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STATES IN GENERALIZED PROBABILISTIC MODELS: AN APPROACH

BASED IN ALGEBRAIC GEOMETRY

CÉSAR MASSRI2,4 , FEDERICO HOLIK1,3 AND ÁNGELO PLASTINO1

Abstract. We present a characterization of states in generalized probabilistic models by appeal-
ing to a non-commutative version of geometric probability theory based on algebraic geometry
techniques. Our theoretical framework allows for incorporation of invariant states in a natural
way.

1. Introduction

States in physical theories must determine well defined probabilities for any testable empirical
event. In classical theories, such as classical statistical mechanics, probabilistic states can be
represented by measurable functions on a phase space. In this way, states of classical theories obey
the axioms of Kolmogorov for probabilities. In Kolmogorov’s setting, probabilities are considered
as measures defined over a σ-algebra of measurable subsets of a given outcome set. Kolmogorov’s
achievement solved a problem posed in the year 1900 by the Mathematician David Hilbert [16,
p. 454] (Hilbert’s sixth problem) with regard to the axiomatization of probabilities. The ensuing
solution was given in terms of measure theory, being suitable for a rigorous treatment of the
problem.

Quantum mechanics showed that this correspondence between states and Kolmogorovian mea-
sures is not universal. Quantum states are represented by density operators [19, 20], which are
very different mathematical objects. Indeed, a quantum state, defines a Kolmogorovian probability
distribution for each empirical setup [39]. But if we mix events from different and incompatible
setups, then Kolmogorov’s rules for probability can be shown to fail [13]. Thus, the best we can do
is to represent a quantum state as a family of Kolmogorovian measures pasted in a harmonic way
[21]. Note that probabilities given by measurements on a single empirical setup are not enough: we
must perform measurements of different incompatible observables in order to determine a quantum
state completely (see for example [27]).

This can be expressed by using other words: while the set of states of a classical probabilistic
theory forms a simplex, the sets of quantum states exhibit a more involved geometrical structure
[6]. This distinction acquires a very specific mathematical expression: while classical probabilistic
states can be described as measures over Boolean lattices, quantum states are described by measures
over non-Boolean ones. This fact is related to the non-commutative character of observables. The
algebras involved in models of standard quantum mechanics can differ from those used in quantum
field theory [14], or in quantum statistical mechanics [3, 4]. While in non-relativist quantum
mechanics we only have Type I factors, other factors can appear in a relativistic setting and
in quantum statistical mechanics [17, 37, 3]. The algebras associated to classical systems are
commutative [3]. The rigorous formulation of quantum theory can be considered as an extension
of measure theory to the non-commutative setting [15]. States in quantum theories can be also
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characterized as non-Kolmogorovian probabilistic measures [37]. These formal developments can
be considered as a continuation of the program outlined in Hilbert’s sixth problem.

In many situations of interest, the task of the physicist is to find out which is the state of
the system under study, given that certain constraints are specified. One of the most important
constraints are given by symmetries, and symmetries are usually represented mathematically by
the action of groups. Thus, the problem of determining measures which are invariant under the
action of certain groups is an important one for physics. The problem of finding invariant states
in operator algebras was studied in the mathematical physics literature, and is a hard one (see for
example [3], Section 4.3).

In this work, we study this problem in the setting of general orthomodular lattices. Our results
can be connected with those of the above mentioned algebraic approach in a natural way, because
the algebraic structure of some of the operator algebras used in mathematical physics is in close
relation with the properties of the lattices formed by their self-adjoint idempotent elements (i.e.,
projection operators) [22, 29, 30, 41, 31]. Applications of probabilities defined over non-Boolean
structures are not restricted to physical theories (see for example [25] and [44]). The case of
measures over bounded lattices is studied separately [28] and should not be confused with the
study of states in probabilistic theories. Our contribution is twofold

• From the mathematical point of view, we provide an extension of the mathematical frame-
work involved in the derivation of Groemer’s integral theorem in a non-Boolean setting.
This could be considered as a non-commutative generalization of geometric probability
theory based on algebraic geometry techniques.

• We apply our extension to quantum theories represented by event structures which can be
non-Boolean in general. This allows us, via our non-Boolean (or non-commutative) version
of Groemer’s theorem, to characterize all states which are invariant under the action of a
general group G.

In order to find a suitable framework for incorporating conditions imposed by the action of
groups, in [18] we proposed a reformulation of the MaxEnt problem in terms of a non-Boolean
version of geometric probability theory [36, 26]. This rephrasing of the problem can be helpful for
an axiomatic approach to the study of symmetries in the quantum setting, and thus, it can also
be considered as a continuation of the program outlined by Hilbert’s sixth problem. The present
work is a natural follow up of the ideas presented in [18].

Our formalism could be helpful in contexts such as the ones appearing in the algebraic formula-
tion of quantum statistical mechanics or quantum field theory. It is also suited for the application
of the MaxEnt method to a wide range of models, because it is compatible with the specification
of linear constraints (or more general ones) representing mean values [18].

Outline of the paper: In Section 2 we review elementary notions and start by the descrip-
tion of states in physical theories, and other mathematical preliminaries. We place empha-
sis on the fact that states of classical theories can be considered as measures over Boolean
algebras, while states of quantum theories must appeal to measures over orthomodular
lattices.

In Section 3 we discuss our approach for the particular case of complete Boolean atom-
istic lattices. This example is very important, because classical probabilistic models can
be described by measures over σ-algebras which are Boolean lattices. The constructions
and methods of this Section help to illuminate the extensions to the non-Boolean case of
the rest of the paper. The content of this Section can be considered as a physical version
of geometric probability theory.

In Section 4 we extend the construction of Section 3 to the more general case of additive
orthogonal measures on orthocomplemented lattices. In this Section we apply our general
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theoretical framework to the kind of measures which appear in physical theories of inter-
est (such as classical statistical mechanics, non-relativistic quantum mechanics, algebraic
quantum field theory and algebraic quantum statistical mechanics). In this way, we show
how our theoretical framework is useful to characterize invariant states. We also discuss
the case of Gleason’s theorem [15, 9, 2].

