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a b s t r a c t

The complexity-entropy causality plane has been recently introduced as a powerful tool for
discriminating Gaussian from non-Gaussian process and different degrees of correlations
[O.A. Rosso, H.A. Larrondo, M.T. Martín, A. Plastino, M.A. Fuentes, Distinguishing noise from
chaos, Phys. Rev. Lett. 99 (2007) 154102]. We propose to use this representation space to
distinguish the stage of stockmarket development. Our empirical results demonstrate that
this statistical physics approach is useful, allowing a more refined classification of stock
market dynamics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The understanding and analysis of economical time series, especially the evolution of price sequences, has been attracting
the attention of mathematicians and physicists for many years. The Frenchmathematician Louis Bachelier, almost a century
ago, modeled the market prices by what today is known as a random walk [1]. This cornerstone of the financial modelling
is based on the assumptions that the increments of the prices are independent and obey a Gaussian distribution. Later, in
1970, Eugene Fama introduced the celebrated Efficient Market Hypothesis (EMH) [2]. According to the weak-form version
of this hypothesis,1 at any given time, the price of an asset fully reflects all available historical information, but it is widely
known that this is only a first approximation. Deviations from this model, violating either the independence or Gaussian
assumptions, have been found in many empirical studies since the revolutionary paper of Benoit Mandelbrot [3]. The
existence of autocorrelation between distant observations breaks the market efficiency because past prices can help to
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approach considers that prices reflect all public information and the strong version states that prices reflect any information.
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predict future prices; i.e., correlated markets allow for arbitrage opportunities. This question motivates the research on
the subject, especially by portfolio managers and analysts, trying to generate higher returns. Bȩben and Orłowski [4] and
Di Matteo et al. [5,6] have found that emergent markets have greater correlation than developed markets, suggesting more
predictability. Thus, emergent economies seem to be less efficient than developed ones.More recently, a negative correlation
between stock market efficiency and predictability was experimentally assessed [7,8].
Nowadays it is clear that residual inefficiencies are always present in actual stockmarkets and that the concept ofmarket

efficiency is only an idealization [9,10]. Concepts like economic management, political stability and risk profile distinguish
emergent and developed stock markets. It was also shown that liquidity andmarket capitalization play an important role in
understanding stock market inefficiency [11]. However, these properties are very difficult to quantify in a precise way [9].
Several authors have proposed the Hurst parameter as a measure of the stock market inefficiency [6–8,11–18]. More

precisely, they argue that this scaling exponent measures the long-range dependence exhibited by the stock market indices
under analysis. However, Bassler et al. [19] have recently shown that the estimation of the Hurst parameter alone cannot be
used to determine either the existence of long-term memory or the efficiency of markets. Moreover, they found that Hurst
parameters H 6= 1/2 are perfectly consistent with Markov processes and the EMH. Markov processes, by construction,
are memoryless and, in this case, H 6= 1/2 basically means that the associated process has nonstationary increments.
Thus, they conclude that for an appropriately evidence for autocorrelations in data it is necessary to show that the market
price increments are stationary besides an empirical measurement or theoretical prediction of the Hurst parameter. Other
approaches have been recently introduced to rank stock markets in order to distinguish between emergent and developed
economies [9,10,20–27]. In particular, Complex Systems and Nonlinear Dynamics theories have been used to shed new
light on this class of problems, thanks to their abilities to detect hidden structures inside noisy information, even when the
considered system exhibits a behavior at the edge of chaos [28].
In this paper we propose to test the market efficiency of financial time series by employing a recently introduced

statistical tool; the complexity-entropy causality plane. It was shown that this plane allows to distinguish (i) Gaussian from
non-Gaussian process and (ii) different degrees of correlations [29]. We empirically show that it is a powerful physical tool
for discriminating market dynamics.

