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Evidence of a spin liquid phase in the frustrated honeycomb lattice
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In the present paper we present some new data supporting the existence of a spin-disordered phase
in the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third
neighbors along the line J2 = J3, predicted in1. We use the Schwinger boson technique followed
by a mean field decoupling and exact diagonalization for small systems to show the existence of an
intermediate phase with a spin gap and short range Néel correlations in the strong quantum limit
(S = 1

2
).

PACS numbers:

1. INTRODUCTION

Geometrical frustration in two-dimensional (2D) anti-
ferromagnets is expected to enhance the effect of quan-
tum spin fluctuations and hence suppress magnetic order
giving rise to a spin liquid2 and this idea has motivated
many researchers to look for its realization3–7.

One candidate to test these ideas is the honeycomb
lattice, which is bipartite and has a classical Néel ground
state, but due to the small coordination number (z = 3),
quantum fluctuations could be expected to be stronger
than those in the square lattice and may destroy the an-
tiferromagnetic long-range order (LRO)8,9.

The study of frustrated quantum magnets on the hon-
eycomb lattice has also experimental motivations10–14.

The analysis of the hexagonal lattice from a more gen-
eral point of view has gained lately a lot of interest both
coming from graphene-related issues and from the possi-
ble spin-liquid phase found in the Hubbard model in such
geometry15–17.

Motivated by the previous results, in this paper we
show the study of the Heisenberg model on the honey-
comb lattice with first (J1), second (J2) and third (J3)
neighbors couplings18, along the special line J2 = J3.
Using Schwinger boson mean field theory (SBMFT) and
exact diagonalization we find strong evidence for the ex-
istence of an intermediate disordered region where a spin
gap opens and spin-spin correlations decay exponentially.
Using exact diagonalization of small clusters we also have
calculated the dimer-dimer correlation function that in-
dicates short range dimer-dimer order. Although our re-
sults correspond to a specific line, we conjecture that
the quantum disordered phase that we have found in the
vicinity of the tricritical point extends within a finite re-
gion around it. Previous evidence of massive behaviour in
the hexagonal lattice Heisenberg model has been found
in other regions of the phase space by means of exact
diagonalization in ref.18.

The Heisenberg model on the J1 − J2 − J3 honeycomb
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FIG. 1: (Color online) Honeycomb lattice with sublattices A

and B. The vectors ~e1 = (
√
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2
) and ~e2 = (

√
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,− 3

2
) are the

primitive traslation vectors of the direct lattice.

lattice is given by

H = J1

∑

〈xy〉1

Ŝx · Ŝy + J2

∑

〈xy〉2

Ŝx · Ŝy + J3

∑

〈xy〉3

Ŝx · Ŝy, (1)

where Ŝx is the spin operator on site x and 〈xy〉n in-
dicates sum over the n-th neighbors (see Fig. 1). In
the classical limit, S → ∞, the model displays differ-
ent zero temperature phases with a tricritical point at
J2 = J3 = 1

2J1. At this particular point the classical

ground state has a large GS degeneracy18,19. The Heisen-
berg model on the honeycomb lattice was studied using
SBMFT by Mattsson et al8 for antiferromagnetic inter-
actions at first and second neighbors. Here we study the
Hamiltonian (1) using a rotationally invariant version of
this technique, which has proven successful in incorpo-
rating quantum fluctuations20–22.

2. SCHWINGER BOSONS MEAN-FIELD

THEORY.

