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Abstract

Duality symmetric electromagnetic action a la Schwarz–Sen is shown to appear naturally in a chain of equivalent actions`
which interchange equations of motion with Bianchi identities. Full symmetry of the electromagnetic stress tensor is
exploited by generalizing this duality symmetric action to allow for a space-time dependent mixing angle between electric
and magnetic fields. The rotated fields are shown to satisfy Maxwell-like equations which involve the mixing angle as a
parameter, and a generalized gauge invariance of the new action is established. q 2000 Published by Elsevier Science B.V.
All rights reserved.

1. Introduction

Current interest in duality in string theory has
brought about a wealth of studies on similar symme-
tries present in other contexts, such as abelian p-forms
theories. The simplest among the latter, namely free
electromagnetism, has long been known to remain
invariant under the interchange of equations of mo-
tion with Bianchi identities. The first attempt to
implement this symmetry at the level of the basic

w xfields of the action 1 involved non local transforma-
tion among the A and E fields, in the Hamiltonian
Ž .first order version of the electromagnetic action.
Later on, a non covariant action was proposed by

w xSchwarz and Sen 2 where the transformation is
made local at the expense of doubling the number of
gauge fields. When the equations of motion for some

1 Becario CONICET.

of the fields are used, the usual Maxwell action is
recovered.

As it is well known, duality symmetry is actually
more general than the discrete interchange of electric
with magnetic fields. It is a continuous symmetry,

Ž .which gets reduced to a U 1 group when invariance
2 w xof the symmetric stress tensor is also imposed 3 .

The conserved momentum associated with this con-
tinuous symmetry is found to be the integral of
Chern–Simons terms, and full equivalence between
Maxwell and Schwarz–Sen actions has been shown

w xto remain valid at the quantum level 4 . Moreover,
covariant generalizations of the Schwarz–Sen action
have been found by introducing either an infinite

w xnumber of auxiliary gauge fields 5 or finite addi-
w xtional fields in a non polynomial way 6 .

2 All future references to the stress tensor will be to the
symmetric gauge-invariant one.
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On the other hand, when considered as a symme-
try of the stress tensor, this duality symmetry is not
the most general invariance, because the stress tensor
is also invariant under rotations with a different
angle at each spacetime point. We call this symmetry
of the stress tensor fully-local duality, to distinguish
it from that of the Schwarz–Sen action, which is

Žusually called local duality in opposition to the
w x.non-local transformations in 1 . In fact, from our

perspective, the duality symmetry of the Schwarz–
Sen action could be called global. Our work is
reminiscent of the passage from global to local gauge
invariance of complex matter fields, wherein gauge
fields are introduced in the covariant derivative.

The purpose of this work is twofold. We first
show how the Schwarz–Sen action emerges from a
chain of equivalent actions which interchange equa-
tions of motion with Bianchi identities. Then we
rewrite the Schwarz–Sen action in terms of a com-
plex gauge field. We proceed afterwards to probe the
effects of such space-time dependent rotations on
Maxwell equations and their implementation in a
generalized version of the Schwarz–Sen action. We
find that gauge invariance remains valid when suit-
able generalized. At the end we present the conclu-
sions.

2. The Schwarz–Sen action

Free electromagnetism equations of motion 3,
mnE F A s0 , 1Ž .m m

with

F A sE A yE A , 2Ž .mn m m n n m

can be obtained from the action

1 4 mnS A sy d xF F , 3Ž .Hm mn4

and Bianchi identities
mn˜E F A s0 , 4Ž .m m

3 Ž .We use the metric g sdiag q1,y1,y1,y1 .mn

hold automatically, with

1mn mnrsF̃ A s e F A . 5Ž .m rs m2

Alternatively, we can vary

1 4 mn˜ ˜S Z sy d xF F 6Ž .Hm mn4

with

F̃ Z sE Z yE Z 7Ž .mn m m n n m

obtaining

mn˜E F Z s0, 8Ž .m m

as equations of motion and
mnE F Z s0 9Ž .m m

mn w xas Bianchi identities, with F Z defined by am

Ž .relation analogous to Eq. 5 .
1i i0 i i jkIf we define E sF and B sy e F , re-jk2

gardless of whether F depends on A or Z , wemn m m

w x w xsee that the effect of passing from S A to S Z ism m

to interchange equations of motion with Bianchi
identities.

w xNow, S A is equivalent to the first order actionm

S A ,Fm mn

1 14 mn m n n ms d x F F y F E A yE AŽ .H mn mn4 2

14 2 2 ˙s d x B yE yEPAyEP=AŽ .H 02

yBP==A , 10Ž .
m Ž 0 .where A s A ,A . As it is well known, A andm

F are independent fields in this approach, butmn

Ž .varying with respect to F definition 2 is recov-mn

w xered, and replacing it in S A ,F , we get backm mn

w x w x iS A . Now, varying S A ,F with respect to Bm m mn

and A , yields Bs==A and =PEs0, respec-0
Ž .tively. Replacing these last equations in 10 we get

