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Abstract

Control at the interface between the classical and the quantum world is fundamental in quantum
physics. In particular, how classical control is enhanced by coherence effects is an important question
both from a theoretical as well as from a technological point of view. In this work, we establish a
resource theory describing this setting and explore relations to the theory of coherence, entanglement
and information processing. Specifically, for the coherent control of quantum systems, the relevant
resources of entanglement and coherence are found to be equivalent and closely related to a measure
of discord. The results are then applied to the DQCI protocol and the precision of the final
measurement is expressed in terms of the available resources.

Introduction

Coherent superposition is a defining characteristic of the quantum world. Coherence indicates the fundamental
misalignment, or noncommutativity, between quantum states and the interactions or observables which we may
use to probe them. Due to its intimate connection with quantum superposition, coherence is also important in a
large number of quantum information protocols. In fact, coherence can be seen as a type of resource, allowing
one to perform tasks that would be more difficult or not possible otherwise. Indeed, coherence has recently been
developed into a formal quantum resource theory [1-1 4%, similar to that for entanglement [20, 21].

In the macroscopic classical world, where states and observables commute, superposition effects are
suppressed and physical systems can be described without coherence using classical probability distributions.
Yet some special systems, often found at mesoscopic scales, can exist in the murky borderlands between the
classical and quantum worlds. In fact, systems that bridge between these worlds are very important in modern
experiments. Operationally, it is common to employ intermediary physical systems, such as lasers, magnetic
fields, or photodiodes, to interface with a separate ‘target’ quantum system. By coupling to the target system,
these mediator systems can function as state preparation, control, and measurement devices.

To interact meaningfully with the controlled system, the mediator systems must themselves be able to exerta
nonclassical effect on their targets. At the same time, they must also interface with the classical world to
communicate human- or machine-readable instructions and measurement outcomes. Through this, they are
inevitably exposed to classical noise and decoherence effects which makes the creation and the conservation of
coherence a costly task. Recognising that coherence is a potential resource, we might ask what value might be
gained if we were to pay these costs and what potential quantum advantages do coherent resources provide in
this standard operational paradigm?

In this work, we address these questions by formalizing a resource theory for the tasks of preparing,
controlling, and measuring quantum systems, and explore the differences between having incoherent versus
coherent resources at our disposal. Within this framework, coherence and entanglement can be freely

* Another possible approach to coherence theory [15, 16] is based on the theory of reference frames [17, 18], which proved useful in quantum
thermodynamics [19].
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Figure 1. Devices between the quantum and the classical. As we move more from the left to the right-hand side, the scale of the system
reduces and we have access to a stronger coherent control.

interconverted and thus represent the same underlying resource, which we call the recoverable coherence. We
introduce a quantifier for this resource and connect it to measures of quantum discord [22-25]. Finally, we
illustrate these ideas through an application to the family of quantum algorithms known as ‘Deterministic
Quantum Computation with one qubit’ (DQC1) proposed in [26]. In the last decade, this family of algorithms
has instigated a lively debate as to what is the quantum resource behind the speed-up obtained with quantum
algorithms, as DQCI1 can be implemented even with a very small amount of entanglement [14, 27-31]. We show
how the accuracy of the outcome in DQC1 can be quantified in terms of the recoverable coherence, and how this
connects with entanglement and discord. We discuss connections with related works in the section defining the
resource theory and in the appendix.

The framework

To motivate the following framework, we start by considering a generic experimental set-up for controllinga
quantum system (see figure 1). Humans can only interact mechanically with macroscopic objects, therefore one
part of any experiment needs to be macroscopic, be it only the keyboard of a computer. This part is fully
described by classical physics. To model this in quantum mechanics, following [ 1] we say that the state of a
system is incoherent if it is diagonal in a fixed basis.

Definition 1. Given a system A and a fixed orthonormal basis Z = {|c) } 2=, we call a state p incoherent (with
respectto 2)if p = Y- plc) (c|forsome p > 0,where > . p = 1.