2. Complexity-entropy causality plane

The concept of entropy can be of great help when analyzing stock market data since it captures the uncertainty and
disorder of the time series without imposing any limitations on the theoretical probability distribution [30,31]. If prices
were a pure random walk, the variations would be a completely uncorrelated string of numbers. We would say that such
string of data is completely disordered and its entropy ismaximized. On the other hand, if the price variations are somewhat
correlated, then the entropy does not attain its maximal value. Therefore, the negative entropy (i.e., the entropy of price
variations with reference to its maximal value) can be taken as a measure of predictability and, consequently, of market
inefficiency [32]. We should remark that the Shannon, Renyi, Tsallis [31,33,34], Approximate [21,35] and transfer [36]
entropies, and the Shannon entropy local approach [37] have been proposed to quantify different aspects of financial time
series.
The information content of a system is typically evaluated from a probability distribution function, P , describing the

distribution of some measurable or observable property. An information measure can primarily be viewed as a quantity
that characterizes this given probability distribution. In this work the Shannon entropy is used as a first natural approach.
Given any arbitrary probability distribution P = {pi : i = 1, . . . ,N}, the widely known Shannon’s logarithmic information
measure defined by

S[P] = −
N∑
i=1

pi ln pi (1)

is regarded as the measure of the uncertainty associated to the physical processes described by P . If S[P] = 0 we are in
position to predict with certainty which of the possible outcomes iwhose probabilities are given by the pi will actually take
place. Our knowledge of the underlying process described by the probability distribution is in this instance maximal. On the
other hand, our ignorance is maximal for a uniform distribution.
Nevertheless, Lamberti et al. [38] introduced a statistical complexitymeasure (SCM) able to detect essential details of the

dynamics anddifferentiate different degrees of periodicity and chaos. It provides important additional information regarding
the peculiarities of the underlying probability distribution, not already detected by the entropy. This statistical complexity
measure is defined through the product

CJS[P] = QJ [P, Pe]HS[P] (2)
of the normalized Shannon entropy

HS[P] = S[P]/Smax (3)
– with Smax = S[Pe] = lnN , (0 ≤ HS ≤ 1) and Pe = {1/N, . . . , 1/N} the uniform distribution – and the disequilibrium QJ
defined in terms of the extensive (in the thermodynamical sense) Jensen–Shannon divergence [38]. That is,

QJ [P, Pe] = Q0J[P, Pe] (4)
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withJ[P, Pe] = {S[(P+Pe)/2]−S[P]/2−S[Pe]/2} the above-mentioned Jensen–Shannondivergence andQ0 a normalization
constant, equal to the inverse of maximum possible value of J[P, Pe]; i.e., the value obtained when one of the component
of P , say pm, equals unity and the remaining pi vanish. The complexity measure constructed in this way has the intensive
property found in many thermodynamic quantities.
The system architecturemanifests through the SCM, since it is different from zero only when there exist privileged, more

likely, states among the accessible ones [39]. Not only does it quantify randomness, but also the presence of correlation
among components of the dynamical system [38,40]. The opposite extremes, perfect order and maximal randomness (a
periodic sequence and a fair coin toss, for example) possess no structure; these systems are too simple and have zero
statistical complexity. In between these two special instances, a wide range of possible degrees of physical structure exist,
degrees that should be reflected in the features of the underlying probability distribution. We insist on the fact that the
above SCM is not a trivial function of the entropy because it depends on two different probabilities distributions: the one
associated to the system under analysis, P , and the uniform distribution, Pe. Furthermore, it was shown that for a givenHS
value, there exists a range of possible SCMvalues between aminimumCmin and amaximumCmax [41]. It was recently shown
that measures of statistical or structural complexity are necessary because they capture the property of organization [42].
This kind of information is not discriminated by randomness measures.
Finally, in order to study the time evolution of the SCM, a diagram of CJS versusHS can be used. As is widely known, the

second law of thermodynamics states that entropy growsmonotonically with time. Thus,HS can be regarded as an arrow of
time. This diagnostic toolmeasures the system’s intrinsic computation in a parameter-freeway [42]. It has been successfully
used to study changes in a system dynamics originated by modifications of some characteristic parameters [38,39,43–46].

2.1. Bandt & Pompe symbolization method

In order to evaluate the two above-mentioned quantifiers an associated probability distribution should be constructed
beforehand. The adequate way of picking up the probability distribution associated to a time series is an open problem.
Rosso et al. [29] have recently shown that improvements in the performance of information quantifiers, like entropy
and statistical complexity measures, can be expected if the underlying probability distribution is obtained taking into
account the time causality of the system’s dynamics. In particular, it was found that these information measures allow to
distinguish between chaotic and stochastic dynamics when causal information is incorporated into the scheme to generate
the associated probability distribution. Bandt & Pompe [47] introduced a successful method to evaluate the probability
distribution considering this time causality. The Bandt & Pompe method (BPM) is based on the details of the phase space
reconstruction procedure and it is the only one among those in popular use that takes into account the temporal structure
of the time series generated by the physical process under study. Then, important details concerning the ordinal structure
of the time series can be revealed [48–51].
Given a time series {xt : t = 1, . . . ,M}, an embedding dimensionD > 1, and a time delay τ , consider the ordinal patterns

of order D [47,48,52] generated by

s 7→
(
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
. (5)

