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Abstract

We analyze how the thermal history of the universe is in3uenced by the statistical description,
assuming a deviation from the usual Bose–Einstein, Fermi–Dirac and Boltzmann–Gibbs distribu-
tion functions. These deviations represent the possible appearance of non-extensive e6ects related
with the existence of long-range forces, memory e6ects, or evolution in fractal or multi-fractal
space. In the early universe, it is usually assumed that the distribution functions are the standard
ones. Then, considering the evolution in a larger theoretical framework will allow to test this
assumption and to place limits to the range of its validity. The corrections obtained will change
with temperature, and consequently, the bounds on the possible amount of non-extensivity will
also change with time. We generalize results which can be used in other contexts as well, as
the Boltzmann equation and the Saha law, and provide an estimate on how known cosmological
bounds on the masses of neutrinos are modi9ed by a change in the statistics. We particularly
analyze here the recombination epoch, making explicit use of the chemical potentials involved
in order to attain the necessary corrections. All these results constitute the basic tools needed
for placing bounds on the amount of non-extensivity that could be present at di6erent eras and
will be later used to study primordial nucleosynthesis. c© 2001 Elsevier Science B.V. All rights
reserved.

1. Introduction

This paper is the 9rst in a series that will thoroughly analyze the in3uence of the
statistical description in the standard picture we have for the evolution of the early
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universe. To do so, we shall insert the usual statistical mechanics, i.e., Boltzmann–
Gibbs’, in a larger framework, given by non-extensive theories. These theories are
parameterized by a new degree of freedom, related to the amount of non-extensivity
present in the system under consideration. The standard statistical mechanics is the only
one that respects the property of extensivity, i.e., the entropy of a system formed by
several subsystems equals the sum of the entropies of each separate subsystem. Then,
considering this case as a particular situation out of a larger set of possibilities, our
aim will be twofold. On the one hand, we shall comment on the reasons by which the
universe as a whole could deviate from being an extensive system, and on the possible
amount of these deviations. On the other, we shall systematically analyze how many
of the standard results of the usual cosmological model, the hot big bang theory, get
a6ected by such a slight change. This change will manifest itself in the form of the
quantum distribution functions, that we shall modify at the beginning and use through
the paper. Using these generalized predictions, we shall be in position to assess how our
present knowledge of observational data can bound the statistics operative at di6erent
eras of cosmic evolution. The corrections obtained will change with temperature, and
consequently, the bounds on the possible amount of non-extensivity will also change
with time.
We shall of course draw upon some previous results, for instance, the modi9cation

that a change in the statistics introduce in the energy density of the universe was
previously studied by several authors. Particularly, some of us have been working
in the topic of nucleosynthesis, under what it is known as the asymptotic approach
of quantum distribution functions [1–3]. However, we shall re-derive some of these
results in order to have all of them within the same non-extensive framework; this
will allow to consistently use our new results in the follow up applications. Indeed,
these preliminary works will be used as the launch pad for a consistent analysis on
the in3uence of statistical mechanics on all standard—textbook—cosmology: We shall
generalize and obtain corrections due to this new setting (up to 9rst order in the
deviation parameter) for processes going from the decoupling of hot and cold relic
species, nucleosynthesis, recombination, to matter-radiation equality. In our way up,
we shall as well derive results which can be used in other contexts, as the generalized
Boltzmann equation and the Saha law. A direct application of them is also carried on
here, particularly in the section concerning neutral hydrogen formation.
Many are the papers on astrophysics and cosmology using non-standard statistical

mechanics. Among them, we would like to mention here the works related with the
solar core [4–8], where an interesting analysis of neutrino production in a non-extensive
setting was presented. It is both interesting and instructive to follow the recent discus-
sion on the need for a new statistical description in the solar core, to that end see the
papers of Refs. [9,10]. Another astrophysical application has been on the topic of high
and ultra-high-energy cosmic rays [11,12]. In particular, it was recently proven that a
non-extensive setting cannot solve the GZK cuto6 problem [13]. Of course we must
recall other previous papers on cosmology [14–16], and make a special remark on the
proof of the T˙R−1 relationship [17], the analysis of COBE satellite data as a bound
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for non-extensivity [18], the use of precision cosmology (MAP, Planck, SDSS) with
the same aim [19], and some previous ideas on kinetic theory [20]. This series of pa-
pers encompass most of these results, enlarge them, and tries to form an uni9ed picture
of non-extensive cosmology, both bounding its possible range of validity and extent
and, from a formal point of view, studying how a generally non-stated assumption can
hide lots of implications.
The layout of this paper is as follows. In the sake of making a self-contained work,

especially for cosmologists, we shall state in Section 2 some of the most important
ideas and the basic development of non-extensive statistics. For the ease of the discus-
sion, some brief historical comments will be made also there. We shall also present the
new quantum distribution functions, that we shall use in the rest of the work, follow-
ing in this regard the discussion made by BJuyJukkKlKLc et al. and TKrnaklK et al. [21,22].
Section 2, then, does not pretend to show new results. Section 3 discusses the val-
ues of the plasma parameter along cosmic history, and assess the a priori possibility
that the universe as a whole can be considered as a non-extensive system. Sections
4 and 5 are the basis for all further development; they state the thermodynamical
picture and the cosmologically conserved quantities in this new setting. Then, some
new applications follow: Section 6 is concerned with the decoupling of relativistic and
non-relativistic species; Section 7, with the process of recombination; and Section 8,
with the new Boltzmann equation and the study of the process of freezing. Then, a brief
Section 9 states the predictions for the current values of some observables of cosmolog-
ical importance; and Section 10 studies hot and cold relics in the new framework and
generalizes some of the well-known bounds on neutrino masses and on other species.
Finally, in Section 11, it is brie3y accounted for the correction that non-extensivity
would introduce to the value of matter-radiation time and temperature. We end by
summarizing and obtaining some conclusions of a general nature. Paper II in this se-
ries will be an analytical analysis of the nucleosynthesis process, going all the way
up to the formation of deuterium and 4He. We shall be specially concerned with the
analysis of the nuclear principle of detailed balance and the in3uence it has in this
new setting.

2. Basics of non-extensive statistics

Among physicist and astronomers, there is a non-stated consensus on that the
Boltzmann–Gibbs (BG) statistical mechanics is always applicable. However, in analogy
with Newtonian dynamics and special relativity, it could a priori justi9ed to consider it
just as part of a bigger framework, an enlarged statistical description where extensive
as well as non-extensive phenomena could be taken into account [23]. An interest-
ing generalization of the BG entropy form has been recently proposed by Tsallis [24]
(for recent reviews see Refs. [25,26], for a full bibliography see Ref. [27]). This new
entropy, that we discuss below, possesses the usual properties of positivity, concavity
and irreversibility, and generalizes the additivity in a non-extensive way. Examples in
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which BG statistics seems to present serious problems are systems for which there are
long-range forces, and=or which present memory e6ects, and=or are subject to evolution
in a non-Euclidean space. 1

The generalized form for the entropy is

Sq = k
1−∑W

i=1 p
q
i

q− 1
; q∈R ; (1)

where k a positive constant, W the total number of physical states accessible to the
system, and the set of probabilities pi satis9es

W∑
i=1

pi =1 : (2)

Eq. (1) recovers the usual (BG) form for the entropy in the limit q → 1, i.e.,

lim
q→1

Sq =− k
W∑
i=1

pi lnpi : (3)

The entropic index q, intimately related to, and determined by, microscopic dynamics,
characterizes the system under consideration. This re3ects itself in the pseudo-additivity
law for the entropy Sq,

Sq(A+ B)=k = Sq(A)=k + Sq(B)=k + (1− q)[Sq(A)=k][Sq(B)=k] ; (4)

where A and B are two independent systems in the sense that the joint probabilities
(those corresponding to the system A+ B) are such that pij(A+ B)=pi(A)pj(B).

2.1. Expectation values

We now introduce the following non-normalized expectation value

〈A〉q ≡
W∑
i=1

pq
i Ai (5)

such that 〈A〉1 corresponds to the standard mean value for the observable A. If the
system is a quantum one, its description is given in terms of the density operator, �,
with eigenvalues {pi}. Then, the generalized entropy is

Sq = k
1− Tr�q

q− 1
(Tr�=1) (6)

and the expectation value becomes

〈A〉q ≡ Tr�qA : (7)

1 See for instance the works on one-dimensional dissipative maps: at their critical points, like the choas
threshold or the bifurcation points (where the Lyapunov exponent is zero), the scenario is no longer de-
scribed by BG statistics [28–30]. Also see the works on conservative Hamiltonian many-body systems with
long-range forces [31,32]. Other examples can be found. Systems with long-range forces analyzed using
molecular dynamics tools [33] and heavy ion collisions [34].
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Eq. (6) can be recast as

Sq =− k〈lnq �〉q : (8)

If the system is classic, and the relevant variables are continuum ones, we can describe
it by a probability distribution p(̃r ), where r̃ is a dimensionless variable, say, in a
many-body phase space. Then, the generalized entropy will be

Sq = k
1− ∫ d̃r [p(̃r )]q

q− 1
with

∫
d̃rp(̃r )= 1 (9)

and the expectation value

〈A〉q ≡
∫

d̃r [p(̃r )]qA(̃r ) : (10)

We shall present the formalism in the case in which the system is described by a set
of microscopic probabilities, W .