Secondly, there are some experimental devices that allow us to operate on the full quantum system. These
intermediary devices are usually in the mesoscopic domain, because we want to manipulate their operating
parameters in a deterministic way and, at the same time, use them to manipulate microscopic quantum system.
Because of their size, it is an operationally hard task to bring these devices controllably into a coherent
superposition that remains stable against decoherence. To cast this situation into a resource theory perspective,
it is advantageous to assume that only incoherent operations are available and all required coherence is supplied
by a third party. For this reason, we might think of coherence as a resource for the manipulation of the
controlling devices. Following [1], we thus define”:

Definition 2. We call a quantum operation incoherent if each of its Kraus operators K|, is incoherent. That is, for
any o incoherent, K, 0K, is incoherent.

We want to use these intermediary devices to control a quantum system, and in the best case we can have
perfect quantum control. We must keep in mind that the controlling devices decohere quickly due to their size.
Therefore, it might be hard to encode information in a control basis that is not the incoherent one and still have a
stable quantum control. The best stable control we can hope for is therefore given by the unitary

(antrol = Z|C> <C| & (Jc (1)
c

We also assume that we can add ancillae to the quantum system and that we can trace out parts of the system, i.e.
we can prepare and discard parts of it.

5 . . . . . .
See the appendix for a brief discussion on this choice.
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Ultimately, we might wish to measure the quantum system. We therefore include a measurement device,
which couples to the quantum system, performs any measurement of the quantum system, and sends the
classical measurement result to a computer. This is described by

0) (0] ® p— Y le) (c| © KcpKS, )
c
where the left-hand side of the tensor product denotes a register in the computer’s memory and the right-hand
side is the state of the quantum system.

We note that incoherent operations include anything one can do with a computer. Because we focus on the
control of a quantum system in this paper, we only need to consider two systems: the controlling system A, on
which we can do any incoherent operations for free, and the quantum system B, for which we have full quantum
control, including measurements. In this way, the complete family of allowed operations in our framework is
defined as follows.

Definition 3. Consider a bipartite system AB. The class of Global Operations Incoherent on A, with respect to
thelocal orthonormal basis Z = {|c) } on A (abbreviated as GOIAz), is the family of quantum channels
consisting of (finite) combinations of

1. Incoherent operations on A (def. 2),
2. Controlled operations in the incoherent basis from A to B (equation (1)),
3. Adding or removing (tracing out) ancillae on B, and

4. Measurement and postselection on B (equation (2)).

Notice that if we extend this set of operations by allowing general unitary operations on A, we recover the full
set of quantum operations on AB.

The resource theory

Having defined the free operations, we need to address what are the free and the resource states in the framework
and investigate how these resources can be distilled if someone provides a source of non-free states.

Free states

With Z = {|c) } as the incoherent basis of A, we can prepare any state of the form

Po =2 b l¢) (cla ® 10) (0|p using only incoherent operations on A. Performing controlled operations
(equation (1)) on p, (with the aid of ancillary states), we can prepare any state in the set of Z-classical-quantum
states [9],

CQz = {plp =Y ple)(d @ p, lc) € 2}, )

where the p, are arbitrary quantum states. Conversely, any operations in the GOIAz framework conserve this set.
The largest set of operations that preserves the set of classical-quantum states CQ z was defined in [14]. While all
of our operations are inside that set, the converse remains an open question. Using the physical picture we have
introduced, we can link together other seemingly disparate recent works in the field [7—14] (see the appendix for
abrief overview and also see the related independent work [32],which discusses a different subset of the
CQz-preserving operations [14]).

Most notably, in [9] the subset of the bipartite operations on AB, that can be performed locally, only with the
aid of classical communication (the Local Quantum-Incoherent operations and Classical Communication,
LQICCz) was introduced. These operations are a strict subset of GOIAz: we get them by restricting the control to
be performed by local operations on B, conditional to measurements outcomes on A. The connections will
prove useful to unravel the resource theory defined by GOIAz, which is done in the following sections.