In this section we describe in detail the Schwinger bo-
son mean field theory used in the present work. The

http://arxiv.org/abs/1103.5888v1
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SU(2) Heisenberg Hamiltonian on a general lattice can
be written as

Ĥ =
1

2

∑

xyαβ

Jαβ(x− y)Ŝx+rα · Ŝy+rβ , (2)

where x and y are the positions of the unit cells and vec-
tors rα correspond to the positions of each atom within
the unit cell. Jαβ(x− y) is the exchange interaction be-
tween the spins located in x+ rα e y + rβ .
In what follows we assume that the classical order can

be parameterized as

Ŝx
x+rα

= S sinϕα(x) (3)

Ŝy
x+rα

= 0 (4)

Ŝz
x+rα

= S cosϕα(x), (5)

with ϕα(x) = Q · x+ θα, where Q is the ordering vector
and θα are the relative angles between the classical spins
inside each unit cell.
The spin operators Ŝx on site x are represented by two

bosons b̂xσ (σ =↑, ↓)

Ŝr =
1

2
b̂†
r · ~σ · b̂r , b̂r =

(

b̂r↑
b̂r↓

)

, (6)

where ~σ = (σx, σy, σz) are the Pauli matrices. This is
a faithful representation of the algebra SU(2) if we take
into account the following local constraint

2S = b̂†x ↑b̂x ↑ + b̂†x ↓b̂x ↓. (7)

In this representation, the exchange term can be ex-
pressed as

Ŝx+rα · Ŝy+rβ = : B̂†
αβ(x,y)B̂αβ(x,y) : −Â†

αβ(x,y)Âαβ(x,y),

(8)

where Âα,β(x,y) and B̂α,β(x,y) are the SU(2) invariants
defined as

Âα,β(x,y) =
1

2

∑

σ

σb̂(α)x,σ b̂
(β)
y,−σ (9)

B̂α,β(x,y) =
1

2

∑

σ

b̂†(α)x,σ b̂(β)y,σ, (10)

with σ =↑, ↓ and double dots (: Ô :) indicate normal or-

dering of operator Ô. This decoupling is particularly use-
ful to the description of magnetic systems near disordered
states, because it allows to treat antiferromagnetism and
ferromagnetism in equal footing.

To construct a mean field theory we perform a Hartree-
Fock decoupling

(Ŝx+rα · Ŝy+rβ )MF = [B∗
αβ(x− y)B̂αβ(x,y)

− A∗
αβ(x− y)Âαβ(x,y) +H.c]

− 〈(Ŝx+rα · Ŝy+rβ )MF 〉, (11)

with

A∗
αβ(x− y) = 〈Â†

αβ(x,y)〉 (12)

B∗
αβ(x− y) = 〈B̂†

αβ(x,y)〉 (13)

〈(Ŝ~x+~rα·̂S~y+~rβ )MF 〉 = |Bαβ(~x− ~y)|2 − |Aαβ(~x− ~y)|2,

and where 〈 〉 denotes the expectation value in the ground
state at T = 0. Because several functions involved in the
Hamiltonian depend on the difference x − y we change
variables to R = x−y and eliminating x in the sums we
obtain

ĤMF =
1

2

∑

Ryαβ

Jαβ(R)

{

1

2

∑

σ

[

Bα,β(R) b̂
†(α)
R+y,σ b̂

(β)
y,σ − σAα,β(R) b̂

†(α)
R+y,σ b̂

†(β)
y,−σ +H.C.

]

−
(

|Bα,β(R)|2 − |Aα,β(R)|2
)

}

. (14)

The mean field Hamiltonian is quadratic in the boson
operators and can be diagonalized in real space. How-
ever, as we look for translational invariant solutions, it
is convenient to transform the operators to momentum
space

b̂(α)x,σ =
1√
Nc

∑

k

b̂
(α)
k,σe

ik·(x+rα). (15)

After some algebra and using the symmetry properties:

Jαβ(R) = Jβα(−R)
Aαβ(R) = −Aβα(−R) (16)

Bαβ(R) = B∗
βα(−R),

we obtain the following form for the Hamiltonian
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ĤMF =
1

2

∑

kαβ

∑

σ

{

γB
αβ(k)b̂

†(α)
kσ b̂

(β)
kσ + γB

αβ(−k)b̂
†(α)
−k−σ b̂

(β)
−k−σ − σγA

αβ(k)b̂
†(α)
kσ b̂

†(β)
−k−σ − σγ̄A

αβ(k)b̂
(α)
kσ b̂

(β)
−k−σ

}

−Nc

2

∑

Rαβ

Jαβ(R)
[

|Bαβ(R)|2 − |Aαβ(R)|2
]