The mathematical intuition behind our construction is that of extending geometric
probability theory to the non-Boolean case, by appealing to algebraic geometry techniques.
The physical intuition is that of considering physical states as invariant measures (see [18]
for a previous version of this approach). The cases of interest for physics are given by
orthomodular lattices and measures valued in the ring of real numbers. But we build
our mathematical framework for the general case first, because in this way it is easier
to understand the essential mathematical structures underlying our construction. A key
feature of our theoretical framework is that we appeal to a mathematical technique based
in algebraic geometry. Starting with an arbitrary orthocomplemented lattice L, we build
the abelian group Z⊕L generated by L, formed by all possible formal sums of its elements.
By taking the ratio M(L) = Z⊕L/S with respect to a suitably chosen subgroup S, we
obtain a commutative group which will be useful to characterize invariant measures1. We
show that a linear function from M(L) is the same as a measure on L. One of our main
results is given by Theorem 4.9, which allows us to characterize, by means of Corollary
4.6, all invariant measures acting by automorphisms on the lattice. This means that, given
an arbitrary lattice endowed with a set of measures (which could represent states of a
given physical model), and an arbitrary group (which could be a group of automorphisms
representing a physical symmetry), we obtain a canonical and constructive characterization
of its invariant measures. We end Section 4 with some examples regarding positive measures
and Gleason’s theorem.

Finally, in Section 5, we draw some conclusions.

2. Preliminaries

In this Section we introduce some elementary notions on lattice theory and states of physical
theories as measures over lattices. The reader familiarized with lattice theory, may skip this.

2.1. Lattice Theory. A poset (L,≤) is called a lattice if every two elements x, y have a supremum
x∨y and an infimum x∧y [22]. We denote by 0 and 1 to the bottom and top elements, respectively,
of a bounded lattice (L,≤,∨,∧). A bounded lattice (L,≤,∨,∧) is called complemented if for every
x ∈ L there exists y ∈ L such that

x ∨ y = 1, x ∧ y = 0.

A morphism between bounded lattices f : (L,≤,∨,∧,0,1) → (L′,≤,∨,∧,0,1) is a poset function
such that

f(x ∧L y) = f(x) ∧L′ f(y), f(x ∨L y) = f(x) ∨L′ f(y), f(0) = 0, f(1) = 1.

An element z of a poset is an atom if the interval {0 ≤ a ≤ z} consists on two elements,

{0 ≤ a ≤ z} = {0, z}.

A lattice L is called atomic if for every x ∈ L\0, there exists an atom z such that z ≤ x. It is said
to be atomistic if every element can be written as a join of atoms. A lattice L is called distributive

1This construction is standard in commutative algebra. See for example the construction of the tensor product
in [1, Prop.2.12].
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if for every x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A complemented distributive lattice is called a Boolean lattice. In a distributive lattice, comple-
ments are unique. A lattice in which every countable subset has a meet and a join is called a
σ-lattice. The next Proposition is going to be useful in Section 3.

Proposition 2.1. If z is an atom of a distributive lattice L, then

z ≤ a ∨ b⇐⇒ z ≤ a or z ≤ b.

Proof. First, note that z ∧ b and z ∧ a are less than or equal to z, hence they must be equal to 0
or to z. If z ∧ b = 0 = z ∧ a, from the distributive law, z ∧ (a ∨ b) = 0. But, from the equation
z ≤ a ∨ b, we obtain z = z ∧ (a ∨ b), a contradiction. The other implication is obvious. �

An orthocomplementation on a bounded lattice is a function that maps each element a to a
complement a⊥ in such a way that the following axioms are satisfied:

• Complement: a ∨ a⊥ = 1 and a ∧ a⊥ = 0.
• Involution: (a⊥)⊥ = a.
• Order-reversing: if a ≤ b then b⊥ ≤ a⊥.

An orthocomplemented lattice is a bounded lattice which is equipped with an orthocomplementa-
tion. Orthocomplemented lattices, like Boolean algebras, satisfy de Morgan’s laws:

(a ∨ b)⊥ = a⊥ ∧ b⊥, (a ∧ b)⊥ = a⊥ ∨ b⊥.

A morphism between orthocomplemented lattices is a lattice map that preserves the orthocomple-
mentation. We say that a group G acts on a orthocomplemented lattice if there is a group map
from G to the group of automorphisms of the lattice.

An orthomodular lattice L is an orthocomplemented lattice such that

a ≤ b =⇒ a ∨ (a⊥ ∧ b) = b, ∀a, b ∈ L.

We say that x is orthogonal to y, denoted x⊥y, if y ≤ x⊥.

2.2. States as measures. A general approach to physical theories, very useful for discussing
foundational purposes, is based on von-Neumann algebras [17, 37]. Let B(H) be the algebra of
bounded linear operators acting on a separable Hilbert space H . A von Neumann algebra is a
∗-subalgebra of B(H) that contains the identity operator and that is closed in the weak operator
topology. The weak operator topology is defined as the weakest topology such that the functional
sending an operator A to the complex number 〈Aφ,ψ〉, is continuous for all vectors φ, ψ ∈ H. Due
to the celebrated von Neumann’s double commutant theorem [34], von Neumann algebras can be
regarded as a ∗-subalgebra W , containing the identity operator and satisfying W ′′ = W , where
given S ⊆ B(H), S′ is defined as

S′ = {A ∈ B(H) | AB −BA = 0 ∀B ∈ S} (1)

B(H) is a von Neumann algebra, but it is not the only one. For example, it is possible to consider
the algebra of observables of a classical theory as a commutative von Neumann algebra. In algebraic
relativistic quantum field theory, the algebras associated to space time regions will be generally
the class of von Neumann algebras known as Type III factors [43]. A similar situation occurs in
the algebraic approach to quantum statistical mechanics, where Type II and Type III factors may
appear [37]. Thus, the approach based on von Neumann algebras is adequate for a very general
family of physical models. A state ν : W −→ C is defined as a continuous positive linear functional
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such that ν(1) = 1 (see Reference [37]2). Positivity means that ν(A∗A) ≥ 0 for all A ∈ W or,
equivalently, that ν(A) ≥ 0 for all A ≥ 0, see [38, §2.1]. Normal states can be defined as those
states satisfying the condition ν(supα(Aα)) = supα ν(Aα) for any uniformly bounded increasing
net Aα of positive elements of W (equivalently, states satisfying ν(