Coherence as a resource

Now, we determine the set of resource states in our framework, i.e. the set of states that makes GOIAz operations
universal. To this end, we first note that from a supply of maximally coherent states |4) on A we are able to
implement any local operation on A [1]. Secondly, the supply of |+) on A also allows for the generation of
entanglement between A and B by application of equation (1). Thirdly, the provision of arbitrary local
operations on A and B and arbitrary amounts of entanglement between A and B allows for the generation of
arbitrary joint operations between A and B [33] (see also [11]). In particular, by applyinga CNOT (included in

3
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the GOIAz-, but notin the LQICCz-operations), one can create a pure maximally entangled state (a singlet)
from a maximally coherent state [7] and one can steer an incoherent state to a maximally coherent one under
LQICCz operations by using up a singlet state [ 12]. Therefore, the pure resource states can be produced from
one another with GOIA;z operations.

We can now ask how many resource states one can distill from # copies of a given state.

Definition 4. Let ¢ (p, n) - n be the maximal number of fully coherent qubit states (on subsystem A) that can be
prepared from # copies of the state p, , with fidelity atleast 1 — ¢, byapplyingmaps A € GOIAz:
r'(p,m) = sup {R|FAQP™), H) H") > 1 - €}
A€GOIAz
The recoverable coherence (with respect to the basis Z) is the infinite-copy and infinitesimal error limit of the
above maximal ratio:

C§Ec(p) = lim lim r¢(p, n). 4)

e—0n—oo

As entangled and coherent resource states can be interconverted, the analogous notion of recoverable

entanglement coincides with C5F¢:

ERC(p) = CEC(p). (5)

Notice that these quantities are not equivalent to the distillable entanglement [20]. Moreover, they are not
entanglement monotones [34], as GOIAz allows to convert product states (not incoherent on A) into entangled
states. However, for pure states, distillable entanglement is a lower bound to the distillable entanglement under
GOIAz°. We give general lower bounds to the distillable coherence in the appendix. As was noticed in [9], for any
state outside of CQz, there is a protocol in LQICCz C GOIAz which allows the recovery of some amount of
coherence. Hence, there is no bound coherence or entanglement in GOIAz.

A monotone for CXE¢

A next natural step in the resource theory is to introduce a monotone that quantifies the distance to the free
states. A particularly suitable measure is provided by the relative entropy:

Az(p) = min S(pllo) = S(p") — S(p), (6)
O'ECQZ

where S (p||o) = Tr[p(log,(p) — log,(c))], S(p) = —Tr[plog,p]is the von Neumann entropy and
p'=>.(c)(cl ® Dp(lc)(c| ® 1)is the state obtained from p by completely decohering with respect to the
basis Z (seelemma 1 in the appendix).

The functional Az is additive, convex, and monotonic under GOIAz on average. Proofs of these properties
are presented in the appendix in lemma 2, 3 and proposition 1. Most importantly, it upper bounds CXE via (see

the appendix for a proof).

Az(p) = CEEC(p). )

This sharpens a similar result of [9], where the free operations defining CXE€ on the right-hand side were the

more restrictive LQICCz operations. Still, because LQICCs is strictly included in GOIAz, the bounds derived in
[9, 11] are valid for our framework and we get that equation (7) is tight for maximally correlated states

(o =X pole) ('] @ le) ('] [36,37]) and for product states [9] (where the recoverable coherence is just the
distillable coherence on the A-part calculated in [2]), as well as for general pure states [11] (as the proofs simplify
in our framework, we show them nonetheless in the appendix). The bound is also tight for quantum—classical
states. We have to leave open the question of whether the bound can be reached in general.