To each time swe assign a D-dimensional vector that results from the evaluation of the time series at times s, s− τ , . . . , s−
(D− 1)τ . Clearly, the greater the D value, the more information about the past is incorporated into the ensuing vectors. By
the ordinal pattern of order D related to the time s we mean the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . ,D − 1)
defined by

xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . (6)

In this way the vector defined by Eq. (5) is converted into a unique symbol π . Let us make a numerical example; we start
with the time series {1, 3, 5, 4, 2, 5, . . .}, and we set the embedding dimension D = 4 and the time delay τ = 1. In this
case the state space is divided into 4! partitions and 24 mutually exclusive permutation symbols are considered. The first
4-dimensional vector will be (1, 3, 5, 4). Then, the ordinal pattern which allows us to fulfill Eq. (6) will be (1, 0, 2, 3). The
second vector will be (3, 5, 4, 2), and (2, 1, 3, 0)will be its associated permutation, and so on. In order to get a unique result
we consider that ri < ri−1 if xs−riτ = xs−ri−1τ . This is justified if the values of xt have a continuous distribution so that equal
values are very unusual. Thus, for all the D! possible permutations πi of order D, their associated relative frequencies can be
naturally computed by

p(πi) =
]{s|1+ (D− 1)τ ≤ s ≤ M and s has ordinal pattern πi}

M − (D− 1)τ
, (7)

where ] is the cardinality of the set—roughly speaking, the number of elements in it. Thus, an ordinal pattern probability
distribution P = {p(πi), i = 1, . . . ,D!} is obtained from the time series. To determine p(πi) exactly an infinite time series
should be considered, taking M → ∞ in the above formula. This limit exists with probability 1 when the underlying
stochastic process fulfills a very weak stationarity condition: for k ≤ D, the probability for xt < xt+k should not depend
on t [47]. The probability distribution P is obtained once we fix the embedding dimension D and the time delay τ . The
former parameter plays an important role for the evaluation of the appropriate probability distribution, since D determines
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Table 1
World stock indices. Emergent and developed stock markets following the MSCI methodology are denoted as E and D, respectively.

Country Number of observations Bloomberg code Index

1. Argentina (E) 3117 MERVAL Argentina Merval Index
2. Australia (D) 3178 ASX Australian Securities Exchange
3. Austria (D) 3109 ATX Austrian Traded Index
4. Belgium (D) 3179 BEL20 BEL20 Index
5. Brazil (E) 3109 IBOV Brazil Bovespa Stock Index
6. Canada (D) 3163 SPTSX S&P/TSX Composite Index
7. Chile (E) 3133 IPSA Chile Stock Market Select Index
8. China (E) 3034 SHCOMP Shangai Stock Exchange Composite Index
9. Denmark (D) 3147 KFX OMX Copenhagen 20 Index
10. France (D) 3179 CAC CAC 40 Index
11. Germany (D) 3176 DAX DAX Index
12. Greece (D) 3141 ASE ASE General Index
13. Hong Kong (D) 3099 HSI Hang Seng Index
14. India (E) 3098 SENSEX Bombay Stock Exchange Sensitive Index
15. Indonesia (E) 3073 JCI Jakarta Composite Index
16. Ireland (D) 3153 ISEQ Irish Overall Index
17. Italy (D) 3180 MIB30 Milan MIB30 Index
18. Japan (D) 3093 TPX Tokio Stock Price Index
19. Korea (E) 3272 KOSPI Korea Composite Index
20. Malaysia (E) 3093 KLCI Kuala Lumpur Composite Index
21. Mexico (E) 3156 MEXBOL Mexico Bolsa Index
22. Philippines (E) 3124 PCOMP Philippines Composite Index
23. Singapore (D) 3149 STI Straits Times Index
24. Spain (D) 3156 IBEX IBEX 35 Index
25. Sweden (D) 3149 OMX OMX Stockholm 30 Index
26. Switzerland (D) 3159 SMI Swiss Market Index
27. Taiwan (E) 3282 TWSE Taiwan Taiex Index
28. Thailand (E) 3080 SET Stock Exchange of Thailand Index
29. Turkey (E) 3120 XU100 Istambul Stock Exchange National 100 Index
30. United Kingdom (D) 3172 UKX FTSE 100 Index
31. US (D) 3161 SPX S&P 500 Index
32. Venezuela (E) 3023 IBVC Venezuela Stock MKT Index

