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Abstract
We propose a simple and straightforward method based on Wronskians for
the calculation of bound-state energies and wavefunctions of one-dimensional
quantum-mechanical problems. We explicitly discuss the asymptotic behaviour
of the wavefunction and show that the allowed energies make the divergent
part vanish. As illustrative examples we consider an exactly solvable model,
the Gaussian potential well, and a two-well potential proposed earlier for the
interpretation of the infrared spectrum of ammonia.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wronskians (or Wronskian determinants) are most useful for the analysis of ordinary
differential equations in general [1] and the Schrödinger equation in particular [2].
Whitton and Connor [3] applied a remarkable Wronskian formalism to resonance tunnelling
reactions and we have recently proposed that a closely related method may be suitable for
teaching quantum scattering in advanced undergraduate and graduate courses in quantum
mechanics [4].

The purpose of this paper is to show that the Wronskian method is also useful for the study
of bound states of one-dimensional quantum-mechanical models. We believe that this variant
of the approach is also suitable for pedagogical purposes and enables a unified treatment of
the discrete and continuous spectra of simple quantum-mechanical models.

In section 2, we convert the Schrödinger equation into a dimensionless eigenvalue equation
and show how to apply the Wronskian method to bound states. In section 3, we illustrate
the application of the approach by means of three suitable examples, one of them with an
interesting physical application to vibrational spectroscopy. In section 4, we outline the main
results of the paper and draw conclusions. Finally, in the appendix we outline the main
properties of Wronskians that are relevant to the present discussion.
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2. The Schrödinger equation

Before solving the Schrödinger equation it is a good practice to convert it into a dimensionless
eigenvalue equation. In this way one removes all the physical constants and reduces the
number of model parameters to a minimum. The time-independent Schrödinger equation for
a particle of mass m that moves in one dimension (−∞ < X < ∞) under the effect of a
potential V (X) is

− h̄2

2m
ψ 00(X) + V (X)ψ(X) = Eψ(X) (1)

where the prime indicates derivative with respect to the coordinate. If we define the
dimensionless coordinate x = X/L, where L is an appropriate length scale, then we obtain
the dimensionless eigenvalue equation

− 1
2ϕ00(x) + v(x)ϕ(x) = ²ϕ(x)

ϕ(x) =
√

Lψ(Lx), v(x) = mL2

h̄2 V (Lx), ² = mL2E

h̄2 .
(2)

The length unit L that renders both ² and v(x) dimensionless is arbitrary and we can choose
it in such a way that makes the Schrödinger equation simpler. We will see some examples in
section 3.

It is well known that a general solution to the second-order differential equation (2) can
be written as a linear combination of two linearly independent solutions. Here we write

ϕ(x) = A2C(x) + B2S(x) (3)

where the solutions C(x) and S(x) satisfy

C(x0) = S 0(x0) = 1, C 0(x0) = S(x0) = 0 (4)

at a given point x0 in (−∞,∞). These conditions are sufficient to ensure that C(x) and S(x)

are linearly independent [2].
For every value of the dimensionless energy ², we know that

ϕ(x) →
½
A1Lc(x) + B1Ld(x), x → −∞
A3Rc(x) + B3Rd(x), x → ∞ (5)

where L and R stand for left and right and c and d for convergent and divergent, respectively.
It means that, for arbitrary ², the wavefunction is a linear combination of a convergent and
a divergent function when |x| → ∞. If, for a particular value of ², B1 = B3 = 0, then
the resulting wavefunction is square integrable. In other words, this condition determines the
energies of the discrete spectrum.

It follows from the Wronskian properties outlined in the appendix that

B1W(Lc, Ld) = A2W(Lc, C) + B2W(Lc, S), x → −∞
B3W(Rc,Rd) = A3W(Rc, C) + B2W(Rc, S), x → ∞.