∑

i∈I Ei) =
∑

i∈I ν(Ei) for

any countable and pairwise orthogonal family of projection operators3 {Ei}i∈I). Normal states
are real-valued for self-adjoint elements of W (recall that A is self adjoint iff A∗ = A) and they
form a convex set. It can be shown that the set of projection operators associated to an arbitrary
von Neumann algebra W is an orthomodular lattice L(W) [34]. Thus, normal states of physical
theories define probabilities on orthomodular lattices satisfying the following properties:

ν : L → [0, 1], (2a)

such that

ν(1) = 1, (2b)

and, for a denumerable and pairwise orthogonal family of events {Ei}i∈I ,

ν(
∑

i∈I

Ei) =
∑

i∈I

ν(Ei) . (2c)

where L is the lattice associated to a particular algebra. In standard quantum mechanics L is the
lattice of projection operators on a Hilbert space and Gleason’s theorem ensures that it defines a
density operator. In classical mechanics L is the Boolean lattice of measurable subsets of phase
space. In algebraic relativistic quantum field theory, each local region and a global state will define
a lattice (associated to a Type III factor) satisfying the above axioms. Notice that Eqs. 2 make
sense for mathematical objects more general than orthomodular lattices [13]. For example, one
may use orthocomplemented lattices, or more generally, orthocomplemented posets (which are not
necessarily lattices) [13]. Another important remark is that if, instead of condition 2c, we only
impose additivity, we will obtain the more general notion of additive probability:

ν : L → [0, 1], (3a)

such that

ν(1) = 1, (3b)

and, for orthogonal elements E1 and E2,

ν(E1 ∨ E2) = ν(E1) + ν(E2) . (3c)

In this work, we will refer to probabilities defined by Eqs. 2 and 3 as σ-additive and additive,
respectively. In fact, we will change the codomain of ν in conditions (2a) and (3a) in order to work
with measures. See [15, 8] for generalizations of Gleason’s theorem.

It is important to notice that the Boolean vs. non-Boolean distinction is crucial here: while states
of classical theories are measures over Boolean lattices (and thus, they obey Kolmogorov’s axioms),
states of non-classical theories cannot be equated to Kolmogorovian measures. Furthermore, all
quantal theories “suffer” of contextuality: the Kochen-Specker theorem can be generalized to
arbitrary von Neumann algebras [7]. This crucial distinction allows one to see that quantum
theories define a new form of measure theory, much more general than the one used in Kolmogorov’s
axioms [37, 15]. In particular, as we show in our work, the whole theoretical framework must be
adapted in order to deal with invariant measures representing physical symmetries.

2Throughout this paper we assume that W is unital, i.e., that it possesses an identity element 1

3Here, a projection operator is understood as a self adjoint and idempotent element of the algebra. Elementary
tests to be performed on the system involved, also known as events, are represented by projection operators (c.f.
[34]).
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A measure defined in an orthomodular lattice satisfying Eqns. 2 can be considered as a family
of Kolmogorovian measures: if the lattice is non-Boolean, this family has only one member (the
Boolean lattice itself). But if the lattice is not Boolean, it is possible to show that an orthomodular
lattice can be considered as a pasting of maximal Boolean subalgebras [32], and a state will define
a Kolmogorovian measure when restricted to one of them [21, 39].

The following Definition formalizes the idea of a state which possesses a symmetry represented
by the action of a group:

Definition 2.2. Given an algebra W and a group G, denote the action of G by A ∈ W as
τg(A) ∈ W for all g ∈ G. A state ν is said to be G-invariant if ν(τg(A)) = ν(A) for all A ∈ W and
for all g ∈ G.

Notice that if G is represented by automorphisms in the lattice of projection operators, similar
definitions can be made for states defined as measures in Eqns. 2 and 3.

Suppose now that the group G acts on an orthomodular lattice L by automorphisms. Denote
by αg to the automorphism corresponding to g ∈ G. Thus, a measure ν satisfying Equations 2, is
said to be invariant under the action of G if ν(αgx) = ν(x), for all x ∈ L and all g ∈ G, see [40].

3. The ring of functions on a complete Boolean atomistic lattice

In this Section, we restrict ourselves to complete Boolean atomistic lattices in order to illustrate
on some properties that will be extended later to the non-Boolean case. Let us start by recalling the
description of a classical statistical system. States of a classical system will be described by points in
a measurable phase space Γ. Observables are described by functions f : Γ −→ R such that for every
measurable set E ⊆ R, f−1(E) is measurable in Γ, usually Γ = R

2N endowed with the Lebesgue
measure. The appeal to measure theory allows one to build well defined probabilistic states:
testable events will be defined as measurable subsets of Γ. As it is well known, the measurable
subsets of Γ form a Boolean lattice (thus, states can be defined as in Eqns. 2, with L equal to the
lattice of measurable subsets of Γ).

Let us show how to assign a ring to a complete Boolean atomistic lattice. Let B be a complete
Boolean atomistic lattice and let A(B) be the set of its atoms. For every x ∈ B, we can consider
the indicator function of x, Ix : A(B) → R as

Ix(z) =

{

1 if z ≤ x,

0 if not.
(4)

Using the properties of B as an atomistic lattice and Prop. 2.1 of Section 2, it is easy to see that
the indicator functions satisfy for all x, y, x1, . . . , xn ∈ B,

IxIy = Ix∧y

Ix∨y + Ix∧y = Ix + Iy

Ix1∨...∨xn
= 1− (1− Ix1

) . . . (1− Ixn
) (5)

Let us call Fun(A(B)) the algebra of functions from A(B) to R. The algebra operations are given
by pointwise addition and multiplication. The real numbers act by scalar multiplication. Inside
Fun(A(B)) we have the subalgebra Sim(A(B)) of simple functions generated by the indicators
(i.e., all possible finite combinations of the form

∑n

i=1 αiIxi
). Notice that we can assign to every

x ∈ B the indicator function of its atoms,

B → Sim(A(B)), x 7→ Ix := I{z∈A(B) : z≤x}.
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Given that B is atomistic, this assignment is injective and by Prop. 2.1, Ix∨y = I{z≤x}∪{z≤y}.
From the completeness of B is follows that any indicator function IA is equal to Ix, x =

∨

z∈A z.