Basis-independent recoverable coherence and discord

In the previous section, we presented a framework that specifies coherence in some fixed basis Z. However, it

might be useful in some contexts to work without this constraint. The natural extension would then be to ask

whatis C§EC of the state in the most unfavourable case’. For product states, it is clear that the choice of the

6 . . - o TToes . . .
For pure states, the protocol described in [35] for entanglement distillation can be performed, as it requires full quantum control just on
one side. This shows that the entanglement entropy provides alower bound.

7 . . . . .

At first glance, the maximum recoverable coherence might also seem to be a meaningful quantity. However, it depends strongly on the
dimensionality of the basis, and would be saturated for any pure state by choosing as the incoherent basis the one conjugate to the local
Schmidt basis.
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Figure 2. Scheme of the discussed sets. The set of zero discord states, CQ, is the union of all CQz sets (e.g. Z = W). Each of the CQz
sets is convex, but CQis not convex. The union CQ is contained within the convex hull of the CQz, which is the set of separable states.
The intersection of all CQ z are the states of the form % ® pg. The corners of the separable set correspond to pure states, which are
shared with (in principle, many) incoherent lobes. Z* is the basis in which the geometric distance Az to CQz gets minimized, i.e. one

with oz nearest to p in relative entropy.

eigenbasis of p, is the worst case. In general, this does not need to be the case. For instance, consider the state

p=eM)TI@ M)+ 52U @ M)+ =)=l @ L) (LD

REC
1

In thelimit ¢ — 0, CXE¢ — 1 using thelocal eigenbasis Z = {|| ), [T )}, yet C5r< — 0 for the choice
Z' = {|«), |- ) }. With this in mind, we define the basis-independent recoverable coherence

Caixlp] = min CEEC (), (8)

as the minimum recoverable coherence regarding the most unfavourable basis. Due to equation (7), we obtain

Con Lp] < min Az (p) = AP (p). ©)

That is, the basis-independent recoverable coherence is upper bounded by the thermal discord A% ~2(p) (also
called one-way information deficit). Thermal discord represents the difference between the work that can be
extracted from a system in the state p by performing either global or local operations on A [38, 39]. Additionally,
it corresponds to a particular case of a measure of discord, a type of non-classicality of a quantum state beyond
the notion of entanglement [22—-25], quantifying how much a given state fails to belong to the set of Classical-
Quantum or pointer states [22, 40]:

CQ = JCQz. (10)
z
See figure 2 for a picture of the relevant sets. The most prominent features of discord quantifiers are [24] their

* Vanishing, if the state is in CQ, and

 Invariance under local unitaries.

Therefore, discord quantifiers are asymmetric with respect to the swap of A and B. One may also ask thata
discord quantifier is non-negative, bounded from above by the entropy of p, and suitably normalized, such that
the measure coincides with the entanglement for the singlet state in the qubit case. We note that the basis-
independent recoverable coherence C.REC is also a discord quantifier, as it has the above-mentioned properties.
For pure states, distillable entanglement is the same as thermal discord [35], which is an upper bound for the
basis-independent recoverable coherence, which in turn is an upper bound for entanglement as noted above. So,

for pure states, these quantities all coincide (also see [9] for a different argument).

Application to the DQC1 protocol

In this section, we apply the above-mentioned results to analyse the resources involved in the DQCI1 protocol
[26,29]. The goal of DQCI1 is to determine the trace of a n-qubit unitary operator U, which is a very challenging
task in the realm of classical physics. The DQCI1 protocol accomplishes this task by making use of a maximally

