of aging [55]. In 
the late 50s the focus of research attention moved to 
DNA as the likely driver of aging either by expressing a 
program of aging or by being the target of endogenous 
and external insults that accumulated damage on the 
molecule during the lifetime of an organism. Up to this 
stage, aging was considered as an essentially 
irreversible process. However, with the discovery of 
cell reprogramming, early in this century, a view began 
to emerge that considers aging as a reversible epigenetic 
process [29–31]. The hypothesis proposing the 
epigenome as the driver of aging was significantly 
strengthened by the converging discovery that DNA 
methylation at specific CpG sites could be used as a 
highly accurate biomarker of age defined by the 
Horvath clock [5]. The strong correlation between the 
dynamics of DNA methylation profiles and the rate of 
biological aging leads to the idea that the epigenetic 
clock may in fact be the pacemaker of aging or at least a 
component of it. And it is at this point where epigenetic 
rejuvenation comes into play as a strategy to reveal to 
what extent biological age can be set back by making 
the clock tick backwards. The few initial results already 
documented seem to suggest that when the clock is 
forced to tick backwards in vivo, it is only able to drag 
the phenotype to a partially rejuvenated condition. 
Nevertheless, it would be premature to draw firm 
conclusions from the scanty experimental results so far 
documented. What seems to be clear is that epigenetic 
rejuvenation by cyclic partial reprogramming or 
alternative non-reprogramming strategies holds the key 
to both, understanding the mechanism by which the 
epigenome drives the aging process and arresting or 
even reversing organismal aging. 
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