(6)

Therefore, when B1 = B3 = 0 we have a linear homogeneous system of two equations with
two unknowns: A2 and B2. There will be nontrivial solutions provided that its determinant
vanishes

W(Lc, C)W(Rc, S) − W(Rc, C)W(Lc, S) = 0. (7)

The roots of this equation ²n, n = 0, 1, . . . are the energies of the bound states (discrete
spectrum).
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When the potential is parity invariant

v(−x) = v(x) (8)

and x0 = 0, then C(x) and S(x) are even and odd functions, respectively. In this case we have

W(Lc, S) = W(Rc, S)

W(Lc, C) = −W(Rc, C)
(9)

and determinant (7) takes a simpler form W(Rc, C)W(Rc, S) = 0. We appreciate that the
even and odd solutions are clearly separate and their eigenvalues are given by

W(Rc, C) = 0

W(Rc, S) = 0,
(10)

respectively. Besides, we need to consider only the interval 0 6 x < ∞.
Commonly, it is not difficult to derive approximate expressions for the convergent

and divergent asymptotic forms of the wavefunction because they are straightforwardly
determined by the asymptotic behaviour of the potential v(x). Therefore, it only remains
to have sufficiently accurate expressions for C(x) and S(x) and their derivatives in order
to obtain the eigenvalues by means of equation (7). This problem is easily solved by
means of, for example, a suitable numerical integration method [5]. If y(x) stands
for either C(x) or S(x), then such an approach gives us its values at a set of points
x0 − NLh, x0 − NLh + h, . . . , x0, x0 + h, . . . , x0 + NRh where NL and NR are the number
of steps of size h to the left and right of x0, respectively. The number of steps should be
sufficiently large so that y(x) reaches its asymptotic value at both xL = x0 − NLh and
xR = x0 + NRh and h should be sufficiently small to provide a good representation of y(x).
The numerical integration methods also yield the derivative of the function y 0(x) at the same
set of points which facilitates the calculation of the Wronskians.

3. Examples

3.1. Exactly solvable problem

In order to test the accuracy of the Wronskian method we first choose the exactly solvable
problem given by the potential V (X) = −V0/ cosh2(αX), where V0 > 0 and α > 0. If we set
L = 1/α, we are led to the dimensionless Schrödinger equation (2) where

v(x) = − v0

cosh2(x)
,

v0 = mV0

h̄2α2
, ² = mE

h̄2α2
.

(11)

Note that the dimensionless energy ² depends on only one independent potential parameter
v0. The units of length and energy are 1/α and h̄2α2/m, respectively, and we do not have to
bother about the mass of the particle and the Planck constant when solving the differential
equation. The allowed dimensionless energies are given by [6]

²n = − 1
2 (λ − 1 − n)2, n = 0, 1, . . . ,6 λ − 1

λ = 1
2 (1 +

p
1 + 8v0)

(12)

and the spectrum is continuous for all ² > 0. It is clear that λ → 1 as v0 → 0 and there is
only one bound state when 1 < λ < 2 (0 < v0 < 1). As v0 increases, more bound states
appear. As a result there are critical values of the potential parameter for which ²n = 0 that
are given by the condition λn = n + 1 or v0,n = λn(λn − 1)/2 = n(n + 1)/2.
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Figure 1. Wronskians for the exactly solvable problem with ² = −1 and v0 = 2.5.

Since lim|x|→∞ v(x) = 0, then in this case Rc(x) = e−kx and Rd(x) = ekx , where
k2 = −2² (we only consider the interval 0 6 x < ∞ because the potential is parity invariant).
Consequently, the allowed energies are determined by the conditions

W(Rc, C) = [C 0(x) + kC(x)]e−kx = 0, x → ∞
W(Rc, S) = [S 0(x) + kS(x)]e−kx = 0, x → ∞ (13)

for even and odd states, respectively.
Since the potential (11) is parity invariant, we integrate the Schrödinger equation from

x0 = 0 to xR = NRh. Figure 1 shows the Wronskians W(Rc, C) and W(Rc, S) for the
arbitrary values ² = −1 and v0 = 2.5. We appreciate that x = xR = 5 is large enough to
have constant asymptotic Wronskians and we choose this coordinate value from now on. This
numerical test also shows that it is sufficient for the present purposes to set h = 0.01 and
NR = 500 in the fourth-order Runge–Kutta method [5] built in the computer algebra system
Derive (http://www.chartwellyorke.com/derive.html).