10+ 11)
coherent control qubit —5

figure 3). After the action of the controlled unitary [0) (0] ® 1 + |1) (1| ® U, the state of the probe encodes the

trace of the unitary in the coherent bases ( { l 0>ji| b 055' 2 } and { 19 jil 119 ;51 L } ) Measuring the

probe in these bases ends the protocol. Of course, to read out the result, we need to perform repeated
measurements of the final state, implying that we need to repeat the protocol many times to gain a certain degree
of accuracy. If the initial state is not maximally coherent, we are still able to perform the algorithm, but we need a

as a probe and a maximally mixed state on the remaining target system (see
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Figure 3. Scheme of DQC1 protocol. Top: the standard form of the protocol. Bottom: the protocol from the point of view of the
incoherent-quantum partition. In this case, the first Hadamard gate was replaced by a probe (system A) in a fully coherent state (+)),
while the final Hadamard gate was exchanged by a final destructive measure in a maximally coherent basis (e.g. the basis { |+), |- ) }).

larger number of runs to reach the same precision [30]. Interestingly, the protocol remains efficient also in the
case of probes in a highly mixed state, even when the bipartite entanglement between the probe and any part of
the system is small or even vanishes during the entire protocol. This observation provided motivation to look at
different measures of quantumness, such as multipartite entanglement [27] and quantum discord [14, 29]. But
while it is not clear why one should look for multipartite entanglement in a setting that physically is bipartite,
quantum discord is problematic as a resource because the zero discord set is not convex, thus mixing two zero
discord states (which amounts to forgetting which of the two one prepared) can provide some non-zero discord
state (see figure 2). On the other hand, as was pointed out in [14], the minimal requirement for the DQC1
protocol to work is the presence of some amount of coherence in the probe. We can make this statement more
precise by remembering that, to obtain the expectation value which encodes Tr U, the protocol should be
performed many times, consuming on each run a fresh qubit probe [29]. The number of runs needed to reach
some desired precision depends directly on the degree of coherence of the probe. Suppose we have m copies of
the jointinitial state p = py ® liarger/dim, where dim is the dimension of the target system and pj is the
(general) qubit state of the probe before applying the controlled unitary. We show in the appendix that the
precision (i.e. the number of binary significant digits) of the estimated Tr U is (up to a constant) given by a

function of C§EC, ie.

prec(TrU) =~ —log,

TrU 1
SE( d ) ’ ~ =log,(CE(py)); (11)
dim 2

where SE (%) denotes the standard error of the mean [41] associated to the random variable %.

Notice that in the present formalism, entanglement and coherence are interconvertible, so the amount of
bipartite entanglement that can be produced during the protocol between the probe and any part of the target
system is bounded by CXEC (p) for any state p of the total system at any stage of the protocol. We note that if at
any point in the protocol any discord quantifier is non-zero, this implies that the state is not quantum-—classical
and therefore CXEC is non-zero. By the monotonicity of CXE¢ under GOIAz, we find that the state of the probe at
the beginning cannot have been incoherent. Therefore, any discord quantifier is a witness for recoverable

coherence and the applicability of the DQC1 protocol.

Conclusion

In this work, a framework for the description of incoherent systems controlling quantum systems is proposed.
The set of operations over the composite system (GOIAz), together with its associated minimal invariant set,
define a formal resource theory in which the resource is the amount of coherence that can be recovered on the
control side. Using the connections with other frameworks [7—14], we extend many of the previous results to the
GOIA; framework and show that the associated resources, the recoverable coherence, and recoverable
entanglement are equivalent. We upper bounded CXF€ by a geometric functional and found that the latter is a
monotone of the theory. By looking at the least favourable choice of the incoherent basis, the amount of resource
associated to a given state is a discord quantifier. This quantifier is bounded from above by the thermal discord of

6
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the state. Finally, we exemplified our findings by calculating the precision of the DQCI protocol with a mixed
control qubit and stated it in terms of the resource of our theory—the recoverable coherence.
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Appendix. Related works