21i 4 i 2˙S A , E s d x E A y E q ==A ,Ž .H ½ 5i T T i T2

11Ž .
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where E indicates that only the transversal part ofT
E survives. Hence, another vector potential can be
introduced through E s==Z. As we shall see, ZT
will be later identified with the spatial components
of the tetravector Z , already introduced. Thenm

w i xS A , E can be written asi T

1 4 ˙ ˙w xS A ,Z sy d x ==ZPAy==APZHi i 2

2 2q ==A q ==Z , 12Ž . Ž . Ž .

where an integration by parts has been performed,
thus exhibiting the symmetry between Z and A. The
equations of motion are now

˙ ˙Es==Zs====As==B ,
˙ ˙Bs==Asy====Zsy==E 13Ž .
Some comments are in order. First note that the

w x Ž .assignment in S A ,Z of 13 as equations of mo-i i
tion and =PEs=PBs0 as ‘‘Bianchi identities’’,

w x w xcorresponds neither to S A nor to S Z . It is am m

mixture between the assignments in both actions.
Secondly, we could go through steps similar to those

w x w xthat led us from S A to S A ,Z , but now inm i i
reverse order and with Z taking the place of A .m m

The antisymmetric disposition of Z and A in the first
w xterms of S A ,Z necessitates the definition Z si i m

Ž . m Ž 0 .Z ,Z , which should be compared to A s A ,A .0
We would end up with an action which can be

w x Ž .identified with S Z as defined in 6 .m

At this point, Schwarz–Sen action is obtained
w xfrom S A ,Z noting that for any functions A andi i 0

Z ,0

d4 x=A P==Zs d4 x=Z P==As0 ,H H0 0

so that

1 4w xS A ,Z sS A ,Z ssy d x ==ZHi i m m 2

˙ ˙P Aq=A y==AP Zq=ZŽ . Ž .0 0

2 2q ==A q ==Z , 14Ž . Ž . Ž .

which is easily recognized as the Schwarz–Sen ac-
Ž .tion. Eq. 14 summarizes one of the main results of

w xthis work: we see that S A ,Z emerges in them m

middle point of a chain of equivalent actions that

w x w xlead from S A to S Z and backwards, inter-m m

changing equations of motion with Bianchi identi-
ties.

It should be stressed that the A and Z fields of0 0
the Schwarz–Sen action bear no relation to those

w x w xwhich appear in S A and S Z . In the formerm m

Ž .case, advantage is taken of relation 14 to make the
integral nicely dependent on two four-potentials,
while in the latter case they are used to impose the
constraints =PEs0 and =PBs0.

3. Complex field formulation

If we define FsAq iZ , F sA0 q iZ , F s0 0 m

Ž . 4F ,F , Schwarz–Sen action can be written as0

i
1 4 )˙S F ,F sy d x Fq=F P==FŽ .Hm m ) 02 ½ 2

))))) )˙y F q=F P==FŽ .0

q==FP==F ) . 15Ž .5
Varying with respect to F m) yields

˙==Fs i====F 16Ž .
Ž .which is the same as Eq. 13 , while variation with

respect to F m yields the complex conjugate equa-
tion.

w m m ) xS F ,F is separately invariant under the local
gauge transformations

F™Fq=C , 17Ž .1

F )))))

™F ))))) q=C , 18Ž .2

F ™F qJ , 19Ž .0 0 1

F )

™F ) qJ , 20Ž .0 0 2

where C , C , J and J are arbitrary gauge1 2 1 2
functions satisfying apropriate boundary conditions.
In case we want the surface term picked by the
Lagrangian to be real, conditions C sC ) and1 2
J sJ ) should be further imposed. The La-1 2

4 With our choice F is not a tetravector since in its definitionm

covariant and contravariant components are summed. Other
choices would render it a tetravector.
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grangian is also invariant under the simultaneous
Ž .global U 1 duality rotations

F ™e i aF , 21Ž .m m

F )

™eyi aF ) . 22Ž .m m

Ž .Under rotation 21 ,

F'==FsBq iE 23Ž .
is transformed to

e i a Fs cosa Bysina E q i cosa Eqsina B ,Ž . Ž .
24Ž .

which gets reduced to the known discrete duality
Ž .transformation for aspr2. This continuous U 1

symmetry has associated the conserved real current
m Ž 0 . 5j s j ,j , where

10 ))))) )))))j s ==F PFq==FPF ,Ž .4

1 ))))) )js == F F qF FŽ .0 04

1 ))))) )˙ ˙q F =FqF=FŽ .4

i
))))) )))))q ==F =Fy ==F =F .( ) ( )

2
25Ž .