2.2. Canonical ensemble

The 9rst non-trivial physical situation is that of a system in thermal contact with a
thermostat at a temperature T . We must then extremize the entropy taking into account
several constraints. The 9rst one is just the de9nition of probability

W∑
i=1

pi =1 : (11)

For the rest, a detailed discussion is in order.

2.2.1. Internal energy
There is some freedom concerning the choice of the constraint imposing the relation-

ship among the di6erent energy levels with the total internal energy. The 9rst choice
was introduced by Tsallis [24]: to Eq. (11), it is added the following constraint:

W∑
i=1

pi�i =U (1) : (12)

Here, an index (1) refers to the 9rst choice, and {�i} are the Hamiltonian eigenvalues
of the system. Using standard techniques, it can be seen that the {pi}-values that
extremize Sq with the imposed constraints are

p(1)
i =

[1− (q− 1)�?�i]1=(q−1)∑W
j=1 [1− (q− 1)�?�j]1=(q−1)

: (13)

It must be said that �? is not the Lagrange multiplier associated with the constraint
upon the internal energy. This expression recovers the usual one (pi˙ e−��i) in the
limit q → 1 and it depends on the microscopic energies as a power law instead of the
familiar exponential function.
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The second choice [24] postulates that
W∑
i=1

pq
i �i =U (2) : (14)

The {pi}-values that now extremize Sq are

p(2)
i =

[1− (1− q)��i]1=(1−q)

Z (2)
q

; (15)

where we have de9ned the generalized partition function

Z (2)
q =

W∑
j=1

[1− (1− q)��j]1=(1−q) : (16)

This result di6ers from the previous in that the role played by (1−q) is now equivalent
to what was played by (q − 1), and that in this case, � is the Lagrange multiplier
associated with the constraint on the internal energy. The probability distribution can
be conveniently recast as

p(2)
i =

e−��i
q

Z (2)
q

with Z (2)
q ≡

W∑
j=1

e−��i
q (17)

what allows to prove the following series of equalities [35]:
1
T
=

@Sq

@U (2)
q

; (18)

F (2)
q ≡ U (2)

q − TSq =− 1
�
lnq Z (2)

q ; (19)

U (2)
q =− @ lnq Z

(2)
q

@�
; (20)

C(2)
q ≡ T

@Sq

@T
=

@U (2)
q

@T
=− T

@2F (2)
q

@T 2 ; (21)

with Fq; Uq and Cq standing for the corresponding generalizations of Helmholtz free
energy, internal energy and speci9c heat. Then, the formal thermodynamical struc-
ture (Legendre transformations) remains valid. Three unwanted consequences, however,
should be noted [36]

1. The distribution given by Eqs. (15) and (16) is not invariant against an uniform
shift of the energy zero.

2. The mean value of a constant di6ers from the constant itself, 〈1〉q 	=1.
3. Finally, if two systems A and B are such that pA+B

ij =pA
i p

B
j and �A+B

ij = �Ai + �Bj ,
then

U (2)
q (A+ B)=k =U (2)

q (A)=k + U (2)
q (B)=k + (1− q)[U (2)

q (A)Sq(B)=k]

×[U (2)
q (B)Sq(A)=k] (22)

what di6ers from U (2)
q (A)=k+U (2)

q (B)=k. This means that the energy is not an additive
quantity.



170 M.E. Pessah et al. / Physica A 297 (2001) 164–200

A third choice for the energy constraint was proposed by Plastino et al. [36], and
its key aspect is normalization. The constraint is now∑W

i=1 p
q
i �i∑W

i=1 p
q
i

=U (3) (23)

i.e., it weights the eigenvalues with a set of escort probabilities pq
i =
∑W

i=1 p
q
i . The set

{pi} which now extremizes Sq are (see the appendix for the de9nition of the function
involved)

p(3)
i =

[1− (1− q)�(�i − U (3)
q )=

∑W
i=1(p

(3)
i )q]1=(1−q)

RZ
(3)
q

=
expq[− �(�i − U (3)

q )=
∑W

i=1(p
(3)
i )q]

RZ
(3)
q

; (24)

where

RZ
(3)
q =

W∑
j=1

[
1− (1− q)�(�j − U (3)

q )

/
W∑
i=1

(p(3)
i )q

]1=(1−q)

=
W∑
j=1

expq

[
−�(�j − U (3)

q )

/
W∑
i=1

(p(3)
i )q

]
: (25)

It can be shown that, if T ≡ 1=k� [36]
1
T
=

@Sq

@U (3)
q

; (26)

F (3)
q ≡ U (3)

q − TSq =− 1
�
lnq RZ

(3)
q (27)

and

Sq = k lnq RZ
(3)
q : (28)

In addition, use of Eq. (27), together with �@U (3)
q =@�= @(lnq RZ

(3)
q )=@� leads to

U (3)
q =

@
@�

(�F (3)
q ) ∀q : (29)

Note that RZ
(3)
q refers to the energy levels {�i}, with respect to U (3)

q . We can choose 0

as the energy reference de9ning Z (3)
q through

lnq Z (3)
q = lnq RZ

(3)
q − �U (3)

q (30)

and recast (27) and (29) as

F (3)
q =− 1

�
lnq Z (3)

q (31)

and

U (3)
q =− @ lnq Z

(3)
q

@�
: (32)
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Finally, it can be shown that the Legendre structure is preserved too. The appealing
features of this third choice are based in that it avoids all three problems that were
noted for the second set of possible constraints [36]. It is only necessary to de9ne the
new expectation values as

O(3)
q ≡ TOiUq ≡

∑W
i=1 p

q
i Oi∑W

i=1 p
q
i

; (33)

where O is any observable. Now, T1Uq =1 ∀q and

U (3)
q (A+ B)=U (3)

q (A) + U (3)
q (B) : (34)

It is important to mention that the probabilities associated with the third choice
coincide with those obtained with the second if we use a normalized temperature
[36]. This is the reason by which all theorems that do not use an explicit temperature
dependence of a given phenomenon will continue to be valid.

2.3. Distribution functions

Despite that the third option is conceptually simpler than the second, actual compu-
tations of thermal dependencies are much harder. This stems from the fact that in the
second option, the equations for {pi} are explicit (see (15)) whereas they are implicit
in the third case (see (24)). The objective of this work is to analyze the evolution of the
universe when the distribution functions slightly di6er from the standard ones. To this
end, working in the second option will provide the simplest expressions possible for
all observables, what will allow analytical computations through. For particular cases,
in addition, it has been proven that the di6erence between the exact results (using the
third choice) and the approximation we shall make here are in very good agreement
[37].
Let us now consider a gas composed by N non-interacting particles. If the system

is in thermal contact with a heat and a particle reservoir, the energy and the number
of particles will be conserved. The stationary state of the system will be given by the
solution of

H R =ER R ; (35)

where H is the Hamiltonian and  R is the wave function of the system. The accessible
states will be represented by R. In second quantization formalism, R is given by the set
of occupation numbers {n1; n2; : : : ; nk ; : : :}, where nk denotes the number of particles in
the state k. Taking nk =0; 1 for fermions ensures Pauli’s exclusion principle. We must
now extremize the entropy with the imposed constraints

1=
∑
R

PR ; (36)

RE=
∑
R

Pq
RER ; (37)
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RN =
∑
R

Pq
RNR : (38)

To obtain the solution we use the usual method, extremizing the expression (with units
such that k =1),

Q=
1

q− 1

(
1−

∑
R

Pq
R

)
− "

∑
R

PR − �
∑
R

Pq
RER − #

∑
R

Pq
RNR ; (39)

where "; � are # Lagrange multipliers. Making, @Q=@PR =0, we obtain

∑
R

(
qPq−1

R

q− 1
+ "+ q�Pq−1

R ER + #qPq−1
R NR

)
=0 : (40)

Since it should be zero for all R, each term in the sum must vanish

qPq−1
R + (q− 1)"+ q(q− 1)�Pq−1

R ER + #q(q− 1)Pq−1
R NR =0 : (41)

Identifying � and # by

#=− �$; �=1=T ; (42)

where $ is the chemical potential and T the temperature, the probability that the
ensemble is in the state R is

PR = [1 + �(q− 1)ER − �(q− 1)$]1=(q−1)=Zq ; (43)

where

Zq =
∑
R

[1 + �(q− 1)ER − �(q− 1)$]1=(q−1) : (44)

The occupation numbers automatically determine the quantum state of the system

ER = n1�1 + n2�2 + · · ·+ nk�k + : : : ; (45)

NR = n1 + n2 + · · ·+ nk + : : : ; (46)

where �k is the energy of a particle in the state k.
Using Eqs. (45) and (46) in expressions (44) and (43) we obtain

Pn1 ;:::; nk ;::: =
[1 + �(q− 1)(�1 − $)n1 + · · ·+ �(q− 1)(�k − $)nk + · · · ]1=(q−1)

Zq (47)

with

Zq =
∑

n1 ;:::; nk ;:::

[1 + �(q− 1)(�1 − $)n1 + · · ·+ �(q− 1)(�k − $)nk + · · · ]1=(q−1) :

(48)

The partition function can be factorized as

Zq =
∞∏
k=1

∑
nk=0

[1 + �(q− 1)(�k − $)nk ]1=(q−1) : (49)
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Fig. 1. Behavior of generalized distribution functions (FD, MB and BE, respectively) for q=1:1; 1:0 and
(q − 1)= 0:9.