Figure 2 shows both W(Rc, C) and W(Rc, S) for x = 5 and v0 = 6 as functions of ².
We see that the Wronskians vanish at the exact eigenvalues given by equation (12). This is a
confirmation of our earlier assumption that the number of steps and their size are suitable for
obtaining reasonable results.

Figure 3 shows W(Rc, C) and W(Rc, S) for x = 5 and ² = 0 as functions of v0. In this
case the Wronskians vanish at the exact critical values v0,n = n(n + 1)/2.

Those results for the exactly solvable problem suggest that the Wronskian method is
successful for all bound-state energies and all well depths.

3.2. Gaussian well

As a second example, in what follows we try the nontrivial problem provided by the Gaussian
well V (x) = −V0 e−αX2

, where V0 > 0, and α > 0, that we easily convert into the

http://www.chartwellyorke.com/derive.html
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Figure 2. Wronskians for the exactly solvable problem with v0 = 6 as functions of ². The squares
mark the exact eigenvalues.
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Figure 3. Wronskians for the exactly solvable problem with ² = 0 as functions of v0. The squares
mark the exact critical parameters.

dimensionless potential

v(x) = −v0 e−x2
,

v0 = mV0

h̄2α
, ² = mE

h̄2α

(14)

by means of the length unit L = 1/
√

α. This potential is also parity invariant and vanishes
asymptotically as |x| → ∞ so that the calculation is similar to the preceding example. In order
to show that the Wronskian method also applies successfully to this model, we first obtain
some critical values of the potential parameter v0. Figure 4 shows W(Rc, C) and W(Rc, S)
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Figure 4. Wronskians for the Gaussian well with ² = 0 as functions of v0.
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Figure 5. Unnormalized ground-state wavefunction for the Gaussian well with v0 = 5.

for x = 5 and ² = 0 as functions of v0. The three zeros of the Wronskians shown in the figure
appear at v0,1 = 1.342, v0,2 = 4.325 and v0,3 = 8.898.

The numerical methods, although as accurate as one may desire (or the computer allows),
are not exact; therefore, we can make the coefficient of the divergent part of the wavefunction
very small but never exactly equal to zero. To illustrate this point we consider the ground state
of the Gaussian well with v0 = 5 and obtain the approximate energy ²0 = −3.6077 by means of
a naive bracketing algorithm. The Wronskian method gives us the coefficient of the divergent
part of the wavefunction B3 = W(Rc, C)/W(Rc, Rd) = W(Rc, C)/(2k) = 1.886 × 10−6

as a by-product of the calculation at x = 5. Note that in this case A2 = 1 and B2 = 0 so
that C(x) is the unnormalized approximation to ϕ0. Figure 5 shows that the wavefunction
decreases as A3 e−kx to almost zero and then increases as B3 ekx . For intermediate values of
the coordinate, the convergent part dominates because A3 is much larger that B3 but for larger
values of x, Rd dominates as shown in figure 5. The points in this figure are the values of
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Figure 6. Manning’s potential for NH3 and ND3.

B3Rd(x) = 1.886 × 10−6 e2.686x . We can improve the calculation and make B3 as small as
desired, but it will never be exactly zero because the numerical calculation is approximate
and the spurious divergent part will always be present. However, in order to normalize the
wavefunction and calculate expectation values, we judiciously truncate the coordinate interval
at a convenient point and obtain finite accurate values for those quantities. The Wronskian
method is clearly suitable for deciding on the truncation point and estimating the error.