One of the first papers relating coherence with entanglement was [7], in which the authors looked at how one can
restrict coherence theory further by splitting the space of free states into two incoherent parts. This gives rise to
control operations, and thus allowed operations that can produce entanglement by using up coherence. This line
of thought was further developed in [8], where the authors showed an equality between symmetric discord [42]
and coherence in such a framework. Another approach was taken in [6], relating a more general form of
superpositions than coherence to entanglement via control gates. In [9] the authors instead looked at possible
extensions of coherence theory and introduced the framework of local operations and classical communication
(LQICCz). This and modifications thereof where subsequently discussed in [10, 11], which were mostly
concerned with the relation of coherence to entanglement and structure of the respective theories. After these
[12, 13] analysed steering-induced coherence in the LQICCz framework and defined a measurement induced
disturbance measure for coherence, to some extent related to discord. Finally, [14] defined the set of quantum
operations that preserve the form of incoherent-quantum states. In a subsequent work [32], a subset of these
operations was analysed independently of this letter.

Choice of the incoherent operations

In our theory of coherent control of a quantum system, we need to choose which theory inside quantum
mechanics corresponds best to a classical theory of labels, i.e. we need to specify the theory of coherence we
choose to model the free operations on the ‘classical’ side A of our set-up. Clearly, we need to ensure that no
coherence is produced, i.e. we only consider maps which, starting from an arbitrary incoherent state, result in yet
another incoherent state (even after a possible postselection). This leads to the coherence theory defined in [1]
and used here. One could now argue that one should restrict the allowed operations further. Indeed, there is by
now an entire hierarchy of proposals of possible theories (see e.g. the appendix of [43] for an overview), but the
discussion of which is the most meaningful is far from settled yet (and context-dependent). We adopted our
current choice of model principally because it allows for a particularly wide class of operations and hence will
give particularly strict bounds in the sense that a process that is impossible under this set will also be impossible
under essentially all other possible choices of coherence theory.

A totally different choice would be the theory of U(1)-covariance [15], which has been successfully applied in
the context of thermal operations (see e.g. [19]). The reason we do not use it here is simple: permutations are not
allowed operations there (unless on degenerate subspaces), but as this only requires changing labels in our
setting, it should be allowed.

Proofs
Here, the proofs of the properties presented in the main text are shown.

Lemma 1 (Minimal relative entropy to CQz— equation (6). Also see [9] based on arguments of [42]). Let
{I1, = |¢) {c| ® 1} betheset of projectors on the incoherent basis Z on A. Then:

Az(p) = S(p ZHEPHC]- (12)

Proof. We start by observing that S (p||o) is a convex function of ¢ (for fixed p), and hence, the global minimum
o* is the unique stationary point of that function (and it exists). Let us start the calculation of the stationary
points, by parameterising o by an exponential map: let { 0 } be a basis for the sub-algebra of (zero trace)

7
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hermitian operators in AB satisfying the condition [II,, of] = 0.Itis clear that any full-rank state ¢ € CQz can
be writtenas ¢ = exp(—h)/Z,with Z = Trexp(—h)and h = >, Ay 0. Notice that non-full-rank states can
be reached as alimit. In this parameterisation, the stationary conditions reduce to

Tr (poy) — Tr (c% o) = 0.

This implies that for the global minimum ¢*, and for any observable O, Tr [p3_ II,OIl.] = Tr [, L, pII, O]
has to equal Tr [0*O]. Therefore, the global minimum is c* = Y _II pII,. O

Properties of Az— Notice that from lemma 1, it follows that the monotone Az is the same as the
recoverable coherence in the basis Z by incoherent operations [2] Az (p, ® pg) = Cz(p,) and that the
monotone is additive:

Lemma 2 Additivity.
A(p") = nA(p). (13)

Proof.
A =S [ p="

— S[plSCn
—nS[p

We can also verify that Az is convex:

®@n
Z HC]vCZx e HCI:CL e En]

C1C2---CN

(ZC:HCpHC]®n]

)

c

= nA(p).

Lemma 3 Convexity.