It can be shown that (see Refs. [21,22] for details) the generalized occupation numbers
are

〈nr〉q = 1

[1 + (q− 1)�(�r − $)]1=(q−1) + %
(50)

with %=0; +1 or −1 in the case of a Maxwell–Boltzmann (MB), a Bose–Einstein
(BE), or a Fermi–Dirac (FD) gas. In the limit, (q− 1) → 0 standard distribution func-
tions are recovered. The expressions for the distribution functions are not exact ones,
since from Eqs. (48) and (49) we have made and approximation, a.k.a. factorization
approach [21,22]. In general, indeed

[1 + (q− 1)(A+ B)]1=(q−1) 	= [1 + (q− 1)A]1=(q−1)[1 + (q− 1)B]1=(q−1) :

(51)

Since the equality is valid for q=1 we can certainly wait that for values |q−1|�1 the
approximation will remain a good one. We are interested in the 9rst order in (q− 1),
then expression (50) becomes

〈nr〉q = 1
e�(�r−$) + %

+
q− 1
2

(�(�r − $))2e�(�r−$)

(e�(�r−$) + %)2
: (52)

In Fig. 1 we show the change in the distribution functions for di6erent (q− 1)-values.
Eq. (52) is the expression we were looking for, it is simple enough, but yet accurate

for small deviations, to give an interesting framework where to analyze (as a parame-
terization) the e6ect of a small change on the extensivity properties of the universe on
its own evolution. Looking at Fig. 1 it can be seen that despite the particular analytical
form for the new distribution functions, it is clear that they will do an excellent job
in showing an slight deviation from the standard case, this being the ultimate reason
why we use them.
Up to recent days, quantum distribution functions within the factorization approxi-

mation were regarded as a rather rough technique, see Pennini et al. [38]. These latter
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authors considered fermion and boson systems with very small occupation numbers.
However, Wang and LSe MSehautSe [39,40] analyzed the problem in detail and showed
that there exist a temperature interval, which they called ‘forbidden zone’, where the
deviation from the exact result maybe signi9cant. Otherwise, outside this zone, the fac-
torization approach results can be used with con9dence. In addition, they veri9ed that
the magnitude of the forbidden zone remained constant with the increase of the num-
ber of particles. This fact motivated new e6orts in the study of macroscopic systems
(where the number of particles is large), since the generalized distribution functions
of the factorization approach could be used at temperatures up to 1020 K for such sys-
tems [39,40]. All these results encourage us further to use this approximation for the
analytical study that follows.

3. The plasma parameter, the plasma era, and before

One of the earliest applications of a non-Maxwellian distribution to plasmas was
referred to the solar core. Clayton considered an ionic quantum distribution func-
tion that slightly deviated from a BG one, being the correction factor proportional to
exp[ − &(E=kT )2] [41]. & can be related with a non-extensive parameter q by means
of the formula &=(1 − q)=2, see Refs. [4–8]. There are several reasons why to ex-
pect a slight deviation from a BG behavior in the sun core. Particularly, we know
that long-range forces are present (Coulomb and gravitational) and that there are also
e6ects related with long-range microscopic memory. Then, the leading idea is try to
see whether the solar core is a non-ideal plasma, or a quasi-plasma, or equivalently,
to what extent it can be considered as ideal. While we forward the reader looking for
a detailed account of these e6ects to the references quoted in Refs. [4–8], let us just
mention here the computation of the plasma parameter.
The plasma parameter is the ratio between typical electrostatic energy of the nearest

neighbors of a given particle and the thermal energy kT . For a plasma with number
density n, the mean inter-particle distance will be n1=3, and it can be proven that the
number of particles inside a Debye sphere is given by [42]

ND ∼ 360
(

T
K

)3=2 ( n
cm−3

)−1=2
: (53)

The plasma parameter will be then de9ned as (=N−2=3
d : When (�1, the plasma

behaves (just considering the long-range forces) as an ideal gas, the electrostatic energy
is small compared with kT and there are a large number of particles that shield the
long-range force in a Debye-radius range. If, instead, (�1, the plasma is strongly
coupled and certainly non-ideal. For values of ( near 1 we expect slight corrections.
For the sun core, for instance, the plasma parameter is of the order of 0.1. Is it
small enough to produce no appreciable deviation? The answer seems to be no. It
have been recently proven, see last reference in Refs. [4–8], that the e6ects of random
electric micro9elds are of crucial importance. These 9elds have in general long-time and
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long-range interactions that can generate anomalous di6usion that alters the distribution.
Most importantly, the amount of the deviation has been quanti9ed to be proportional
to (2.
The plasma parameter in the early universe is used to de9ne what is known as the

plasma era. At the end of the plasma era is where the process of recombination occurs.
Here, the plasma parameter is very small and an ideal gas approach is, a priori, a very
good one. If the universe is well described within the standard model of cosmology,
we do not expect the distribution functions to deviate from the usual BG ones within
the plasma era and in later epochs. Then, if we force the distributions to deviate, the
corrections should turn out to be very big, in such a way that experiments could then
impose restrictive bounds on, for instance, the non-extensive parameter. This is indeed
what happens, as we shall see below particularly when analyzing the recombination
process. Do the same happens for all eras of cosmic evolution?
Near the temperature of freezing at about 1 MeV, something very important happens

in the universe: the electron–positron annihilation. At about 0:5 MeV, the cosmolog-
ical plasma changes its composition, before the annihilation being formed mainly by
electrons, positrons, photons, neutrinos, and traces of non-relativistic particles. Which
is the value of the plasma parameter in this era? This plasma is relativistic, and then
we cannot expect that the previously introduced parameter (although indeed it grows
as the temperature of the universe increases) to be a complete description. We can,
however, consider it as a 9rst approximation. Its value is ∼ 0:07 at the time of freez-
ing (t ∼ 1 s; T ∼ 1 MeV). This value of ( is close to the sun core case. Can we a
priori expect a similar correction to the quantum distribution functions? As we shall
later show, when relativistic particles dominate the problem, corrections introduced by
a slight deviation in the distribution functions are not so big as in the non-relativistic
case. Restrictions on the parameter space are then not so strong, and, a posteriori, it
is not possible to straightforwardly discard such slight deviations. In addition, if (2

gives the amount of the deviation also for this system, we would expect corrections
of the order of 10−2–10−3, what we do obtain (independently of these comments)
when we analyze the epoch of primordial nucleosynthesis, see Paper II in this
series [43].
We do not claim here that these paragraphs provide evidence of such an strong nature

as to consider a priori that deviations to BG distributions functions are unavoidable, as
the analysis for the sun core case seem to show [4–8]. We do believe, however, that
they make worth looking at the standard model predictions in an statistically modi9ed
setting, to see the allowed range of the deviations along the di6erent cosmic eras. To
that aim we devote this and the follow up paper in the series. On the other hand,
we recall that several authors, with various motivations, have considered other e6ects
that could slightly change the distribution functions as well: Non-equilibrium e6ects
originating in residual interactions between neutrinos and electrons (see for instance
Ref. [44]) and 3uctuations in magnetic 9elds possibly present at that time (see for
instance Ref. [45]) are some examples.
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4. Thermodynamics in the expanding universe

4.1. Energy density; pressure; number of particles

The number density, the energy density, and the pressure for a dilute gas are given
in terms of their corresponding distribution function f(p) by (units are such that
˝= c=1),

n=
g

(2.)3

∫
f(p) d3p ; (54)

�=
g

(2.)3

∫
f(p)E(|p|) d3p ; (55)

P=
g

(2.)3

∫
f(p)

|p|2
3E(|p|) d

3p ; (56)

where E(|p|)= |p|2 +m2, and g is the degeneracy factor of the particle. From now on,
E(|p|)=E(p) and |p|=p. Let us 9rst take the non-degenerate case, in which kT�$.
As before, T will stand for the temperature and $ for the chemical potential. Use of
the form of f(p) in the non-extensive approach we adopted gives the correction to
the standard result at 9rst order in (q− 1). Several cases are worth mentioning.
When the particles are relativistic, E�m, the energy density is

�q = �st +
1
2.2

5!
2
(1:04gbosons + 0:97gfermions)(q− 1)T 4 (57)

with �st representing the usual result

�st =
.2

30
gT 4 (58)

and g= gbosons + 7=8gfermions. For the number of particles, we obtain

nbosons
q =

g
2.2 24(3)T

3 +
g
2.2 12:98(q− 1)T 3; (59)

nfermions
q =

g
2.2 2

3
2
4(3)T 3 +

g
2.2 11:36(q− 1)T 3 : (60)

For the pressure, starting from the de9nition, we can immediately prove that P= �=3
disregarding the degree of non-extensivity.