3.3. Double well

As an interesting application of the Wronskian method to an actual physical problem we
consider the Manning potential that has been suitable for the interpretation of the infrared
spectra of ammonia [7], formamide [8] and cyanamide [9] as well as their deuterated species.
In order to study one of the vibrational normal modes of NH3 and ND3, Manning [7] proposed
the Schrödinger equation

d2R

dr2
+ k

·
E +

(β/2)(β/2 + 1/2) + D

kρ2
sech2

µ
r

2ρ

¶
− D

kρ2
sech4

µ
r

2ρ

¶¸
R = 0 (15)

where k = 8π2cμ/h, μ is the reduced mass of the molecule for the type of vibration
considered, E is the energy in cm−1 and β , D and ρ are potential parameters chosen to fit
the observed spectra. If we define x = r/ρ, then we obtain the dimensionless Schrödinger
equation (2) with

v(x) = −β(β + 1)

8
sech2

³x

2

´
− D

2

h
sech2

³x

2

´
− sech4

³x

2

´i
(16)

and ² = kρ2E/2. This potential exhibits two minima at x = ±xw (vw = v(±xw)) and a
barrier with maximum at x = 0 (v0 = v(0)).

The Schrödinger equation for this problem was solved by means of a power-series
approach that leads to acceptable solutions provided that the energy eigenvalues are roots of a
continued fraction [7]. Here we resort to the Wronskian method and obtain the lowest energies.
Following Manning [7] we choose β = 70 (91.4), D = 1920 (3261) and kρ2 = 2.885 × 10−2

(4.899 × 10−2) for NH3 (ND3). Figure 6 shows the potentials for both sets of parameters.
Although the barriers appear to be rather low, there are several energies between vw and v0 that
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Table 1. Energies of the Manning potential for NH3.

n ²n
2

kρ2 (²n − ²0) Ref. [7] ²n (RPM)

0 −643.845 703 0 0 −643.845 706 021 8018
1 −643.835 02 0.74 0.83 −643.834 992 157 913 09
2 −630.4740 926.98 935 −630.474 034 6309
3 −630.041 077 956.993 961 −630.041 088 563 88

Table 2. Energies of the Manning potential for ND3.

n ²n
2

kρ2 (²n − ²0) Ref. [7] ²n (RPM)

0 −1096.739 532 0 0 −1096.739 502 998 22
1 −1096.738 464 0.0436 <0.2 −1096.738 420 316 656
2 −1078.470 184 745.840 746 −1078.470 124 5670
3 −1078.404 724 748.512 748.5 −1078.404 795 0329
4 −1062.958 557 1379.097 1379 −1062.958 552 20
4 −1061.637 298 1433.037 1434 −1061.637 339 253 78

we have calculated by means of the Wronskian method and show in tables 1 and 2. Although
the agreement between our results and Manning’s ones [7] is reasonable, the discrepancy in
the energy differences 2(²n − ²0)/(kρ

2) for NH3 is greater than the accuracy of the present
Wronskian calculation. For that reason we also calculated the eigenvalues by means of the
Riccati–Padé method (RPM) [10] (a pedagogical discussion of the RPM is available elsewhere
[11]) that is highly accurate for those energies. The remarkable agreement between the results
of two completely independent approaches such as the Wronskian method and the RPM
shows that the present calculation is sufficiently accurate. The discrepancy mentioned above
is therefore attributable to inaccuracies in Manning’s calculation or in the reported model
parameters [7].