Az (Zpipi) < 20 Az(p). (14)

Proof. For each i, Az (p;) = S(p)l|0;) for certain 0; € CQz, therefore

AZ(Zpipi]_ min S[Zpipi
i otz i

cQ

O']
< S(Zpipi Zpio'i]
<SPS (ollon.

Now, we can show that this quantity is non-increasing under GOIAz:

Proposition 1 (Monotonicity on average).

Az(A(p)) < Az(p) VA € GOIAz, CPTP. (15)

Proof. We start noticing that if A is in GOIAz, A(CQz) C CQz. Therefore,
Az(A(p)) = min S(A(p)||o)
ceCQz
< min S(A(p)|lo)
o€A(CQz)
= min S(A(p)[|A(0))
ceCQz

< min S(p|lo) = Az(p),
O'ECQZ

where the last inequality follows from the monotonicity of the relative entropy under CPTP maps [44]. O
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Proof of the geometric upper bound (equation (7))

Here, we present the proof of equation (7), stating that the geometric monotone defined by the relative entropy

to the free states, upper bounds CXE¢.

Proof. Let A, be the optimal GOIAz map that produces from the state p, m,, copies of the state | ), e-near in
fidelity to |+):
Au(p") = W) (W[

Now, we observe that up to order e (using the continuity of the fidelity and of the von Neumann entropy as
functions of the state):

m, = S[TrRA(p®") Trgr ZHCA(,C’@”)Hc]
< S[A(P®") ZHCA(0®")HC]
= Az(A(p™"))
<Az (p®")
=nAz(p).

The first line follows from the definition of the relative entropy and the second line from the monotonicity of this
quantity under the partial trace. The third line follows from the definition of Az, the fourth line from the
monotonicity under GOIAz and the last line from additivity (lemma 2).

Now, from the definition of C5€ () (definition 4) we obtain

CH¥C(p) = lim lim max
e—00 n—ooA€GOIAz n

Lower bounds
Alower bound for CREC is provided by looking at the final coherence obtained after a specific protocol. A
subfamily of such protocols consists on performing a measurement on the B side, communicating the outcome,
and adding a label to the classical side:

Apag) = S 1K) (Kl @ (1 ® M) pag (1 @ M),

where { M} } defines a POVM. Tracing out B we obtain for the relative entropy of coherence of the final state:
Cz(TrpA(p)) = > _p Cz(pp)s
k

with p, = Tr(M] Myp), p, = |k) (k| ® Trz(M; My p). We can also see that this is the maximum amount of
coherence that can be recovered by local means (i.e. in the LQICCz framework). Noticing that Cz (TrzA(p)) isa
concave function on the set of POVMs on B, we can see that its maximum is attained on the boundary of the set.
Following a similar reasoning as in the optimization of discord-like quantities [45], we can reduce the
optimization problem to find a set of rank-1 projectors. Moreover, if rank (Trzp) = r, the maximum is attained
for a POVM with at most r* elements.

Asa corollary, we can notice that for the set of ‘Quantum-—Classical states’ p = >, p, p,? ® |k) (k|p the lower
bound coincides with the upper bound Az (p) and hence, CgEC (p) = Az(p).

Non equivalence for CXE (p) and Az (p) in the general case. An open question about CXEC is related to its
numerical equivalence with the geometric measure for general mixed states. To illustrate the problem, let us
consider the mixed state

)= M © 10) (05 + M @ 14) (+ls

with [¢) = |O>\J/%| D and lp) = l l>g 2 For this state, Az (p) ~ 0.8925while Cz (Trzp) = 0.6887. A better
lower bound is given by the previous local protocol involving the optimal measurement on B, followed by addin

g ythep | % g P Y g
an ancilla on A. By numerical optimisation over projective measurements on B, alower bound of

Cz (TrgAjcp) =~ 0.8167 was obtained. This number is the best we can obtain by local means in a single shot

9
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Figure 4. Recoverable Coherence and DQCI. In this figure, the finite accuracy DQCI algorithm, including the purification stage, is
depicted. Starting from a general resource state p,,, the channel Ap prepares with some fidelity the state (| +)® %)m , which is used
to estimate the trace of U.

protocol. However, to evaluate CXE€ (p), we should exhaust every protocol using infinite many copies, which
would be possible only by providing a specific upper bound for p, and a protocol that saturates it.