Remark 1. Note that, for relativistic particles, the temperature dependence of �; P and
n in the non-extensive formalism is the same as the standard. This is because it comes
only as a product of the change of variables in the integrals, which is done exactly in
the same way for both contributions.

It is interesting now to compute the energy per particle, which results to be

〈Eq〉bosons = [2:70 + 11:29(q− 1)]T ; (61)

〈Eq〉fermions = [3:15 + 44:83(q− 1)]T : (62)
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Note that to equal q, the fermions get more a6ected than the bosons by the change of
the distribution.
In the non-relativistic limit m�T , we can neglect the ±1 term in the denominator

of all integrals. For instance, the number density becomes

nq = g
(
mT
2.

)3=2
e−(m−$)=T ×

[
1 +

q− 1
2

(
15
4

+ 3
m− $

T
+
(
m− $

T

)2)]
: (63)

Here, the 9rst term on the right-hand side stands for the standard result and the second
three for the correction at (q− 1) order. The energy density is then given by �q =mnq

and the pressure is Pq = nqT .

Remark 2. For non-relativistic particles, the change to a non-extensive setting does
change the temperature dependence of the observables. This is not a minor e6ect and
will show its impact in the recombination process.

4.2. Particle–anti-particle excess

We focus now on the computation of the particle–anti-particle excess. Consider the
reaction r+ + r− ↔ # + #, where r+ and r− represent a generic particle and its
anti-particle. If this reaction is in equilibrium, then the chemical potential of r+ and
r− are related by $+ =− $−. Then, the net number of fermions is given by

n+q − n−q =
g
2.2 T

3
∫ ∞

m=T
x
(
x2 −

(m
T

)2)1=2
[f+

q (x)− f−
q (x)] dx ; (64)

where the integration variable is, as before, x=E=T . In the relativistic limit, m=T�1,
and the standard integrals can be solved as

n+st − n−st =
g
6.2 T

3
[
.2 $

T
+
( $
T

)3]
: (65)

To compute the (q− 1) order corrections we need to calculate

g
2.2 T

3 q− 1
2

∫ ∞

0

[
x2(x −  )2ex− 

(ex− + 1)2
− x2(x +  )2ex+ 

(ex+ + 1)2

]
dx : (66)

Since we would like to have an analytical solution, we think in a new application of
the free parameter trick introduced in this context by TKrnaklK and Torres [37]. We
know that

I (m) =
∫ ∞

0

u2

em(u− ) + 1
−
∫ ∞

0

u2

em(u+ ) + 1
=

1
3
(.2 m−2 +  3) : (67)

Here, m is considered as a free parameter. Then, the integral we need can be obtained
by making the following steps. Consider −d2Im=dm2, evaluated at m=1. This last
integral will give the one we want plus two additional terms. These terms are∫ ∞

0
du
[−2u2(u−  )2em(u− )

(em(u− ) + 1)3
− −2u2(u+  )2em(u+ )

(em(u+ ) + 1)3

]
: (68)
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We can evaluate the relative strength of these extra terms with respect to the integrals
we are looking for. The 9rst thing one can analytically do is to consider the case in
which  ∼ 0. This, we know, is not far from the real situation, since after electron
positron annihilation, only a little excess of electrons will survive, in order to give the
universe, together with protons, electrical neutrality. Because the ratio of the number
density of protons to the number density of photons, np

st=nst
# ∼ 10−9, use of the standard

expression for n+st − n−st and nst
# will show that

n+ − n−

n#
∼ 1:33

$
T

∼ 10−9 (69)

and clearly the condition $=T�1 is sustained. Taking this into account we can weight
each of these two extra terms with respect to our integrals. These terms are

A=
∫ ∞

0

u4eu

(eu + 1)2
du (70)

and

B=2
∫ ∞

0

u4eu

(eu + 1)3
du : (71)

If we call fA(u) and fB(u) to the integrands of the previous expressions, we note that

fB(u)=
2

eu + 1
fA(u): (72)

Around 0; fB(u) � fA(u); but the integrand B falls exponentially. Finally, a numerical
integration of the two terms, that we show in Fig. 1, yields a di6erence bigger than
one order of magnitude: A=22:63 and B=1:037. For the sake of analytical compu-
tation, we shall adopt the following approximation for the correction of the particle–
anti-particle excess nc (Fig. 2),

n+c − n−c � g
2.2 T

3 q− 1
2

[−d2Im

dm2

]
m=1

; (73)

which 9nally yields the result

n+q − n−q =
g
6.2 T

3
[
.2(1 + 3(1− q))

$
T

+
( $
T

)3]
: (74)

In the case of non-relativistic particles, a similar computation gives

n+q − n−q =(n+st − n−st ) + (n+c − n−c ) (75)

with the standard term being

n+st − n−st = g
(
mT
2.

)3=2
e−m=T2 sinh($=T ) (76)

and the correction being

n+c − n−c = 2g
(
mT
2.

)3=2
e−m=T

[
sinh

( $
T

)[15
4

+ 3
m
T

+
(
m2 + $2

T 2

)]

−cosh
( $
T

) [
3
$
T

+ 2
m$
T

]]
: (77)
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Fig. 2. Relative strength of the integrals appearing in the computation of n+c − n−c .

4.3. E:ective number of degrees of freedom

The total energy density of all species in equilibrium can be expressed in terms of
the photon temperature. As most of the energy density is contributed by relativistic
species, we shall 9rstly consider only them. The total density will be the sum over all
particular species

�R =
∑
k

�k =
∑
bosons

�i +
∑

fermions

�j : (78)

Note that we are using a sub-index i for boson particles, whereas j is used for fermions.
From previous expressions we have, taking xr =Er=T ,

�i =
grT 4

r

2.2

∫ ∞

mr=Tr

x3qf
r
q(xr) dxr (79)

recall here that fr
q(xr) is the non-extensive distribution function, and we are in the

limit in which Er�mr and xr�mr=Tr are valid. If we as well consider Tr�$r , then
fr

q(xr) ≡ fr
q(x). This gives the separate corrections

�bosons = �bosons; st +
gi

2.2

q− 1
2

5!4(5)T 4
i ; (80)

�fermions = �fermions; st +
gj

2.2

q− 1
2

5!f5(1)T 4
j : (81)
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The standard contributions are the usual

�bosons; st =
gi.2

30
T 4
i ; �fermions; st =

7
8
gj.2

30
T 4
j : (82)

Adding up both contributions, we can write

�R =
.2

30
gq
∗T

4 ; (83)

where gq
∗ is given by the addition of the standard

gst
∗ =

∑
bosons

gi

(
Ti

T

)4
+

7
8

∑
fermions

gj

(
Tj

T

)4
(84)

and the new correction

gc
∗ =(q− 1)


9:58∑

bosons

gi

(
Ti

T

)4
+ 8:98

∑
fermions

gj

(
Tj

T

)4 : (85)

Remark 3. Note that, due to the same temperature dependence, we can de9ne an e6ec-
tive number of degrees of freedom exactly in the same way as it is done in the standard
case. Then, we can consider the same evolution equations, and hide all non-extensivity
e6ects in the new gq

∗.

As an example of the previous remark, we can consider the Friedmann equation. It
reads

Ṙ
R
+

k
R2 =

8.G
3

� ; (86)

where R(t) is the scale factor in the FRW metric, and k is the curvature of the
space–time. In the early universe, it is a very good approximation to take k =0. During
the radiation dominated phase P= �=3; R(t)= t1=2, and Ṙ=R=H (t)= 1=t. Using the
expression for the energy density, i.e., Eq. (83), we obtain

H =1:66 (gq
∗)

1=2 T 2

mPl
(87)

implying

t=0:30(gq
∗)

−1=2mPl

T 2 : (88)

Then, although the functional form is the same as in the standard case, the actual time–
temperature relationship is di6erent because of the change in the quantum distributions.

5. Conserved quantities

From the full set of Einstein 9eld equations, or from the fact that T$:
;: =0, it may

be established that

d(�qR3)=− Pqd(R3) : (89)
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This can be written as
d
dT

[(�q + Pq)R3]=R3 dPq
dT

: (90)

And using the previous equation we 9nally get

d
dT

[
�q + Pq

T
R3
]
=0 (91)

as can be checked by direct di6erentiation.

Remark 4. Disregarding the degree of non-extensivity, sq ≡ (�q+Pq)=T is a conserved
quantity in a comoving volume.

If the relativistic contribution is dominant

sq =
4
3


∑

bosons

�i

Ti
+
∑

fermions

�j

Tj


 : (92)

This yields

sq =
2.2

45
gq
∗; sT

3 ; (93)

where we have de9ned gq
∗; s as

gq
∗; s = gst

∗; s + gc
∗; s (94)

with

gs
∗; st =


∑

bosons

gi

(
Ti

T

)3
+

7
8

∑
fermions

gj

(
Tj

T

)3 ; (95)

gc
∗; s =7:18(q− 1)


∑

bosons

gi

(
Ti

T

)3
+

15
16

∑
fermions

gj

(
Tj

T

)3 : (96)

From the conserved comoving quantity, we may de9ne the number Sq = sqR3 = constant,
and obtain the temperature–scale factor relationship as

T˙(gq
∗; s)

−1=3R−1 : (97)

Then, as in the standard case, T˙R−1, but now only in the periods where gq
∗; s (and

not g∗; s) is constant.