Notice that a linear functional ν̃ from Sim(A(B)) to R must satisfy

ν̃(Ix∨y) + ν̃(Ix∧y) = ν̃(Ix) + ν̃(Iy) (6)

An important idea is at stake here. Given a Boolean lattice B, we say that a function ν : B → R

is an additive measure4 (or just a measure) if given x, y ∈ B,

ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y).

The measure ν is called bounded if it has a bounded image, positive if it takes positive values. It
is called a probability function if its image is the interval [0, 1] (and thus, it is a particular case
of Eqs. 3, for L a Boolean lattice). As it is well known, the above definition of measure can be
derived from the following axiom,

ν(x ∨ y) = ν(x) + ν(y), ∀x⊥y.

The advantage of this axiom is that it can be used to extend the definition of additive measure to
any orthocomplemented lattice L. If we instead impose the condition

ν(
∞
∨

i=0

xi) =
∞
∑

i=0

ν(xi), xi⊥xj , ∀i 6= j,

we say that ν is a σ-additive measure on L5.

Let us go back to our previous constructions. We noticed that a linear functional ν̃ from
Sim(A(B)) to R can be viewed (by restriction to B) as a measure on the complete Boolean
atomistic lattice B. This connection is provided by Eq. 6. Indeed, given a function ν̃ defined on
Sim(A(B)), we obtain a measure on B by defining ν(x) = ν̃(Ix), for all x ∈ B. Eq. 6 guarantees
that ν satisfies the axioms of an additive measure. Analogously, a measure ν on B determines
a linear functional ν̃ from Sim(A(B)) to R by defining ν̃(Ix) = ν(x). By Eqs. 5 we obtain the
desired functional. Specifically, we proved a bijection,

φ : {ν : B → R : ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y)} → {ν̃ : Sim(A(B)) → R : ν̃ linear}.

If φ(ν) = φ(ν′), then φ(ν)(Ix) = φ(ν′)(Ix) for all x ∈ B. Hence, ν = ν′. Given ν̃, set ν = ν̃|B.
Then, φ(ν) = ν̃. This mathematical fact has a simple physical explanation (when probabilities
are considered): the probabilities are determined by their values in elementary cases. The simpler
functional is perhaps the evaluation map, evz(Ix) = Ix(z), which corresponds to measuring the
property z.

If a group G acts6 on B, it follows that an invariant measure can be made equivalent to an
invariant linear functional Sim(A(B)) → R. Indeed, given an invariant measure ν : B → R, we
define ν̃ : Sim(A(B)) → R as ν̃(Ix) = ν(x). It is easy to prove that the action induces a linear
action of G in Sim(A(B)) by g · Ix = Ig·x. Hence, ν̃ is invariant if and only if ν is invariant.

4Compare with the general definition given by Eqns. 3. The main difference relies on the fact that probabilistic

measures such as the ones defined by 3 are normalized (its range is restricted to the interval [0, 1]), while this last
condition is not assumed for additive measures.

5Again, compare with the general Definition on arbitrary orthomodular lattices given by Eqs. 2.
6 The action is defined as a group map G → Aut(B), where Aut(B) is the set (group) of bijective morphisms of

complete Boolean atomistic lattices, B → B, that is, preserving 0, 1,∧,∨ and the atoms.
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Let us characterize σ-additive measures on B. Denote by Funb(A(B)) to the space of bounded
functions with respect to the supremum norm ‖f‖ = supA(B)|f(x)|. It is a non-separable metric

space and ‖Ix‖ = 1 for all x ∈ B. Let us denote by Sim(A(B))∗ to the space of continuous linear
functionals on Sim(A(B)).

Let ν be a σ-additive measure. Then, ν̃ defines a linear functional Sim(A(B)) → R. Let Ixn

be a convergent sequence of indicator functions such that limn Ixn
= Ix. Then, there exists an

orthogonal sequence yn ∈ B such that xn = y1 ∨ . . . ∨ yn. Then,

xn = y1 ∨ . . . ∨ yn =⇒ ν̃(Ixn
) = ν̃(Iy1∨...∨yn

) =

n
∑

i=1

ν̃(Iyi
) =

n
∑

i=1

ν(yi) =⇒

lim
n
ν̃(Ixn

) = lim
n

n
∑

i=1

ν(yi) = ν(lim
n

n
∨

i=1

yi) = ν̃(lim
n
Ixn

) = ν̃(Ix).

Analogously, if ν̃ is linear continuous, take {yi} an orthogonal sequence, then

ν(

∞
∨

i=1

yi) = ν̃(lim
n
I∨n

i=1
yi
) = ν̃(lim

n

n
∑

i=1

Iyi
) = lim

n

n
∑

i=1

ν̃(Iyi
) =

∞
∑

i=1

ν(yi).

Summing up, we have a bijection between σ-additive measures on B and Sim(A(B))∗. Using the
same arguments as before, there exists a bijection between σ-additive invariant measures on B and
invariant continuous linear functionals on Sim(A(B)).

3.1. Generating sets. It is the case that many lattices of interest in physics exhibit the property
of being atomistic: each element can be expressed as the join of atoms. Examples of lattices
with this property are points of phase space for a classical system and the set of one dimensional
projections in standard quantum mechanics. This is a very useful property, but in the general
case, lattices can be non-atomic (and thus, non-atomistic), for example, the continuous geometries
studied by von Neumann [22]. In order to generalize the constructions presented in the previous
Section, the following definitions will be useful:

Definition 3.1. Let B be a Boolean lattice and let B ⊆ B be a subset closed under finite meets.
We say that B is a

• generating set if every x ∈ B satisfies x = b1 ∨ . . . ∨ bk for some b1, . . . , bk ∈ B.
• σ-generating set if every x ∈ B is equal to x =

∨

bi for some denumerable subset {bi} ⊆ B.