Lemma 4 (Recoverable coherence for pure states, also see [11]). If p,; = [1) (4] CEE° (p,5) = Az (pyp)-

Proof. We start by noticing that, due to the Schmidt decomposition theorem |[¥) = > A,lc)a|c)g for certain
constants { A, } and local orthogonal basis {|a)4 }, {|c) }. We can bring this state to a locally incoherent
maximally correlated state |¢)') by adding an ancilla on B in a reference state |0)p, followed by the application of a
controlled translation operation T, = 3 /|i) (il4 ® 1 ® Y_;|i & k) (k|p. Because both T, and its inverse are free
operations (being controlled unitaries with incoherent control), by the monotonicity of the upper bound under
GOIAz-operations we get that, Az (|¢)') (¢/']) = Az (T.(pys @ [0)(ODT) = Az(pys @ [0)(0]) = Az(pyp)- It
follows from the tightness of the bound for maximally correlated states that

Az (pyp) = Az (W) (@) = CEEC (") (¢/]) < CEEC(|9)) () < Az(pyp)> and the equality is shown. 0

Proof of equation (11)
In this section we prove equation (11) of the main text,
prec ( TTU ) ~ logz(SE( T?U )) ~1 log, (CEE¢ (p)),
dim dim 2

We find it instructive to first consider a slight generalisation of the DQCI protocol, where instead of a source of
maximally coherent probes, a general state p7" is provided (see figure 4). From this state (in the asymptotic

limit), we can prepare n ~ CXF¢ E mCEEC (p, 5) maximally coherent probes. In DQC, the estimation of

the trace is given by ?l = (0y) + i(0y), being o, = (? B), o, = (0 . :)) the x, y Pauli matrices and (...) the
m — 1

expectation values. If the number of available probes n is large, (...) can be approximated by the average over the

results of the outcomes of the n independent runs of the algorithm (... ),. In the asymptotic limit, the error

introduced by replacing {...) by (...}, is given by the Standard Error of the Mean

SE[g,] = \/ (o = (o’ _ \/ Lo :7”>2 with probability >>68% [41]. From this it is straightforward to see that in the

asymptotic limit, the precision (i.e. the number of significant (binary) digits) of a number x, x| < 1 goes like:

prec(®) ~ —log,(SE(%)).

. o T
In the same way, we can bound the norm of the error in the estimation of d_r—U by

SE(1Y) ~ (S 4 SE ey = (2 (| U |) fum = o (| ]) b

dim dim

2
1<,/2— (‘ E:j ‘) < /2 and hence prec ~ —log,(SE(TrU/dim)) ~ %longgEC (pfg‘), using this gener-

alized algorithm.
To see that this is indeed the maximum attainable precision for the standard algorithm without the
recovering step, let us consider m probes in the general state g, = (% 1-p), where without loss of generality we

TU

dim

2

assume « > 0. For these probes, Z:—:ﬂj = <0">J;Awhile SE(E—E) = —— . Thus,
2| TrU 2
TrU 2~ laP| 5 |
prec, =~ —log,| | SE— ~ —log,
dlm azm

10
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Butm = CREC (pii’r?be) / CREC (Pprobe) and hence,

REC
aZ /CZ (pprobe)
Cap| TV PY
(2-10r|52T)
But the second term is a number less or equal than 0 since a* < Cz (pope) = CEREC (Bprobe)- As this term is finite
and independent of 1, the correction can be neglected in the asymptotic limit.

1 m
prec, = Elogz(CZREC(pffmbe)) + log,
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