5.1. Explicit form for the conserved numbers

For reasons that clarify themselves when actually making computations, it is con-
venient to de9ne ĝc

?s such that gc
?s =(q − 1)ĝ?s. As in the standard case, we have

proven that for any particle which is not created nor destroyed during the evolution of
the universe

Nq =
nq

sq
(98)
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is a conserved quantity. For future use, we quote here the explicit form of the con-
served number for relativistic particles. For instance, for photons, the number density
is n#

q = g=(2.2)[24(3) + 124(4)(q− 1)]T 3, with g=2. Then

sq =
2.4

45
[24(3) + 124(4)(q− 1)]−1gq

∗; sn
#
q : (99)

This gives

Nb
q =Nb

st +
45
2.4 g

b(q− 1)
[
64(4)− ĝc

?s

gst
?s

4(3)
]

(100)

with

Nb
st =

45
2.4 4(3)g

b(gst
?s)

−1 : (101)

Similar computations, but now for fermions, would yield

Nf
q =Nf

st +
45
2.4

3
4
gf(q− 1)

[
214(4)− ĝc

?s

gst
?s

4(3)
]

(102)

with

Nf
st =

45
2.4

3
4
4(3)gf(gst

?s)
−1 : (103)

6. Decoupling

Once a given species of particles has decoupled completely, each particle will travel
along a geodesic of space–time. This will ensure that the form of the distribution
function will remain the same during the subsequent evolution of the universe. Indeed,
the only change will be given by a redshift correction. If the decoupling is produced
at t= td, then, due to the redshift, all particles that at the instant t have momentum p,
should have had momentum pR(t)=R(td) at decoupling. Then

fdec(p; t)=feq(pR(t)=R(td); td) ∀t ¿ td : (104)

Remark 5. The previous result is independent of the particular feq(p; t) we have adopted.

6.1. Relativistic decoupling

Let us write the rhs of Eq. (104) taken into account that E � p and in the case in
which $=T � 0,

fd
q (p; t) =

[
exp
(

p
Td

R(t)
R(td)

)
∓ 1
]−1

+
q− 1
2

(p=TdR(t)=R(td))2 exp(p=TdR(t)=R(td))

[exp(p=TdR(t)=R(td))∓ 1]2
: (105)
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We see that the distribution function has the same functional form than feq
q but with

a di6erent “temperature” given by,

T (t)=Td
R(td)
R(t)

; (106)

Despite this species is no longer in thermodynamical equilibrium, the “temperature” in
the distribution function falls as R−1; making Sr

q = srqR
3 to conserve separately. Note

that for the species still in equilibrium, the temperature falls as T˙(gq
?s(T ))

−1=3R−1.
The number density for these particles is then given by

nbr
q =

gbr

2.2
[24(3) + 124(4)(q− 1)]T 3 ; (107)

nfr
q =

gfr

2.2

[
3
2
4(3) +

21
2
4(4)(q− 1)

]
T 3 (108)

and using that for any time t, after td; T (t)=TdR(td)=R(t), the previous equations
really are

nbr
q =

gbr

2.2
[24(3) + 124(4)(q− 1)]T 3

d

(
R(td)
R(t)

)3
; (109)

nfr
q =

gfr

2.2

[
3
2
4(3) +

21
2
4(4)(q− 1)

]
T 3
d

(
R(td)
R(t)

)3
: (110)

These number densities are comparable to that of photons at any given time. Such
population will then continue to exist as a relativistic relic.

6.2. Non-relativistic decoupling

In the case of non-relativistic decoupling, the distribution function is given by

fd
q (p; T ) = e−(m−$d)=Td exp

[
−p2

2mTd

(
R(t)
R(td)

)2]

×

1 + q− 1

2

[
p2

2mTd

(
R(t)
R(td)

)2
+

(m− $d)
Td

]2 (111)

and the number density is given by

nq = g
(
mTd

2.

)3=2(R(td)
R(t)

)3
e−(m−$d)=Td

×
[
1 +

q− 1
2

(
15
4

+ 3
m− $d

Td
+
(
m− $d

Td

)2)]
: (112)

If we now consider that for a particle species which has already decoupled, the number
density must be such that nq̇ R−3, we see that as in the standard case (see for instance
Section 3:4 of Ref. [46]), we need to identify the temperature with TdR2(td)=R2(t), and
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ask for the chemical potential to vary as $=m− (m− $d)T=Td. Then, the distribution
function is similar to an equilibrium distribution but with a new temperature given by

T (t)=Td

(
R(td)
R(t)

)2
(113)

decreasing with the square of the scale factor. In the limit m�T , the energy density
will be given by �= nm.

Also in a non-extensive framework, the correct way to handle with decoupling pro-
cess is through the Boltzmann equation, which we analyze below.

6.3. The relic neutrino background

The conservation of sq, applied to the particles which are in equilibrium with radi-
ation shows that the quantity gq

∗; sT 3
# R

3 is constant throughout the expansion. During
pair annihilation, gq

∗; s will decrease, since we go towards a state with less number of
degrees of freedom. Then, T 3

# R
3 after the process will be bigger than its previous value.

We say that photons are heated up by the annihilation process, in such a way that

(gq
∗; sT

3
# R

3)before =(gq
∗; sT

3
# R

3)after (114)

is sustained. This directly yields a relationship between both temperatures

Tafter
#

T before
#

=
(
11
4

)1=3
+ 0:152(q− 1)=

(
11
4

)1=3
(1 + 0:109(q− 1)) : (115)

Note that the 9rst term is the standard result, from the usual hot big bang model. The
second term is the non-extensive correction.
Since before e+ e− annihilation, neutrinos were in thermal equilibrium with photons,

Tbefore
# will be the same as Tbefore

: . Now notice that neutrinos do not participate in the
process e+ + e− ↔ 2#, and so, neutrino temperature is constant. Then, Tbefore

: =Tafter
: ,

and we can write

Tafter
# =

[(
11
4

)1=3
+ 0:152(q− 1)

]
Tafter
: : (116)

After annihilation, gq
∗; s does not change anymore, and both temperatures Tafter

# and
Tafter
: fall as R−1, conserving their ratio. Since now T# ∼ 2:728, then T: =1:947(1 −

0:109(q− 1))K.

Remark 6. Even if the evolution of the universe diminish the degree of non-extensivity;
the relic backgrounds, produced at early times, are sensitive to the possible non-
extensivity present at that epoch.

Remark 7. Note that if (q−1) could have any value; one can have a photon temperature
unchanged after e+e− annihilation: Tafter

# =T before
# =1. This e6ect particularly show how

important is the statistical description in the evolution of the early universe. Note,
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however, that a posteriori constraints on the value of (q−1) do apply, and this situation
will turn out to be impossible.

The di6erence between T: and T# can be bounded using information coming from
the CMBR, see for instance the work by Torres [19].

7. Recombination

We focus now on the generalization of the Saha law. Let nH ; np and ne the number
density of hydrogen atoms, protons, and electrons, respectively. Electrical neutrality
implies that ne = np. Baryon total number is given by nB = nH + np. In thermal equi-
librium, a temperature such that T ¡mi, we have seen that ni is given by Eq. (63).
The process p+e → H+p guarantees that $p+$e = $H . We can as well consider that
mp � mH . Then, we would like to 9nd an expression for nH

q =ne
qn

p
q . Immediate algebra

yields

nH
q

ne
qn

p
q
=

gH

gegp

(
meT
2.

)−3=2

exp
[
mp + me − mH

T

]

×
[

u((mH − $H )=T )
u((mp − $p)=T )u((me − $e)=T )

]
: (117)

Here, we have made use of the de9nition,

u i = u((mi − $i)=T ) ≡ 1 +
q− 1
2

(
15
4

+ 3
mi − $i

T
+
(
mi − $i

T

)2)
: (118)

We would like to introduce now the number of baryons, since this is a conserved
number (as far as precision measurements can tell), i.e. N B = nB=s is constant. Note
however that >q = nB

q =n
#
q does not remain unchanged, since gq

∗; s may change in time.
Using gp = ge =2 and gH =4 we can write

nH
q

nB
q
=

np
q

nB
q

ne
q

nB
q
nq
#>q

(
meT
2.

)−3=2

exp
[
mp + me − mH

T

]

×
[

u((mH − $H )=T )
u((mp − $p)=T )u((me − $e)=T )

]
: (119)

We now de9ne X e
q = np

q =nB
q and 1− X e

q = nH
q =nB

q . Using them, we have

1− X e
q

(X e
q )2

= n#
st

[
1 +

n#;c

n#
st

]
>q

(
meT
2.