Before we continue, it is important to make the following remark. We can still characterize measures
on a lattice (atomic or not) as measures on a manifold by using a suitably chosen generating set.
This is the power of Groemer’s integral theorem:

Theorem 3.2 (Groemer’s integral theorem). Let B be a distributive σ-lattice and let B be a σ-
generating set for B. Let ν : B → R be a function satisfying ν(0) = 0 and ν(b1 ∨ b2) + ν(b1 ∧ b2) =
ν(b1) + ν(b2) for all b1, b2, b1 ∨ b2 ∈ B. Then, the following statements are equivalent

(1) ν extends uniquely to a measure on B.
(2) ν satisfies the inclusion-exclusion identities

ν(b1 ∨ . . . ∨ bk) =
∑

i

ν(bi)−

k
∑

i<j

ν(bi ∧ bj) + . . . , ∀b1, . . . , bk, b1 ∨ . . . ∨ bk ∈ B, k ≥ 2.

Proof. See [35, Th.2.2.1] or [12, Th.1]. �
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Although Groemer’s Theorem yields a strong result, we want to extend it in two directions. The
first one is to a situations in which a group is acting and the second is to orthomodular lattices.
To illustrate these ideas, let us consider the following examples. The first one was extracted from
[35].

Example 3.3. A polyconvex set in Rn is a finite union of compact convex sets of dimension n.
Union and intersections of polyconvex sets are polyconvex sets, hence the family of polyconvex sets
is a non-atomic Boolean lattice. In this lattice, the set of parallelotopes [0, x1]×. . .×[0, xn] combined
with the group of Euclidean motions (translations and rotations) is a σ-generating set. Let us
denote the Euclidean group as G and B to the set of parallelotopes of the form [0, x1]× . . .× [0, xn],
B ∼= Rn. Notice that the the normalizer subgroup of B, NG(B) = {g ∈ G : gB = B}, is the group
of permutations Sn,

g · [0, x1]× . . .× [0, xn] = [0, xg·1]× . . .× [0, xg·n] ∈ B, g ∈ Sn.

According to [35, Ch.5, Ch.4], there is a bijection between G-invariant measures and Sn-invariant
functions B = Rn → R satisfying the inclusion-exclusion identities.

In the next Subsection we extend the above constructions over orthomodular lattices (under
the action of more general groups). The following example illustrates what happens in a non-
distributive lattice:

Example 3.4. If L is the (non-Boolean) lattice of subspaces of Rn, the manifold of atoms is given
by Pn−1 and the general linear group G acts on L. Fix a line 〈v〉. We prove in the next Section
that any G-invariant measure ν on L is determined by assigning a real number α ∈ R to the line
〈v〉. In fact, the value of ν over a k-dimensional subspace L = 〈v1, . . . , vk〉 is kα,

ν(L) = ν(〈v1〉) + . . .+ ν(〈vk〉) = kα.

Then, invariant measures over this lattice are essentially the dimension functions.

4. Invariant measures on arbitrary orthocomplemented lattices.

Let us now extend the results of the previous Section to more general lattices. As seen in
Section 2.2, the need of extending the approach to a more general setting is related to the fact
that quantum theories are based on non-commutative algebras for which the event structures are
non-distributive (and thus, non-Boolean). The category of orthomodular lattices is large enough
to include many physical examples of interest [23].

4.1. Measures over orthocomplemented lattices. To understand the set of measures on a
particular lattice in the light of our constructions, it is more convenient to use category theory.
We introduce the notion of a measure with values in an abelian group A. Next, we show that this
defines a functor (a type of mapping between categories) that is representable, i.e., there is a group
parameterizing, the set of measures.

Definition 4.1. Let L be an orthocomplemented lattice and let A be an abelian group.

• An additive measure on L with values in A is a function ν : L → A satisfying

ν(x ∨ y) = ν(x) + ν(y), if x⊥y.

• If A is complete, a σ-additive measure on L with values in A is a function ν : L → A
satisfying

ν(
∨

xi) =
∞
∑

i=1

ν(xi), if xi⊥xj , ∀i 6= j ∈ N.

where the term in the right is a convergent series in A.
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It is important to remark that in Eqs. 2 and 3 of Section 2.2, i) the abelian group is taken to
be the set of real numbers, ii) the lattices are considered orthomodular, and iii) the measures are
normalized to the interval [0, 1] (this is the environment of interest for describing states in physical
theories).

Let us denote by M(L;A) the space of measures with values in A. If a group G acts by lattice
automorphisms in L, an invariant measure is a measure ν on L such that ν(g · x) = ν(x) for
all x ∈ L and g ∈ G. The space of invariant measures is denoted M(L;A,G). By definition
M(L;A) = M(L;A, 0), where 0 is the trivial group. We always assume that the action of G in A
is trivial.

Remark 4.2. In what follows, we are going to use some results and constructions from category
theory and commutative algebra. First, let us denote by Ab the category of abelian groups. We
say that a functor F : Ab → Ab is representable if there exists M ∈ Ab such that F (A) =
HomZ(M,A). Representable functors are an important tool nowadays in mathematics. This is due
to the fact that they allow us to represent structures taken from an abstract (or not completely
understood) category in terms of sets (or abelian groups) and functions. Usually, these notions are
easier to handle, allowing for i) a better understanding of the original structures, and eventually,
ii) to the application of known techniques to more abstract domains.

Secondly, we are going to use the ⊗-Hom adjunction that will be important in what follows.
Let K1,K2 be two commutative rings and letM a K1-module, N a K2-module, and T a (K1,K2)-
bimodule. Then, there exists an isomorphism of abelian groups

HomK1
(N ⊗K2

T,M) ∼= HomK2
(N,HomK1

(T,M)).

Third, given a set L we can construct the free abelian group generated by L, Z⊕L. It is given by

all finite formal sums of elements of L, {
∑k

i=1 li}. Another (equivalent) characterization is given
by the set of all functions with finite support L→ Z. The function associated to an element l ∈ L
is the indicator function I{l}. We show below that the group Z⊕L has the following universal

property: any function ν : L→ A extends uniquely to a Z-linear map ν : Z⊕L → A:

L
∀ν //

π

��

	

A

Z⊕L

∃!ν

==④
④

④
④

Finally, given an abelian group M where a group G acts, we can construct the module of
invariants MG and the module of coinvariants MG,

MG = {m ∈M : g ·m = m, ∀g ∈ G}, MG =M/R.

where R is the submodule generated by {g ·m −m : g ∈ G, m ∈ M}. The module MG has the
following universal property: for every linear map ν : M → A, where G acts trivially on A, there
exists a unique factorization ν :MG → A,

M
∀ν //

π

��

	

A

MG

∃!ν

==⑤
⑤

⑤
⑤

Now we apply all these notions to study different measures of interest on orthocomplemented
lattices:
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Proposition 4.3. Let L be an orthocomplemented lattice. Then, there exists an abelian group
M =M(L) representing the functor M(L;−),

M(L;−) = HomZ(M,−)

This means that a measure in L valued in A is equivalent to a Z-linear map from M(L) to A.

