
ar
X

iv
:0

81
0.

00
25

v1
  [

gr
-q

c]
  3

0 
Se

p 
20

08

November 19, 2018 13:35 WSPC/INSTRUCTION FILE inst

International Journal of Modern Physics A
c© World Scientific Publishing Company

Instabilities of naked singularities and black hole interiors in General

Relativity

Gustavo Dotti and Reinaldo J. Gleiser
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Metrics representing black holes in General Relativity may exhibit naked singularities
for certain values of their parameters. This is the case for super-extremal (J2 > M > 0)
Kerr and super-extremal (|Q| > M > 0) Reissner-Nördstrom spacetimes, and also for the
negative mass Schwarzschild spacetime. We review our recent work where we show that
these nakedly singular spacetimes are unstable under linear gravitational perturbations, a
result that supports the cosmic censorship conjecture, and also that the inner stationary
region beyond the inner horizon of a Kerr black hole (J2 < M) is linearly unstable.
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Consider the Schwarzschild solution for the Einstein’s vacuum equations in the

static, spherically symmetric case,

ds2 = −

(

1−
2M

r

)

dt2 +
dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2). (1)

Its generalization to the axially symmetric (rotating) case, obtained by Kerr, is

ds2 = −
(∆− a2 sin2 θ)

Σ
dt2 − 2a sin2 θ

(r2 + a2 −∆)

Σ
dtdφ

+

[

(r2 + a2)2 −∆a2 sin2 θ

Σ

]

sin2 θdφ2 +
Σ

∆
dr2 +Σdθ2, (2)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr+ a2. The generalization of (1) to the

spherically symmetric Einstein-Maxwell case is the Reissner-Nördstrom spacetime,
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with electromagnetic field F = Q
r2
dt ∧ dr and metric

ds2 = −

(

1−
2M

r
+
Q2

r2

)

dt2 +
dr2

1− 2M
r

+ Q2

r2

+ r2(dθ2 + sin2 θdφ2). (3)

a := J/M , Q and M above arise as integration constants when solving the second

order field equations, and can therefore take any value. We know, however, that Q

is the charge, M the mass, and J the angular momentum, and that |Q| > M(> 0)

in (3), as well as |J | > M2 in (2), or a negative M in (1), would give a spacetime

with a naked singularity. Although not ruled out by Einstein’s equations, it is be-

lieved that a nakedly singular stationary spacetime cannot be the endpoint of the

evolution of “reasonable” evolving matter. Different technical versions of this asser-

tion are usually referred to as “cosmic censorship”. We have addressed this issue

through a series of papers 1,2,3,4 that analyze the stability under linear gravita-

tional perturbations of these nakedly singular spacetimes, and found that they are

generically unstable, providing further supporting evidence to the cosmic censorship

conjecture.

For the M < 0 Schwarzschild solution, the instability, first analyzed in Ref.5,

corresponds to the scalar (even) type 6 of gravitational perturbations 1,4. It was

Zerilli 7 who found that, for the black hole case M > 0, the scalar type linear

perturbations for the static exterior region r > 2M of a Schwarzschild black hole

can be reduced to a two dimensional wave equation with a space dependent potential

∂2Ψz

∂t2
+HzΨz = 0, Hz = −

∂2

∂x2
+ Vz(r(x)), (4)

x the tortoise radial coordinate, defined as

x = r + 2M ln

∣

∣

∣

∣

r − 2M

2M

∣

∣

∣

∣

. (5)

Eq. (4) admits separable solutions of the form e±iE1/2tψE(x), where HzψE = EψE .

The stability problem then reduces to finding out whether the “Hamiltonian” Hz

admits negative “energy” states or not. In the first case, e±iE1/2tψE(x) would grow

exponentially in time, as would do any solution of Zerilli’s equation with initial data

projecting non trivially on such a state. If Hz is positive definite, the separate vari-

able solutions are oscillatory in time, and generic solutions of (4) are then bounded

for all t. There is, however, a number of subtleties in the negative mass case, that

were only recently settled 4. First note that exterior region r > 2M of the M > 0

Schwarzschild black hole gets mapped onto the real x line by (5), whereas the r > 0

region of interest in the negative mass case maps onto x > 0, thus Hz is a “quan-

tum” Hamiltonian on a half axis, with Vz diverging as Vz ∼ −1/(4x2) as x → 0+

4,5 (see 8,9 for a detailed study of this problem.) Zerilli’s potential Vz is smooth for

r > 2M and positive M , whereas for M < 0 has a second order pole at r = rs > 0.