)−3=2

eB=T
[

uH

upue

]
; (120)

where B=mp +me −mH and nq
# = n#;st + (q− 1)n#;c. Note that we have shortened the

notation on the last bracket, but we are actually implying the de9nition of Eq. (118).
Also

>q = >st

[
1 +

nB
c

nB
st

] [
1 +

n#
c

n#
st

]−1

: (121)
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Finally, we rewrite[
uH

upue

]
=1 +

q− 1
2

[
uH − (up + ue)

]
(122)

with

ui =

(
15
4

+ 3
mi − $i

T
+
(
mi − $i

T

)2)
(123)

and we use that

nB
c

nB
st
=

nH
c + np

c

nH
st + np

st
=

q− 1
2

[
gH e($H−mH )=T uH + gpe($p−mp)=T up

gH e($H−mH )=T + gpe($p−mp)=T

]
: (124)

Recalling that n#
st =(24(3)=.2)T 3, we can write, with gH = , and gp = ge =2,

1− X e
q

(X e
q )2

=
4
√
2√
.

4(3)>st

(
T
me

)3=2

×eB=T
[
1 +

q− 1
2

(
2e($H−mH )=T uH + e($p−mp)=T up

2e($H−mH )=T + e($p−mp)=T
+ uH − (ue + up)

)]
:

(125)

And taking into account the standard result

1− X e
st

(X e
st)2

=
4
√
2√
.

4(3)>st

(
T
me

)3=2
eB=T (126)

we see that we have arrived to the following relationship:

1− X e
q

(X e
q )2

=
1− X e

st

(X e
st)2

+
q− 1
2

4
√
2√
.

4(3)>st

(
T
me

)3=2

×eB=T
(
2e($H−mH )=T uH + e($p−mp)=T up

2e($H−mH )=T + e($p−mp)=T
+ uH − (ue + up)

)
: (127)

This is the generalized Saha law.
Looking at Eq. (127) we may note that we are going to confront a problem that

does not appear in the standard case: The chemical potentials appear in a separate
way, in such a way that not only the relationship $H − $e + $p =0 enters in the
computation. Since it is not common to 9nd the $-values, or even the method to
9nd them, in standard cosmology books, we shall brie3y outline here how they can
be naively obtained. We shall then obtain the standard chemical potentials $= $st ,
and consider that generalized expressions for them will be written as $q = $st +
(q− 1)C. Since the term including the factor C will provide a second-order correction
in Eq. (127) we shall be concerned only with the standard computation. We have to
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Fig. 3. Left: Standard fraction X e
st used to compute the corrections in the Saha law. It is worth noticing

how quickly recombination is accomplished. This 9gure stands for a standard result, and it is quoted here
just for the ease of the discussion. Right: Evolution of the standard chemical potentials as a function of the
temperature for di6erent values of @h2. As far as we know, although this 9gure is an standard result, it was
not presented in cosmology textbooks before. The numerical results contained in both of these plots were
used to compute non-extensive corrections in the Saha law.

consider a system of three equations:

1. chemical equilibrium $H − $e + $p =0,
2. electrical neutrality ne = np,
3. the standard result for 1− X e

st=(X
e
st)

2. The fraction X e
st is shown in Fig. 3.

These three equations form a complicated system but with three unknowns, regarded
here as ($i−mi)=T , where i runs over the three species involved. Although this system
cannot be solved analytically, it can be solved in a numerical way. The exact values
of the solution will ultimately depend on the value of >, the baryon to photon ratio,
which in turns depends on the parameter @h2. Results for the chemical potentials are
shown in Table 1 and in Fig. 3.
With these values, the correction terms in the Saha law, using Eq. (127), can be im-

mediately computed. The results are shown in Fig. 4, where two di6erent cases for the
baryon content of the universe are studied. As the corrections in the non-relativistic
expression for the number of particles is proportional to the factors (($i − mi)=T )2,
we note that leading order corrections in the period we are interested in are
∼(q− 1)502 = (q− 1)2500. These are large factors, and are the main reason by which
all bounds imposed at the time of recombination, where matter and radiation cease to
be in thermal contact, i.e., using CMBR data, are much stronger than those imposed
at earlier epochs.
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Table 1
Standard chemical potentials used in the determination of the correction at recombination epoch. Two par-
ticular values for @h2 are shown

T (eV) $e − me=T $p − mp=T $h − mh=T X st
e @h2

0.55 −9:7450 −21:018 −6:0360 1 0.1
0.50 −12:652 −25:820 −13:168 1
0.45 −20:434 −31:707 −21:918 0.9998
0.40 −27:808 −39:082 −32:890 0.9959
0.37 −33:156 −44:429 −40:829 0.9481
0.35 −37:044 −48:317 −46:504 0.7537
0.33 −40:991 −44:429 −40:829 0.9481
0.32 −43:011 −54:284 −54:795 0.2305
0.31 −45:107 −56:380 −57:616 0.1267
0.30 −47:310 −58:583 −60:560 0.0647
0.25 −60:806 −72:077 −78:486 0.0008

0.55 −12:047 −23:320 −10:641 1 1
0.50 −16:850 −28:123 −17:773 0.9999
0.45 −22:735 −34:008 −26:522 0.9989
0.40 −30:076 −41:349 −37:426 0.9619
0.37 −35:169 −46:442 −44:854 0.7096
0.35 −38:658 −49:931 −49:732 0.3786
0.33 −42:307 −53:580 −54:675 0.1431
0.32 −44:251 −55:525 −57:277 0.0797
0.31 −46:304 −57:577 −60:011 0.0419
0.30 −48:484 −59:757 −62:908 0.0209
0.25 −61:958 −73:231 −80:789 0.0002
0.20 −82:191 −93:464 −107:655 0

8. The Boltzmann equation

To analyze in an appropriate way the decoupling of particles we must consider
the microscopic evolution of the distribution functions f(p$; x$), via the Boltzmann
equation. An interesting recent study on this issue was presented in Ref. [20], but
their emphasis was put on other aspects. We shall start here by writing the Boltzmann
equation as

L̂[f] =C[f] ; (128)

where C is the collisional operator and L̂ is the Liouville operator. The expression for
the latter, in the non-relativistic case, for the phase space density f(̃v; x̃) of a species
with mass m under a force F̃ =dp̃=dt, is

L̂=
d
dt

+
dx̃
dt

· ∇̃x̃ +
dṽ
dt

· ∇̃ṽ (129)

equivalently

L̂=
d
dt

+ ṽ · ∇̃x̃ +
F̃
m

· ∇̃ṽ : (130)
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Fig. 4. Final corrections in the Saha law. Note that the relative strength of the correction di6ers appreciably
for di6erent baryon densities. Note that the interesting range for the correction is limited by the equilibrium
in the reaction D ↔ p + n, represented by $d = $n + $p.

The relativistic generalization becomes

L̂=p" @
@x"

− ("
�#p

�p# @
@p" : (131)

Gravitational forces are present through the connection ("
�#. For a Friedmann–

Robertson–Walker universe, f=f(|p̃|; t) (or equivalently f=f(E; t)) and the only
non-null components of the connection ("

�# are the usual

(i
jk =

1
2
hil
(
@hlj

@xk
+

@hlk

@xj
+

@hjk

@xl

)
; (132)

(0
ij =

Ṙ
R
hij ; (133)

(i
0j =

Ṙ
R
&i
j (134)

with hij =− gij and Latin indices running from 1 to 3.
Taking this into account and recalling that p$ =(E; p̃) and x$ =(t; x̃), Eq. (131)

becomes

L̂[f(E; t)]=E
@f
@t

− Ṙ
R
|p̃|2 @f

@E
: (135)
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Substituting this expression in Eq. (128) and taking into account the de9nition of
the number density, we can integrate by parts to obtain

ṅ+ 3Hn=
g
2.

∫
C[f]

d3p
E

: (136)

We can also rewrite the collisional term de9ning

ḟ=
g
2.2

C[f]
E

(137)

in order to have the Boltzmann equation as

ṅ+ 3Hn=
∫

ḟ d3p : (138)

The collisional term is usually dominated by annihilations between particles and
anti-particles (p Rp) and we assume now that the number of particles is identical to the
number of anti-particles. In this way, ḟc is given by (see Section 9:2 of Ref. [47] for
details):

ḟc =−
∫
〈Dv〉f Rf d3 Rp ; (139)

where 〈Dv〉 is the product of the cross-section times the velocity, averaged in velocities
space. We can extract 〈Dv〉 out of the integral, evaluating it in an averaged energy.
Let us focus in  -particles and their anti-particles R . Taking into account Eq. (139)

we integrate over momentum space in Eq. (138) to arrive at

ṅ 
q + 3Hn 

q =− 〈Dv〉(n 
q )

2 : (140)

Recall that the index q refers to the non-extensive distribution functions and generalized
quantities. We can now account for the thermal production of particles. Naming E the
term giving this contribution, we can write the Boltzmann equation as

ṅ 
q + 3Hn 

q =− 〈Dv〉(n 
q )

2 +E : (141)

This term can be spelled out as in the standard case [47], invoking thermodynamical
equilibrium: in an static universe (Ṙ=H =0), n 

q would be a constant and equal to
n 
q;eq; then

ṅ 
q + 3Hn 

q =− 〈Dv〉 ((n 
q )

2 − (n 
q;eq)

2) : (142)

We can rewrite the previous equation in terms of the variable Yq ≡ n 
q =sq, where

Yq;eq ≡ n 
q;eq=sq, resulting,

ṅ 
q + 3Hn 

q =− 〈Dv〉s2q
(
Y 2
q − Y 2

q;eq

)
: (143)

All these resembles the usual derivation, and indeed we can go still further. We can
write ṅ 

q +3Hn 
q in terms of Yq. We shall take into account that sqR3 = constant, and we

derive with respect to time both the de9nition for Yq and the equation sqR3 = constant.
Finally recalling that H = Ṙ=R, we get

ṅ 
q + 3Hn 

q = sqẎq : (144)
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Combining the last two expression for ṅ 
q + 3Hn 

q , we obtain

dYq
dt

=− 〈Dv〉sq
(
Y 2
q − Y 2

q;eq

)
: (145)

Introducing explicitly the temperature, via x=m=T , with m being any appropriate
mass scale, and using the radiation-dominated-era relation between x and T , Eq. (88),
we get

dt
dx

=2(0:301)(gq
?)