Proof. Let Z⊕L be the free abelian group generated by L. Let S ⊆ Z⊕L be the subgroup generated
by the elements

{x ∨ y − x− y : x⊥y}.

where the elements of L are embedded in Z⊕L as usual (i.e., by using their characteristic functions).
Let us see that M = Z

⊕L/S represents the functor M(L;−).
First, assume that xi⊥xj for every 1 ≤ i < j ≤ k. Given that xi ≤ x⊥1 for 2 ≤ i ≤ k, we have

x2 ∨ . . . ∨ xk ≤ x⊥1 and then, x1 ∨ (x2 ∨ . . . ∨ xk) = x1 + (x2 ∨ . . . ∨ xk) in M . By induction, we
obtain that x1 ∨ . . . ∨ xn = x1 + . . .+ xn in M .

Second, any measure L → A defines a function Z⊕L → A mapping S to zero. Analogously, any
linear function ν :M → A is a linear function from Z

⊕L such that ν(S) = 0. Then, the restriction
of ν to L defines a measure on L. �

Corollary 4.4. Let L be an orthocomplemented lattice and assume that a group G acts by auto-
morphism. Let A be an abelian group where G acts trivially.

The map π : L →M(L) is a measure and satisfies the following universal property: any measure
with values in A factorizes as a Z-linear map M(L) → A.

Also, the map πG : L → MG is an invariant measure and satisfies the following universal
property: any invariant measure with values in A factorizes as a Z-linear map MG → A.

We can represent the properties of π and πG by the following diagrams:

L
∀ν //

π

��

	

A

M(L)

∃!ν

<<②
②

②
②

L
∀ν′

//

πG

��

	

A

M(L)G

∃!ν′

;;①
①

①
①

①

where ν (resp. ν′) is a measure (resp. invariant measure) and ν, ν′ are linear maps. The commu-
tativity means that ν = νπ, ν′ = ν′πG.

Proof. Clearly, π is a measure with values in M and πG is an invariant measure with values in
MG. The result for π follows from Proposition 4.3.
Now recall that the functor (−)G is naturally isomorphic to (−) ⊗Z[G] Z and the functor (−)G is
naturally isomorphic to HomZ[G](Z,−), [42, Lemma 6.1.1]. Then, using the ⊗-Hom adjunction

and the equality A = AG, we see that any map ν′ ∈ HomZ(M,A) is in fact a G-linear map. Next,
recall that any G-linear map M → A into a trivial G-module A factors uniquely over a map from
MG. Hence, ν′ factorizes uniquely over MG.

Summing up, given ν′ ∈ M(L;A,G) there exists a unique ν′ ∈ HomZ(MG, A) such that ν′π =
ν′. �

Definition 4.5. We call π the universal measure and πG the universal invariant measure. When
no confusion arises, we write just x instead of π(x) (or πG(x)).

The following Corollaries summarize our constructions up to now:
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Corollary 4.6. We have the following characterizations,

M(L;A) = HomZ(M,A), M(L;A,G) = HomZ(M,A)G.

Moreover, if K is a commutative ring and A is a K-module (ex. K = R and A = R
n),

M(L;A) = HomK(MK , A), M(L;A,G) = HomK(MK , A)
G,

where MK := M ⊗Z K is the extension of M from Z to K. Also, the map πK : L → MK is the
universal K-linear measure.

Proof. Using the ⊗-Hom adjunction, we have

HomZ(MG, A) = HomZ(Z⊗Z[G] M,A) =

HomZ[G](Z,HomZ(M,A)) = HomZ(M,A)G.

Now, if A is a K-module, from the ⊗-Hom adjunction we have,

HomK(MK , A) = HomK(M ⊗Z K,A) = HomZ(M,HomK(K,A)) = HomZ(M,A).

�

Corollary 4.7. Let K be a commutative ring. Then, M(−;K) is a functor from the category of
orthocomplemented lattices to the category of K-modules.

Also, if we fix the orthocomplemented lattice, M(L;−) is a functor from the category of K-
modules to the category of K-modules.

Proof. Let f : L → L′ be a lattice map between two orthocomplemented lattices. Pre-composing
with f , we get a K-linear map, f∗ : M(L′;K) → M(L;K).

Analogously, if φ : A→ A′ is K-linear, φ∗ : M(L;A) → M(L;A′) is also K-linear. �

Let us mention some simple applications of our result. For example, if we are interested in measures
with values over C, our results show that they are parameterized by complex linear functionals.
Also, if we are interested in (for example) G-invariant real measures, we proved that they are
parameterized by G-invariant real linear maps.

4.2. Generalization of Groemer’s integral theorem. In this Subsection we extend Groemer’s
integral theorem to the more general setting of orthocomplemented lattices. For this purpose, we
need to generalize the notion of generating set to arbitrary orthocomplemented lattices:

Definition 4.8. Let L be an orthocomplemented lattice and assume that a group G acts on the
lattice L by automorphisms. Let B ⊆ L be a subset closed under finite meets. The group G may
not act on B but we always has an action of its normalizer subgroup,

NG(B) = {g ∈ G : gB = B}.

Notice that the inclusion B ⊆ L induces a set function (not necessarily injective) µ : B/NG(B) →
L/G. We say that B is

• an orthogonal generating set if every x ∈ L is equal to x = b1 ∨ . . . ∨ bk for some pairwise
orthogonal b1, . . . , bk ∈ B.

• a σ-orthogonal generating set if every x ∈ L is equal to x =
∨

bi for some pairwise
orthogonal numerable subset {bi} ⊆ B.

• an orthogonal generating set for the action if µ is injective and the set G·B is an orthogonal
generating set for L.