the number of accessible states, D!. Moreover, it was established [53] that the length M of the time series must satisfy the
conditionM � D! in order to work with a reliable statistics. In particular, Bandt & Pompe suggest for practical purposes to
work in the range 3 ≤ D ≤ 7. They specifically considered a time delay τ = 1 in their cornerstone paper [47]. Nevertheless,
it is clear that other values could give additional information. Very recently, Matilla-García and Ruiz Marín have introduced
a helpful method to detect lags in nonlinear time series by considering different time delays [54].
In this paper we evaluate the normalized Shannon entropy, HS Eq. (3), and the intensive SCM, CJS (Eq. (2)), using the

permutation probability distribution, P = {p(πi), i = 1, . . . ,D!}, introduced in this section. The diagram of CJS versus
HS by employing this probability distribution is the complexity-entropy causality plane defined in Ref. [29]. The Shannon
entropy defined through the permutation probability distribution is usually known as permutation entropy. It has been
used in several papers for different purposes [27,55–58]. In particular, Rosso and Masoller [59,60] have recently shown that
both Information Theory quantifiers, HS and CJS , evaluated with the BPM’s probability distribution, are suitable tools for
detecting and quantifying noise-induced temporal correlations in stochastic resonance phenomena.

3. Empirical results

In this paperwe analyze the prices of 32 equity indices for different countries. All datawere collected from the Bloomberg
database (www.bloomberg.com). The codes and names of these indices are presented in Table 1. We employ daily prices
beginning on January 2, 1995 and ending in July 23, 2007. We have on average 3138 observations. Time counting was
performed over trading days, skipping weekends and holidays. Exact numbers of observations for each country are detailed
in the second column of Table 1. The choice of the beginning of the series is due to availability of data. Besides, in order to
make comparisons, all country indices were studied for the same time period. Eighteen developed and fourteen emergent
stockmarkets are considered. This classification is obtained following theMorgan Stanley Capital Index (MSCI)methodology
to define developed and emergent stock markets (www.mscibarra.com). This is particularly useful as it allows a direct
comparison of different classes of countries.
In this work we have analyzed daily prices; clearly, these time series are non-stationary. However the quantifiers used

can be applied to non-stationary process. They have been used to characterize the fractional Brownian motion, a widely
known non-stationary process—see Refs. [29,58,61] for further details. Moreover, we have previously shown that in the
particular case of the normalized permutation entropy and in order to discriminate time series, better results are obtained
for prices than log-returns [27]. However, this issue deserves special attention and will be the focus of a next study.

http://www.bloomberg.com
http://www.mscibarra.com
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Fig. 1. Localization of the developed and emergent stock markets, according to the MSCI criterion, in the complexity-entropy causality plane with
embedding dimensions D = 4 (upper plot), D = 5 (central plot) and D = 6 (lower plot), and time delay τ = 1. We also display the maximum and
minimum possible values of the intensive statistical complexity measure (segmented lines). For further details about the range of possible SCM values see
Ref. [41].

In Fig. 1 we have plotted the localization of the different countries in the complexity-entropy causality plane with
embedding dimensions D = 4, D = 5 and D = 6, and time delay τ = 1. Observe that developed countries have higher
entropy and lower complexity than emergent ones. Therefore the former are closer to the ideal point (HS = 1, CJS = 0) and
this conclusion is independent of the embedding dimension value. It should also be stressed that there is a clear dependence
of CJS on HS and this relationship is independent of the particular embedding dimension considered, as one can easily
conclude from Fig. 1. Comparing with Fig. 1 of Ref. [29] this behavior allows us to suggest that the prices can be modelled as
a fractional Brownian motion.
We have 3138 observations on average. Thus, according to the condition introduced at the end of the previous section,

the highest possible embedding dimension is 6 (3138 � 6! = 720). This is the optimal value for taking into account
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Fig. 2. Localization of the different stock markets in the complexity-entropy causality plane with embedding dimension D = 6 and time delay τ = 1.
Numbers indicate stock markets listed in Table 1. The upper, central and lower blocks enclose developed, hybrid and emergent countries, respectively.