In terms of the original A and Z fields, the conserved
momentum reads

d3 x ==APAq==ZPZ , 26Ž .H
which is of the usual Chern–Simons type.

4. Fully-local duality

Given a configuration of electromagnetic fields

FX sBX q iEX , 27Ž .
which satisfies Maxwell equations

X ˙ X X=PF s0 , F s i==F , 28Ž .
if we rotate them through

Fse i a Ž x .FX , 29Ž .

5 m w ) xNote that j is not a tetravector, since the action S F ,Fm m

is not a scalar.

Ž .with a space-time dependent angle a x , the rotated
fields satisfy
DPFs0 , 30Ž .
D Fs iD=F , 31Ž .t

where
D s E y iE a 32Ž .Ž .m m m

is a kind covariant derivative. Now, taking the real
Ž . Ž .and imaginary parts of Eqs. 30 and 31 we have a

total of eight equations. Were one to solve the four
E a therefrom, they would be overdetermined. Them

four compatibility conditions turn out to be
1 2 2E E qB q=P E=B s0 ,Ž . ( )t2

E E=B qE===EqB===BŽ .t

yB =PB yE =PE s0 , 33( ) ( ) Ž .
which are just the conservation equations of the
stress tensor, but now for the rotated fields. This is
actually not a piece of news, since the stress tensor is

Ž .invariant under 29 . Of course, not every configura-
Ž . Ž .tion satisfying the four Eq. 33 comes from a U 1 -

local rotation of another configuration which satis-
fies Maxwell equations, since the E a field solvedm

Ž . Ž .from Eqs. 30 and 31 must satisfy the integrability
conditions E E asE E a .m n n m

Now, since the original fields FX were derived
from
FX s==FX , 34Ž .
the rotated fields can be derived from a rotated
potential using a covariant rotor
Fse i a Ž x .FX sD=F , Fse i a Ž x .FX 35Ž .

Ž .Eq. 31 reads now
D D=Fs iD=D=F . 36Ž .t

This equation can be obtained from the following
generalization of the Schwarz–Sen action,
S F ,F ,am m )

i
1 4 )sy d x D FqDF PD=FŽ .H t 02 ½ 2

))))) )y D F qDF PD=FŽ .t 0

qD=FPD=F ) . 37Ž .5
Ž .Variation with respect to F yields Eq. 36 , andm

with respect to F ) yields it complex conjugate.m

Varying with respect to a yields no new equations.
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w m m ) xS F ,F ,a is now separately invariant under
the local transformations

F™FqDC 38Ž .1

F )))))

™F ))))) qD)))))C 39Ž .2

F ™F qJ 40Ž .0 0 1

F )

™F ) qJ 41Ž .0 0 2

where the conditions C sC ) and J sJ )

1 2 1 2
should again be imposed in case we want the surface
term picked by the Lagrangian to be real. The La-
grangian is also invariant under the simultaneous

Ž .local U 1 rotations

F ™e i b Ž x .F , 42Ž .m m

F )

™eyi b Ž x .F ) , 43Ž .m m

together with

a™aqb . 44Ž .
Ž . Ž .Under the transformations 42 – 44 , the fields

FsD=FsBq iE 45Ž .
are rotated into

e i b Ž x .Fs cosb x Bysinb x EŽ . Ž .Ž .
q i cosb x Eqsinb x B . 46Ž . Ž . Ž .Ž .

w xWe see that the action S F ,F is a particular casem m )

w xof S F ,F ,a , which is obtained from the latterm m )

Ž .through the transformations 42-44 with bsya .
Ž .The conserved current associated to the U 1

symmetry in the generalized action is now
10 ))))) )))))j s D=F PFqD=FPF ,Ž .4

1 ))))) )js == F F qF FŽ .0 04

1 ))))) )q D F =FqD F=FŽ .t t4

i
))))) )))))q D=F =Fy D=F =F .( ) ( )

2
47Ž .

5. Conclusions

We have shown that the duality symmetric
Schwarz–Sen action is the middle point of a chain of

equivalent actions, which interchange equations of
motion with Bianchi identities. Space-time depen-
dent duality rotations were studied and the equations
obeyed by the rotated fields were obtained, along
with a generalized action from which these equations
are derived. Remarkably, the gauge symmetries of
this action are a natural extension of those of the
Schwarz–Sen action.

Ž .An important property of the new Eqs. 30 and
Ž . Ž .31 is that for any a x , every solution of them is
mapped one-to-one to a solution of Maxwell equa-
tions. Among further developments of this work
would be to show how this equivalence holds at the
quantum level. This involves an analysis of the

w xconstrain structure of S F ,F ,a . Moreover, cou-m m )

pling to external currents in a fully-local-duality-pre-
serving way is also worth studying. We hope to deal
with these topics in a next work.
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