• a σ-orthogonal generating set for the action if µ is injective and the set G · B is a σ-
orthogonal generating set for L.
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Now we are ready to construct our extension of Groemer’s integral theorem to orthocomplemented
lattices:

Theorem 4.9 (Non-Boolean Groemer’s integral theorem). Let L be an orthocomplemented lattice
where a group G acts. Let B be an orthogonal generating set for the action of G. Then, invariant
measures on L are in bijection with NG(B)-invariant functions on B, ν, such that

ν(b1 ∨ b2) = ν(b1) + ν(b2), ∀b1, b2, b1 ∨ b2 ∈ B, b1⊥b2.

Proof. Let a) S ⊆ Z⊕L be the subgroup generated by {x ∨ y − x − y : x⊥y} and b) B ⊆ L/G
be the image of µ : B/NG(B) → L/G. Recall that M = M(L) ∼= Z⊕L/S. By hypothesis, the
following map is surjective,

µ̃ : ZB →MG, b 7→ [b].

Then, ZB/ ker(µ̃) ∼=MG, where

ker(µ̃) = Z
B ∩ SG = 〈b1 ∨ b2 − b1 − b2 : b1, b2, b1 ∨ b2 ∈ B, b1⊥b2〉.

Finally, applying the functor HomZ(−, A), we obtain

HomZ(MG, A) ∼= HomZ(Z
⊕B/ ker(µ̃), A).

The first space is isomorphic toM(L;A,G). A map ν in the second space is a map in HomZ(Z
⊕B , A),

such that ν(ker(µ̃)) = 0. More specifically, it is the same as a function ν : B → A such that

ν(b1 ∨ b2) = ν(b1) + ν(b2), b1, b2, b1 ∨ b2 ∈ B, b1⊥b2.

The result follows from B/NG(B) ∼= B. �

Remark 4.10. A similar result holds for σ-additive measures. The steps are the following:

(1) Define the set Mσ(L;A) of σ-additive measures with values in a Banach vector space A
over a complete field K (say K = R).

(2) Given that MK =M ⊗ZK is complete, see [1, Ch.10], we can define the set of continuous
linear maps (i.e. bounded operators) from MK to A, that is, ν ∈ ContK(MK , A) if and
only if

ν(

∞
∨

i=1

xi) =

∞
∑

i=1

ν(xi), xi⊥xj , ∀i 6= j.

From the following commutative square, it follows that Mσ(L;A) ∼= ContK(MK , A),

M(L;A)
∼ // HomK(MK , A)

Mσ(L;A) //
?�

OO

	

ContK(MK , A)
?�

OO

(3) Finally, using Theorem 4.9 and a density argument, it is easy to prove the result for σ-
additive measures. Indeed, let B be a σ-orthogonal generating set for the action of G. The
set Mσ(L;A,G) is in bijection with functions ν : B/NG(B) → A, such that

ν(

∞
∨

i=1

bi) =

∞
∑

i=1

ν(bi),

∞
∨

i=1

bi, bj ∈ B, bi⊥bj ∀i 6= j.
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Let us consider an example for what we have just proved. The above theorem (and the accom-
panying remark) has the following consequence: in order to define a measure on the orthomodular
lattice of orthogonal projectors L(W) of a von Neumann algebra W , it is sufficient to know an
orthogonal generating set for the projectors in W . For the case of Type I factors, this generating
set is given by one dimensional projections. We will come back to this point later.

Remark 4.11. It is important to mention that, in general, it is a difficult task to prove that a
set B ⊆ L is an orthogonal generating set for the action of a group G. But, in some cases, it is
possible to check that the set G ·B ⊆ L is an orthogonal generating set. Using this hypothesis for
B let us prove a weak version of the Non-Boolean Groemer’s integral theorem:

Theorem 4.12 (Weak Non-Boolean Groemer’s integral theorem). The set M(L;A,G) is included
in the set of NG(B)-invariant functions ν : B → A such that

ν(b1 ∨ b2) = ν(b1) + ν(b2), ∀b1, b2 ∈ B, b1⊥b2.

Proof. By hypothesis, the multiplication map µ : Z⊕B ⊗Z[NG(B)]Z[G] →M is surjective. Applying

(−)G, the map µ̃ : (Z⊕B)NG(B) → MG is also surjective. Notice that µ̃(R) = 0, where R ⊆ Z⊕B,

is generated by b1 ∨ b2 − b1 − b2 for all b1, b2 ∈ B, b1⊥b2 and R = RNG(B). Then,

(Z⊕B/R)NG(B) ։ MG =⇒ HomZ(MG, A) ⊆ HomZ((Z
⊕B)NG(B)/R,A).

�

4.3. Positive measures on orthocomplemented lattices. Now, we restrict ourselves to the
study of positive measures on orthocomplemented lattices.

Definition 4.13. Let L be an orthocomplemented lattice. A positive measure on L is a measure
taking positive values in R. We use the following notation

• M+(L) denotes the set of positive measures,
• M+(L;G) denotes the set of invariant positive measures,
• Mσ

+(L) denotes the set of σ-positive measures,
• Mσ

+(L;G) denotes the set of invariant σ-positive measures.

We discuss next some examples of generating sets and their geometric properties. But first, let us
give a geometric construction

Definition 4.14. Given a subset C of a real vector space V we define its dual cone as,

C∗ = {ℓ : V → R : ℓ(C) ≥ 0} = {H ⊆ V : C ⊆ H+}.

From [5, §2.6.1], we know that the double dual cone of C is its convex hull and it determines the
same dual cone.

Example 4.15. Geometrical properties of generating sets. Let B be an orthogonal gener-
ating set for L. Let us denote by MR the real vector space M(L) ⊗Z R. The kernel of a non-zero
linear functional MR → R is an hyperplane H inside MR. By appealing to the universal real
measure we can identify every element b ∈ B with an element of MR. Thus, we can write B ⊆MR

instead of πR(B) ⊆MR. Let us apply the dual cone construction to B ⊆MR.
Using Theorem 4.9, it is easy to check that the dual cone of B is the set of positive measures

M+(L) ∼= B∗ := {H ⊆MR : B ⊆ H+}.
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Similarly, it follows

M+(L;G) ∼= {H ⊆MR : B ⊆ H+, H = HG}

Mσ
+(L)

∼= {H ⊆MR : B ⊆ H+, H = H}

Mσ
+(L;G)

∼= {H ⊆MR : B ⊆ H+, H = HG = H}.