the temporal causality. So, in order to gain a deeper insight, we analyze the localization of each country for this optimal
situation in Fig. 2. The countries are labeled by the corresponding numbers listed in Table 1. We find a group of ten
countries (Argentina, Austria, Brazil, Canada, China, Greece, Hong Kong, Singapore, Taiwan and Turkey) in an intermediate
situation. So, we propose a more refined ranking of the stock markets. We divide all the countries under analysis in three
different groups: developed, emergent and the intermediate group designed as hybrid, following the terminology used by
Matos et al. [25]. Please see these three different blocks in Fig. 2.2 The proposed hybrid group, with intermediate entropy
and complexity values, is composed by five developed and five emergent stock markets according to the MSCI criterion. So,
the first five were relegated to the intermediate group and the second five were promoted with our physical approach. The
emergent countries that are included in the intermediate case are evolving very fast and their markets have become more
efficient over time. On the other hand, the developed economies that comprise the intermediate case are relatively small if
they are compared to other developed economies such as the US, Germany, Japan and United Kingdom. Therefore, there is
some room to define an intermediate group that may be evolving or involving over time. See Ref. [13] for a discussion on
evolution of financial markets over time.
In order to show the robustness of these results, we have estimated the HS and CJS for the associated shuffled and

surrogated prices with the same embedding dimension (D = 6) and time delay (τ = 1). In the shuffling procedure the
data are put into random order, and thus all non-trivial temporal correlations are destroyed. Surrogated time series are
obtained from the original by randomizing their phases in the Fourier space and the generated series result Gaussian. Ten
different realizations of the shuffled and surrogated time series related to the daily prices were generated to reduce the
statistical errors. The associated mean values of both quantifiers for these new generated time series are illustrated in Fig. 3.
The HS and CJS in the shuffled case collapse to values near to 0.98 and 0.05, respectively. For a perfect Gaussian random
process (white noise) it is expected thatHS = 1 and CJS = 0. We have also estimated these two quantifiers for ten different
realizations of 3138 normally distributed pseudorandomnumbers. Time series were generated by using theMatlab function
randn. Themean values estimated for theHS andCJS were 0.981±0.002 and 0.047±0.005, respectively.Moreover, we have
found that the values are closer to the ideal values (i.e.HS → 1 and CJS → 0) when the length of the record is increased.
Thus, the differences are due to finite-size effects. We verify in this way that the localizations obtained from real data are
not obtained by chance. Moreover, the underlying correlations are significant and play a relevant role. In the surrogated
case we have found that the HS increases and the CJS diminishes for all countries. So, the surrogated time series move to
regions of higher efficiency. However, the displacements obtained are notably smaller than in the shuffled case. From this
analysis of the localizations of the associated shuffled and surrogated time series in the complexity-entropy causality plane,
it is possible to conclude that the stock market inefficiency can be primarily attributed to the long-range correlations and
secondarily to the broad fat-tail distributions.
It is important to note that we have only considered six consecutive days to build the ordinal patterns. However, the

information related with the long-range correlations is provided by the permutation probability distribution associated to
each financial index. Differences in the long-range correlations of time series translate to differences in their associated
probability distribution. Moreover, it was shown theoretically and through numerical simulations that the normalized

2 It should be stressed that the localization and size of the blocks were chosen by the authors. So, they are in some way arbitrary. A challenge for the
future will be to define the limits between the different groups in a more systematic and objective approach.
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Fig. 3. Localization of the shuffled (upper plot) and surrogated (lower plot) stock markets in the complexity-entropy causality plane with embedding
dimension D = 6 and time delay τ = 1. The shuffled and surrogated values are estimated averaging over ten different realizations. The maximum and
minimum possible values of the intensive statistical complexity measure are also shown (segmented lines).