−1=2mpl

m2 x (146)

and we can write

Ẏq =
dYq
dt

=
dx
dt

dYq
dx

: (147)

Using the Jacobian dt=dx, we can rephrase for Ẏq

Ẏq =
H (m)

x
dYq
dx

; (148)

where we have de9ned

H (m) ≡ 1:66(gq
?)

1=2 m2

mpl
: (149)

Note that H (m) is related with H by the simple expression

H = x−2H (m) : (150)

Finally, using Eqs. (145) and (148) we can write the Boltzmann equation as

dYq
dx

=− x〈Dv〉sq
H (m)

(
Y 2
q − Y 2

q;eq

)
; (151)

where 〈Dv〉 is given by

〈Dv〉=− 1

(n 
q )2

∫
ḟc d

3p : (152)

Considering other  R annihilation channels, say  R into a 9nal state F , an additional
term would appear that would be similar to that in the rhs of the previous equation,
but with 〈D R →x Rxv〉 replaced by 〈D R →Fv〉. Sum over all annihilation channels yields
the 9nal result in terms of the e6ective cross section 〈DAv〉,

dYq
dx

=− x〈DAv〉sq
H (m)

(
Y 2
q − Y 2

q;eq

)
: (153)

De9ning (A = n 
q;eq〈DAv〉, we get

x
Yq;eq

dYq
dx

=− (A

H (x)

[(
Y
Yeq

)2
− 1

]
: (154)

Remark 8. Note that this derivation is independent of the particular form for the dis-
tribution functions; but the 9nal product has the same aspect than that obtained in the
standard scheme; see for instance Section (5:2) of Ref. [46].
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8.1. Freezing

Following the standard procedure, we would like to study how much the freezing
times and temperatures are modi9ed by a change in the statistical description. Using
Eq. (154), we see that the comoving number density of  particles is controlled by
the ratio (=H , and the amount of the deviation of the distribution functions from their
equilibrium values. When (=H is less than unity, the change in the number density
is small, −\Yq=Yq ∼ −(x dY=dx)=Yq;eq ∼ (=H ¡ 1, annihilations stop and the number
density freezes.
The annihilation rate (A varies as nq;eq times the averaged cross-section 〈DAv〉. In

the relativistic regime, nq;eq˙T 3. In the non-relativistic regime, nq;eq˙e−m=T , and (A

exponentially decreases. In both regimes, (A decreases with temperature, and eventually
goes below the necessary rate to maintain equilibrium, which by de9nition occurs when
x= xf (the “freeze out”). Then we expect that for x¡xf, Yq(x) � Yq;eq(x), whereas
for x¿xf, Yq(x¿xf)=Yq;eq(xf).
We can compute the value of Yq;eq ≡ n 

q;eq=sq in each of the previous cases recall-
ing the de9nition of sq and Eqs. (59) and (60) for relativistic (x�3) particles and
Eq. (63) for non-relativistic (x�3) particles. We obtain

Y b
q;eq =0:278gb

[
1 + 6

4(4)
4(3)

(q− 1)
]
(gq

?s)
−1 (155)

for relativistic bosons

Yf
q;eq =0:278

3
4
gf(gq

?s)
−1
[
1 + 8

4(4)
4(3)

(q− 1)
]

(156)

for relativistic fermions, and

Y nr
q;eq =0:145gx3=2e−x(gq

?s)
−1
[
1 +

q− 1
2

(
15
4

+ 3x + x2
)]

(157)

with x�3, for non-relativistic particles.
Since we can write gq

?s as gq
?s = gst

?s +(q− 1)ĝc
?s, we can get a 9rst order result for

the above-mentioned quantities

Y b
q;eq =0:278gb(gst

?s)
−1
[
1 + (q− 1)

(
6
4(4)
4(3)

− ĝc
?s

gst
?s

)]
; (158)

Yf
q;eq =0:278

3
4
gf(gst

?s)
−1
[
1 + (q− 1)

(
8
4(4)
4(3)

− ĝc
?s

gst
?s

)]
(159)

and

Y nr
q;eq =0:145gx3=2e−x(gst

?s)
−1
[
1 +

q− 1
2

(
15
4

+ 3x + x2 − 2
ĝc
?s

gst
?s

)]
(160)

with x�3.
In Fig. 5, we show the equilibrium abundance for non-relativistic particles together

with the non-extensive correction. The correction diminishes exponentially with de-
creasing temperature, but this is an e6ect of the overall factor e−x also present in the
standard result, and not of the non-extensivity introduced.
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Fig. 5. Standard equilibrium abundance and non-extensive correction for non-relativistic particles.

9. Current values

We are interested in the value of the corrected ratio

@q =
�q

�c
with �c =

3H 2
0

8.G
; (161)

where G=m−2
pl with mpl =1:2211× 1019 GeV and H (t) is H0 = 2:1332h× 10−42 GeV

(0:4¡h¡ 1). From the current value of �R
q , we can get the contribution of relativistic

particles

@q;Rh2 =
8.G
3H 2

0
h2�R

q : (162)

To get �R
q we must know the value of gq

? and gq
?s.

Carrying out a 9rst order computation using Eqs. (95), (96), (84) and (85), and
assuming a universe populated by photons and three types of neutrinos, we get

(gq
?)today =3:36[1 + 9:43(q− 1)] ; (163)

(gq
?s)today =3:91[1 + 7:11(q− 1)] : (164)
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Taking the current value of the photon temperature, T =2:728 ± 0:004 K, we can
obtain: �R

q , sq, n
#
q and @q;R,

(�R
q )today =7:83× 10−34[1 + 9:43(q− 1)] g cm−3 ; (165)

(sq)today =2899:41[1 + 7:11(q− 1)] cm−3; (166)

(n#
q)today =411:77[1 + 5:4(q− 1)] cm−3 ; (167)

(@q;R)today =4:17× 10−5[1 + 9:43(q− 1)] h−2 : (168)

10. Wimps in non-extensive statistics

We now consider weakly interacting massive particles, for instance neutrinos with
very small mass, in non-extensive statistics.

10.1. Relativistic relics, xf ¡ 3

In this case, Yq;eq is not changing with time, (see Eqs. (158) and (159)). The asymp-
totic value of Yq, (Yq(x → ∞)) ≡ Yq;∞, is just the equilibrium value at freezing

Yq;∞ =Yf
q;eq(xf)= 0:278

3
4
gf
[
1 + 8

4(4)
4(3)

(q− 1)
]
(gq

?s(xf))
−1 with xf ¡ 3 :

(169)

The current abundance of the  species today is

n 
q; today = sq; todayYq;∞ ; (170)

n 
q; today =

3
4
gf806:04[1 + 14:31(q− 1)](gq

?s)
−1 : (171)

The mass density contribution of this kind of hot relics is given by

� 
q; today = n 

q; todaym (172)

and the fraction of the critical mass will be

@ 
q; todayh

2 =
8.G
3H0

h2� 
q; today

=@ 
q; todayh

2 =
3
4
gf7:65× 10−2[1 + 14:31(q− 1)](gq

?s)
−1
(m 

eV

)
:

(173)
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We know that @0h2 ¡ 1; then we can apply this bound to the contribution to the
species  to @0h2 and obtain a cosmological upper limit to the mass of this kind of
particles

m ¡ 13:08
4
3
[1− 14:31(q− 1)]gq

?s(g
f)−1 : (174)

Light neutrinos would decouple when T ∼MeV. At this temperature

gq
?s(xf)= 2 +

7
8
[2 + 2 + 2× 3] +

60
2.2

45
.2

4(5)
2

(q− 1)
[
2 +

15
16

(2 + 2× 3)
]

(175)

gq
?s(xf)= 10:75[1 + 7:60(q− 1)] : (176)

Then, for a species with two components, gf = g: =2, and to 9rst order in (q− 1), it
results

m: ¡ 93:72[1− 6:7(q− 1)] eV : (177)

This is a non-extensive generalization of the Cowsik and McClelland bound, see for
instance Ref. [46]. Even when is improbable that an experiment with enough sensitivity
could di6erentiate among values of q using Eq. (177), further recalling that it is an
upper bound what that equation is imposing, it is worth noticing that a change of
statistics can have a direct in3uence upon the mass spectrum of the particles.