Example 4.16. Hilbert space and standard quantum mechanics. Let H be a separable
Hilbert space and consider the orthomodular lattice of orthogonal projectors L. Given that any
closed subspace S possesses an orthonormal basis {vi}

∞
i=1, the family of projectors of range 1

(basically, one dimensional subspaces) is a σ-orthogonal generating set. Notice that any projector
of rank 1 is given by |v〉〈v| ∈ B(H) for some v ∈ H. Thus, for an arbitrary separable Hilbert space,
a σ-orthogonal generating set is given by B = {|v〉〈v| : v ∈ H, ‖v‖ = 1}. Notice that L is defined
inside B(H) (see Proposition 4.17 below). More generally, if W is a von Neumann algebra, we still
have a similar picture. Recall that the lattice associated to W is the lattice L(W) of projectors
in W . Then, a σ-orthogonal generating set B will be some subset of projectors on W . In the
previous case, W = B(H), the rank one projectors form a σ-orthogonal generating set. In more
general situations, B will be a set of projectors (not necessarily of rank one, ex. Type III factor)
which always exists.

Let us now turn to the following natural question [15, Ch. 5]:

Does any real measure on L(W) extend to a bounded linear functional on W?

The above question concerns the relationship between M(L(W);R) and ContC(W ;C). In order to
describe this problem in our terms, let us prove the following fundamental fact:

Proposition 4.17. Let W be a von Neumann algebra on a separable Hilbert space and let L(W)
be its orthomodular lattice of projectors. Then, the universal complex measure is injective

L(W)
� � i //

� _

πC

��

W

MC

i

<<②②②②②②②②②

The map πC is the universal complex measure and the map i is the inclusion L(W) ⊆ W. Moreover,
the image of i is dense in W.

Notice that i is not necessarily injective.

Proof. The set L(W) of orthogonal projectors in W forms an orthomodular lattice which can be
viewed as a subset of W (i.e., L(W) ⊆ W). Due to the fact that any von Neumann algebra is
a complex vector space with respect to the sum and multiplication by scalars, the inclusion map
i : L(W) →֒ W satisfies the axioms of a measure with values in a complex vector space and then,
from our previous results, this inclusion factorizes through MC. This means that there exists a
unique map i such that i = i ◦ πC. From the fact that i is an injection, it follows that πC is also
injective.

Now, let us recall a standard result of von Neumann algebras: the complex vector space spanned
by L(W) is norm-dense in W (see for example Corollary 0.4.9(b) and the comment that follows in
[38]). Then, given that the space spanned by L(W) is contained in the image of i, we can conclude
that i(MC) is also dense in W . �

Corollary 4.18. Let W be a von Neumann algebra over a separable Hilbert space such that i
is injective (L(W) ⊆ MC ⊆ W). Then, there exists a bijection between σ-probabilities (resp.
σ-positive measures) on L(W) and normal states (resp. positive linear functionals) on W.
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Proof. As we mentioned in Section 2.2, states are defined as positive complex-valued continuous
linear functionals µ : W → C. Moreover, the restriction of µ to L(W) defines a σ-probability.

Suppose that we have a σ-probability ν : L(W) → [0, 1]. Given that [0, 1] is included in C, we
can assume that the codomain of ν is C and it follows now that ν satisfies the axiom of a complex
σ-measure. Then, from what we have proved above, there exists a unique extension to a continuous
linear functional ν :MC → C. From the fact that MC can be injected as a dense subset inside W ,
we can extend ν by continuity (in a unique way) to ν̃ : W → C. Diagrammatically,

L(W)

∀ν

��

� � //

""❋
❋❋

❋❋
❋❋

❋❋
MC

� � //

∃!ν

��

W

∃!ν̃
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

[0, 1] �
� // C

It remains to check that ν̃ is a normal state. Given that a positive operator A has a positive
spectrum sp(A) ([38, p.3]), we can approximate the identity over sp(A) by simple functions with
positive coefficients. Hence, any positive operator A ∈ W can be approximated by projectors
in L(W). In particular, given a continuous linear map ν̃ : W → C such that ν̃(P ) ≥ 0 for all
P ∈ L(W), it follows that ν̃(A) ≥ 0 for all A ≥ 0 (i.e. ν̃ is positive). The normality condition
follows from the σ-additivity condition on projection operators.

The bijection between σ-positive measures on L(W) and positive linear functional on W is
similar replacing [0, 1] with R. �

Let us now use these constructions to rephrase Gleason’s theorem in our terms. Gleason’s
theorem can be usually stated as follows (see [24, Th. 3.13] or [11]):

Theorem (Gleason). Let H be a Hilbert space with dim(H) ≥ 3. Then the set of σ-positive
measures ν on L(H) is in bijection with the set of positive operators T of the trace class such that

ν = tr(T−).

We can give a similar result appealing to Proposition 4.17 and its Corollary:

Theorem 4.19. Let H be a separable Hilbert space such that L(H) ⊆ MC ⊆ B(H). Then the set
of σ-positive measures ν on L(H) is in bijection with the set of positive operators T of the trace
class such that

ν = tr(T−).

Proof. According to the previous Corollary taking W = B(H), a σ-positive measure is the same a
positive linear functional ν : B(H) → C. As it is well known, measures of this kind are given by
tr(T−) for some positive operator T ∈ B(H). Then, σ-positive measures on L(H) are in bijection
with functionals tr(T−), where T is some positive operator. Given that I ∈ L(H), by imposing
ν(I) = 1 (which is the normalization condition for any quantum state), we obtain that T is of the
trace class. �

5. Conclusions

In this paper we presented a characterization of states in orthocomplemented lattices. This
was done by appealing to a non-commutative version of geometric probability theory based on
algebraic geometry techniques. Our theoretical framework incorporates invariant states (under
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groups acting by automorphisms) in a natural way. Our main result, given by Theorem 4.9, allows
us to characterize states in orthomodular lattices and invariant states as well. Finally, we were
able to recast Gleason’s theorem in these terms.
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