Tables 1 and 2 show that ²1 − ²0 ¿ ²n − ²0 for all n > 1. One expects that a perturbation
on the system will couple the first two (almost degenerate) states more strongly than any other
pair of states. For that reason, it is customary to treat the inversion motion of those molecules as
a two-level model [12]. Feynman et al [12] considered two states |1i and |2i when the nitrogen
atom is left and right of the plane defined by the three hydrogen atoms. They assumed that
h1| H |1i = h2| H |2i = E0 and h1| H |2i = h2| H |1i = −A < 0. This two-level model has
two stationary states |I i and |II i with energies EI = E0 + A and EII = E0 −A, respectively.
The state of the system is |ψi = C1(t) |1i + C2(t) |2i where |C1|2 + |C2|2 = 1. If the system
is initially in the state |1i, then the probability that it will be in the state |2i at time t is simply
given by P(t) = |C2(t)|2. It is not difficult to prove that [12]

P(t) = sin2

µ
At

h̄

¶
. (17)

The frequency of the inversion motion is therefore v = 1E/h = 2A/h. The results in
tables 1 and 2 enable us to estimate the frequency of the inversion motion as

v = 2c (²1 − ²0)

kρ2
(18)

where c is the speed of light.
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4. Conclusions

In our opinion the Wronskian method is sufficiently clear and straightforward for teaching
an advanced undergraduate or graduate course in quantum mechanics. The mathematics
requires no special background beyond an introductory calculus course. Since many available
computer softwares offer numerical integration methods, the programming effort is relatively
light.

From a purely theoretical point of view, the method is suitable for the discussion of
the convergent and divergent asymptotic behaviours of the wavefunction and for illustrating
how the allowed bound-state energies make the divergent part vanish leading to square-
integrable wavefunctions. The students may try other quantum-mechanical models, derive
the appropriate asymptotic behaviours analytically and then test their results by means of a
suitable computer program. They can verify that the Wronskians already approach constants
as the absolute value of the coordinate increases and that the wavefunction already looks like
a square integrable function when the coefficient of the divergent contribution is almost zero.
They can even estimate the remnants of the asymptotic divergent part because the Wronskian
method provides the necessary coefficients. The lecturer may even look for interesting one-
dimensional models with physical applications and offer them to the students as additional
problems and exercises.

In addition, the Wronskian method is also suitable for quantum scattering [4] allowing a
unified treatment of both the discrete and continuous spectra of the model.

Finally, we point out that computer algebra systems are remarkable aids for the teaching
and learning process because they facilitate the algebraic treatment of the problem and even
offer the possibility of straightforward numerical calculations (although they are considerably
slower than specialized numerical programs).

Appendix. Wronskians

In order to make this paper sufficiently self-contained in this appendix, we outline
some well-known results about the Wronskians that are useful for the study of ordinary
differential equations in general [1] and also for the treatment of the Schrödinger equation in
particular [2, 3]. To this end, we consider the ordinary second-order differential equation

L(y) = y 00(x) + Q(x)y(x) = 0. (A.1)

If y1 and y2 are two linearly independent solutions to this equation, then we have

y1L(y2) − y2L(y1) = d

dx
W(y1, y2) = 0 (A.2)

where

W(y1, y2) = y1y
0
2 − y2y

0
1 (A.3)

is the Wronskian (or Wronskian determinant [1]). The Wronskian is a skew-symmetric

W(f, g) = −W(g, f ) ⇒ W(f, f ) = 0 (A.4)

and the linear function of its arguments

W(f1 + f2, g) = W(f1, g) + W(f2, g)

W(cf, g) = cW(f, g)
(A.5)

where c is a constant.
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By the linear combination of y1(x) and y2(x), we easily obtain two new solutions C(x)

and S(x) satisfying

C(x0) = S 0(x0) = 1, C 0(x0) = S(x0) = 0 (A.6)

at a given point x0 so that W(C, S) = 1 for all x. If we write the general solution to equation
(A.1) as

y(x) = AC(x) + BS(x), (A.7)

then

A = W(y, S), B = W(C, y). (A.8)

This equation is quite useful for deriving relationships between the coefficients of the
asymptotic expansions of the wavefunction in different regions of space as shown in sections 2
and 3. Additional mathematical properties of the Wronskians are available in Powell
and Crasemann’s book on quantum mechanics [2] and in the more rigorous discussion by
Titchmarsh [13] where one also finds suitable generalizations of the functions C(x) and S(x).
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