permutation entropy and the intensive SCM are able to distinguish stochastic processes with different long-range
correlations, like the fractional Gaussian noise and fractional Brownian motion, for embedding dimensions D = 3, 4, 5
and 6 [29,58,62].
We have also analyzed the temporal evolution of the two quantifiers for the three groups: developed, emergent, and

hybrid. The original time series were divided into six periods of 500 observations—each period corresponds with two years
approximately. The average over all the developed, emergent and hybrid countries, respectively, for each one of these
periods is plotted in Fig. 4. Observe that our classification is robust for different time periods. An important finding is that
the hybrid group shares similar dynamics with developed economies; they seem to be highly correlated. An additional
observation is that the emergent group appears to be more volatile, which is to be expected. A potential explanation for
these results could be that the hybrid group is composed of stock markets that have become more integrated with world
market, whereas emergent markets are more resilient and not highly integrated.
With the aim of testing whether the localization in the complexity-entropy causality plane is related with the linear

correlations between the different countries, we have calculated the matrix of Pearson’s correlation coefficients.3 The
absolute value of ρij, 0 ≤ |ρij| ≤ 1 between countries i and j, was considered. Fig. 5 shows the gray-scale map of these
linear cross-correlations. The countries are ordered in both axes following the complexity–entropy causality plane criterion.
Obviously the map is symmetrical, centering around the diagonal. Observe that there are higher linear correlations (white

3 Similar results were obtained for the Spearman’s rank correlation coefficient.
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Fig. 4. Temporal evolution of theHS and CJS averaged over all the countries of each group for periods of two years approximately. Embedding dimensions
D = 3 (upper plots) and D = 4 (lower plots), and time delay τ = 1 were considered.

Fig. 5. Gray-scale map of the cross-correlation coefficients (absolute value) between the different stock markets. White square means perfect linear
correlation (ρij = −1 or ρij = 1) and black square means absence of linear correlation (ρij = 0). Numbers indicate stock markets listed in Table 1. They
are ordered following the complexity-entropy causality plane criterion and the blocks dividing developed, hybrid and emergent countries are depicted.
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Fig. 6. Evolution of the cross-correlations in the complexity-entropy causality plane. Top: 0.95 ≤ |ρij| ≤ 1 (black links). Center: 0.93 ≤ |ρij| < 0.95 (blue
links). Bottom: 0.91 ≤ |ρij| < 0.93 (red links).

squares) between the developed countries, in the lower right corner of the map. Only Japan, well-defined as developed
following the complexity-entropy causality plane localization, has a low linear correlationwith the countries of this cluster.4
We guess that this particular behavior could be related to geographical influences. Note that Japan has higher correlations
with Indonesia, Korea, Malaysia, Indonesia, Thailand and Philippines. It is also possible to identify another regional cluster,
in the upper left corner of the map, composed of Indonesia, Malaysia and Thailand.

4 Markets in different countries are open during different hours. In order to circumvent this lack of synchronicity we have also considered the two-day
average prices. However, we have not found significant differences between the cross-correlation coefficients of the daily and two-day average prices. The
results for the latter are available upon request.
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We have also depicted the evolution of the linear correlations between the different countries within the complexity-
entropy causality plane. Fig. 6 shows three different plots, corresponding to three different thresholds in the correlation
strength. To be more specific, links of different colors (black, blue and red) are drawn for all the countries with linear
correlations larger than 0.95, 0.93 and 0.91, respectively.We can clearly observe that some developed countries are strongly
related to themselves, as if they were acting as a single market; moreover, if we lower the threshold, their influence spreads
to less developed countries. However, there are other developed countries that are not correlated. Thus, we conclude the
complexity-entropy causality plane provides additional information; i.e. linear but also nonlinear correlations for each stock
market are quantified.

4. Conclusions

We have shown that the complexity-entropy causality plane, CJS versus HS , allows to distinguish the stage of stock
market development. The differences between emergent and developed stock markets can be easily visualized with this
statistical tool. The former have lower entropy and higher complexity values revealing the presence of significant time
correlations and some degree of order. Moreover, a more refined classification of stock market dynamics is obtained.
Analyzing the localizations of the associated shuffled and surrogated time series in this representation plane, it is possible to
visualize and, consequently, quantify the influence of the two sources of inefficiency: long-range correlation and broad fat-
tail distribution. We have found that, for the stock markets under analysis, the temporal correlations are the main factor of
inefficiency. We stress the fact that the complexity-entropy causality plane is a model independent diagnostic tool, having
more general applicability than other widely used alternatives like the Hurst parameter. So, we conclude that it can be
considered a useful physical approach for an economy issue.
It will be interesting in the future to evaluate the influence of time delays τ 6= 1 in the results. Also the complexity-

entropy causality plane localization of other financial time series, like foreign exchange rates and commodity markets, will
be analyzed. Finally, further research will consider how our results are affected when other useful and well-known entropy
definitions, like Renyi or Tsallis entropies, are applied.
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