The half space domain of (4) for M < 0, is related to the non global hyperbolicity
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of the background spacetime. This requires choosing a boundary condition at the

x = 0 = r singularity. As shown in Refs.1,4,5, there is a unique physically mo-

tivated choice that guarantees that (i) first order corrections to metric invariants

do not diverge faster than their zeroth order piece as x → 0+, guaranteeing that

the perturbed solution is globally valid, and (ii) the energy of the perturbation is

finite5. The origin of the singularity at rs is different, and can be traced back to

the definition of the Zerilli function, which happens to be rational function of the

perturbed metric components, with an explicit singularity at this point1,4. As a

consequence, Zerilli’s function does not belong to L2(R, dx), Hz is not a self adjoint

operator on the space of Zerilli functions, and we do not know how to evolve initial

data for perturbations. The way out of this problem is provided by an appropriate

intertwining operator10,4, carefully constructed so as to map Zerilli functions onto

an L2 space, and Hz onto a self adjoint Hamiltonian operator on this space. The

unstable mode found in Ref.1 gets mapped onto one of the (bound state) eigenfunc-

tions of this Hamiltonian, and is therefore excited by generic initial data supported

away from the singularity. This completes the proof of instability of the negative

mass Schwarzschild black hole.

The unstable mode for M < 0 Schwarzschild was recognized in Ref.11 to belong

to the algebraic special modes (AS) studied by Chandraskhar in the black hole

context12. This hinted in the right direction to construct unstable modes for the

super-extremal Reissner-Nördstrom black hole, which also happened to be of the

AS type2. Kerr spacetime breaks this pattern, as the AS modes do not satisfy ap-

propriate boundary conditions in the super extremal case2. Perturbations of this

spacetime are treated using Teukolsky equations13, which describe the first order

variation ψ of a null tetrad component of the Weyl tensor, of spin weight s = ±2.

Separable solutions exist of the form ψ(s) = Rω,m,s(r)S
m
ω,s(θ) exp(imφ) exp(−iωt).

The equations they satisfy have the structure

−1

sin θ

d

dθ

(

sin θ
dS

dθ

)

+A(θ, aω,m, s)S = ES, (6)

∆
d2R

dr2
+ (s+ 1)

d∆

dr

dR

dr
+ B(r, ω, s, a,M)R = ER, (7)

This system is subtly linked: S has to be regular on the sphere (these functions

on S2 are called spin weighted spheroidal harmonics), R has to satisfy appropriate

boundary conditions, and the eigenvalue E is the same in (6) and (7). Teukolsky

equations were used to prove that the exterior stationary region of a Kerr black hole

is stable14, and to find numerical evidence of an instability in the super-extremal

case2. A proof of the existence of the unstable modes was recently found3, using the

results on the form of the spectrum of (6) for large imaginary ω = ik (corresponding

to unstable modes ∼ exp(kt))15

Eℓ(aω)|aω=ik = (2ℓ− 3)k +O(k0), as k → ∞, (8)
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together with its low frequency behavior

Eℓ(aω)|aω=0 = ℓ(ℓ+ 1) +O(aω) (9)

Here ℓ is the harmonic number, and the ones that are relevant for the perturbation

problem are ℓ = 2, 3, .... The radial Teukolsky equation can be cast in Hamiltonian

form Hψ = −ψ′′ + V ψ = −Eψ, the prime denoting a derivative with respect to an

alternative radial coordinate. For ω = ik, V = k2V2(r) + kV1(r) + V0(r), with V1
and V2 negative on an interval s1(M) < r < s2(M) < 0. This allows to prove that

(minus) the lowest eigenvalue of this Hamiltonian behaves, for k large enough, as

− ǫo(k) ≤ 〈ψ|H|ψ〉 < k2〈ψ|V2|ψ〉. (10)

The above equation, together with (8), (9) and the bound ǫo(k = 0+) < 15
4 obtained

from the global minimum of V imply that, as we increase k, we always find a com-

mon E eigenvalue in (6) and (7), for any harmonic number and the fundamental

radial mode3. Even more interesting is the fact that, with minor changes, the same

argument can be used to prove that, in the extreme (J2 = M) and sub-extreme

(J2 < M) black hole cases, the stationary region beyond the inner horizon, r < ri,

is unstable3. The instability found in region III of Kerr space-time, and the fact

that the Reissner-Nörsdtrom charged black hole also has a two horizon structure

with an inner static region r < ri, triggers the question of whether of not this inner

static region is stable. Preliminary work indicates that this region is unstable16.
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