10.2. Cold relics, xf ¿ 3

In this case,

Y nr
q;eq(xf)= 0:145gx3=2f e−xf

[
1 +

q− 1
2

(
15
4

+ 3xf + x2f

)]
(gq

?s)
−1 : (178)

Now, Yq;eq strongly depends on m (since xf =m=Td). To make a numerical estimation
we have to determine Td, using the condition ( � H . Reactions able to change the
number of wimps A, are like A RA ↔ X RX , where X is a generic particle, assumed in
thermal equilibrium. The average value of Dv can be expressed as

〈Dv〉 ≡ D0

(
T
m

)k
: (179)

The value of the power law index k will depend on the details of the annihilation
process, usually it is of order 1. The value of D0 depends on m and has a simple form
for the extreme cases m�mZ and m�mZ , where mZ � 102 Gev is the mass of the
Z-boson.
For wimps with m¡mZ , the e6ective cross-section D0 can be written as [42],

D0 � c
2.

G2
Fm

2 ; (180)

where GF is the Fermi constant, G−2
F =292:8 GeV. The value of c depends on the

fermion. We shall consider Dirac (spin 1=2) particles for which c � 5.
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The reaction rate is given by

(= nq〈Dv〉 ; (181)

or, equivalently, using Eq. (63)

(=
D0gA

(2.)3=2
T 3
(m
T

)3=2−k
e−m=T

[
1 +

q− 1
2

(
15
4

+ 3
m
T

+
(m
T

)2)]
: (182)

The expansion rate H as a function of temperature is

H =1:66(gq
∗)

1=2 T 2

mPl
: (183)

Then, the condition (=H � 1 yields

1 = 3:82× 10−2gA(g
q
?)

−1=2
(

m
Td

)1=2−k

×e−m=Td

[
1 +

q− 1
2

(
15
4

+ 3
m
Td

+
(

m
Td

)2)]
D0mmpl : (184)

Solving for e−m=Td , substituting the result in Eq. (178) for Y nr
q;eq, and computing D0

using Eq. (180), we get

Y nr
q;eq(xf)= 2:86× 10−9(gq

?)
−1=2

(
m
Td

)k+1 ( m
GeV

)−3
: (185)

Given the current value sq; today =2899:41× [1 + 7:11(q− 1)] cm−3, we obtain

nq = 8:3× 10−6(gq
?)

−1=2
(

m
Td

)k+1 ( m
GeV

)−3

×
[
1 + (q− 1)

[
7:11 +

1
2

(
15
4

+ 3
m
Td

+
(

m
Td

)2)]]
: (186)

The energy of these particles today is �q; today = nq; todaym, and the contribution to the
critical density is

@q;todayh2 =
8.G
3H0

h2�q; today

= 0:79(gq
?)

−1=2
(

m
Td

)k+1 ( m
GeV

)−3

×
[
1 + (q− 1)

[
7:11 +

1
2

(
15
4

+ 3
m
Td

+
(

m
Td

)2)]]
: (187)

We would now like to solve for Td. Taking logarithm in Eq. (184), we obtain
m
Td

= 17:74 + ln
[

gA

(gq
?)

1=2

]
+
(
1
2
− k
)
ln
[
m
Td

]
+ 3 ln

[ m
GeV

]

+ ln

[
1 + (q− 1)

[
1
2

(
15
4

+ 3
m
Td

+
(

m
Td

)2)]]
: (188)
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Since gq
? is a slowly varying function we can solve this equation in an iterative form.

Consider the case of a wimp with m¿ 1 GeV. From Eq. (188) we see that m=Td �
17:74, assuming for simplicity that k =0, the term ln(m=Td) corrects the value m=Td

to m=Td � 19:18, giving Td � 52 MeV (m=GeV). At this temperature, all species are
relativistic and all of them contribute to gq

?, making it of the order of 100. Taking
this into account, the term ln((gq

?)
1=2=gA) � ln 5 � 1:61, and the value of m=Td gets

corrected to m=Td � 17:57. The non-extensive term is

ln

[
1 + (q− 1)

[
1
2

(
15
4

+ 3
m
Td

+
(

m
Td

)2)]]
: (189)

Substituting this expression in the zero order of m=Td we get
m
Td

=17:57 + 3 ln
( m
GeV

)
+ (q− 1)185:8 : (190)

For masses m ∼ 1 GeV,
m
Td

=17:57 + (q− 1)185:8 : (191)

The use of this result in Eqs. (185) yields

Y nr
q;eq =4:87× 10−9[1 + 10:5(q− 1)]

( m
GeV

)−3
; (192)

@q;todayh2 = 1:34[1− 75:2(q− 1)]
( m
GeV

)−2
: (193)

The fermion A and its anti-particle RA, will provide twice this value of @q;todayh2, i.e.,
the constraint @q;todayh2 ¡ 1 is then a corrected lower bound for the mass of these
particles

m¿ 1:64[1− 37:6(q− 1)] GeV : (194)

11. Modi/cation of the matter-radiation equality

Let us characterize the matter-radiation equality by the time of its occurrence t= teq,
its scale-factor R=Req, and its redshift z= zeq. From the equalities

�matter(teq)= �matter(t0)
(

R(t0)
R(teq)

)3
= �c@matter(t0)(1 + zeq)3 ; (195)

�radiation(teq)= �radiation(t0)
(

R(t0)
R(teq)

)4
= �c@matter(t0)(1 + zeq)4 (196)

it follows

1 + zeq =
@matter(t0)
@radiation(t0)

� @
@radiation(t0)

: (197)

And then

1 + zeq =(@R(t0)h2)−1@h2 : (198)
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In the non-extensive setting

1 + zeq =2:4× 104[1− 9:43(q− 1)]@h2 (199)

corresponds to a temperature given by Teq =T0(1+zeq). Taking T0 = 2:728 K, we obtain

Teq =5:64[1− 9:43(q− 1)]@h2 (200)

and for the time we get

teq � 0:39H−1
0 @−1=2(1 + zeq)−3=2

= 1:022× 103[1 + 14:14(q− 1)](@h2)−2 years : (201)

12. Conclusions

In this paper we have studied how the statistical description that we suppose is
valid in the early moments of the universe a6ects di6erent processes along the thermal
history of our basic cosmological model. In particular, starting from the modi9ca-
tions on the energy and number densities, we explored all consequences introduced by
non-extensivity in the processes of decoupling, particle–anti-particle excess, recombi-
nation, photon–neutrino temperature relationship, matter-radiation equality, and others.
In order to avoid re-stating our obtained results, let us just mention a general conclu-

sion. Suppose that all cosmological observables are measured with a precision of 1%.
Suppose, too, that the standard values for these observables agree well with observa-
tions, i.e., the standard values are always within the error bar of the experiments. (This
latter assumption is not always true, particularly when more than one experiment is
involved at the same time, like in the case of the determination of the baryon density
using nucleosynthesis and recent CMBR measurements.) When relativistic particles are
involved, we can summarize our results as follows. Given any standard prediction, the
correction introduced by non-extensivity is of the order of 10 times the standard value

X =Xst + (q− 1)× F ; (202)

where the factor F is order 10Xst . Then, given the previous assumptions, when rela-
tivistic particles are involved, |q − 1| is bound to be of the order 10−3. On the other
hand, when non-relativistic particles are involved, the corrections are much bigger, and
F can be at least of the order of 1000Xst . In these cases, and also within the previous
assumptions, |q−1| is bound to be less than 10−4. It is worth noticing that this simple
conclusion is sustained by all currently existing bounds, and it is also worth noticing
that the ultimate reasons by which the constraints on |q−1| are more restrictive in the
epoch of recombination than those obtained in nucleosynthesis (see Paper II) can be
tracked from this formal point of view.
In our second paper in this series we shall study the nucleosynthesis epoch, and will

provide an analytical assessment of the helium 4 and deuterium primordial production
in the framework of non-extensive statistics, including corrections coming from the
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free neutron decay process. We shall particularly focus on how non-extensivity a6ects
the principle of detailed balance.

Acknowledgements

M.E. Pessah is supported by FundaciSon Antorchas. He acknowledges A. Platzek for
advice. D.F.T. acknowledges A. Lavagno, G. Lambiase, and P. Quarati for valuable
discussions. He was supported by CONICET as well as by funds granted by FundaciSon
Antorchas, and acknowledges the hospitality provided by the Politecnico di Torino, the
University of Salerno, and the ICTP (Italy) during di6erent stages of this research.

Appendix A. Useful mathematical formulae

It is convenient to introduce the following functions:

ex
q ≡ [1 + (1− q)x]1=(1−q) ∀(x; q) (203)

supplemented by the de9nition, for q¡ 1, ex
q =0 if 1 + (1 − q)x6 0, and for q¿ 1,

ex
q diverges in x=1=(q− 1), and

lnq x ≡ x1−q − 1
1− q

∀(x; q) : (204)

It is immediate to show that limq→1 ex
q =ex and that limq→1 lnq x= ln x. Also the fol-

lowing properties are valid

elnq x
q = lnq ex

q = x ∀(x; q) : (205)

With these de9nitions,

Sq = k lnq W : (206)
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