, (17)

where

γB
αβ(k) =

1

2

∑

R

Jαβ(R)Bαβ(R)e−ik·(R+rα−rβ ) (18)

γA
αβ(k) =

1

2

∑

R

Jαβ(R)Aαβ(R)e−ik·(R+rα−rβ) (19)

γ̄A
αβ(k) =

1

2

∑

R

Jαβ(R)Āαβ(R)e−ik·(R+rα−rβ). (20)

Now, we impose the constraint (7) in average over each
sublattice α by means of Lagrange multipliers λ(α)

ĤMF → ĤMF + Ĥλ (21)

with

Ĥλ =
∑

xα

λ(α)

(

∑

σ

b̂†(α)xσ b̂(α)xσ − 2S

)

. (22)

Using the symmetries (16) we can see that both kinds
of bosons (↑, ↓) give the same contribution to the Hamil-
tonian. Then, we can perform the sum over σ to obtain

ĤMF =
1

2

∑

kαβ

{

(γB
αβ(k) + λ(α)δαβ)b̂

†(α)
k↑ b̂

(β)
k↑ + (γB

αβ(−k) + λ(α)δαβ)b̂
†(α)
−k↓b̂

(β)
−k↓ − σ

(

γA
αβ(k)b̂

†(α)
k↑ b̂

†(β)
−k↓ + γ̄A

αβ(k)b̂
(α)
k↑ b̂

(β)
−k↓

)}

−Nc

2

∑

Rαβ

Jαβ(R)
[

|Bαβ(R)|2 − |Aαβ(R)|2
]

− 2SNc

∑

α

λ(α).

It is convenient to define a vector operator b̂†(k) =
(

b̂
†
k↑, b̂−k↓

)

where

b̂
†
k↑ = (b̂

†(α1)
k↑ , b̂

†(α2)
k↑ , ..., b̂

†(αnc )
k↑ ) (23)

b̂−k↓ = (b̂
†(α1)
−k↓ , b̂

†(α2)
−k↓ , ..., b̂

†(αnc )
−k↓ ) (24)

and nc is the number of atoms in the unit cell. Now, we
can write the Hamiltonian as

HMF =
∑

k

b̂†(k) ·D(k) · b̂(k) (25)

− (2S + 1)Nc

∑

α

λ(α) − 〈HMF 〉,

where the 2nc × 2nc dynamical matrix D(k) is given by

D(k)=

(

γB
αβ(k) + λ(α)δαβ −γA

αβ(k)

γA
αβ(k) γB

αβ(k) + λ(α)δαβ

)

.

To diagonalize the Hamiltonian (25) we need to per-
form a para-unitary transformation of the matrix D(k)
that preserves the bosonic commutation relations. We
can diagonalize the Hamiltonian by defining the new op-

erators â = F · b̂, where the matrix F satisfy

(F †)−1 · τ3 · (F )−1 = τ3, τ3 =

(

I2×2 0
0 −I2×2

)

. (26)

With this transformation, the Hamiltonian reads

ĤMF =
∑

k

â
†
k ·E(k) · âk − 2(S + 1)Nc

∑

α

λ(α) − 〈ĤMF 〉,

(27)

where

E(k) = diag(ω1(k), ..., ωn(k), ω1(k), ..., ωn(k)). (28)

In term of the original bosonic operators, the mean
field parameters are

Aαβ(R) =
1

2Nc

∑

k

{

eik(R+rα−rβ)〈b̂(α)k↑ b̂
(β)
−k↓〉

− e−ik(R+rα−rβ)〈b̂(α)−k↓b̂
(β)
k↑ 〉
}

(29)

Bαβ(R) =
1

2Nc

∑

k

{

eik(R+rα−rβ)〈b̂†(β)k↑ b̂
(α)
k↑ 〉

− e−ik(R+rα−rβ)〈b̂†(β)−k↓b̂
(α)
−k↓〉

}

(30)

and the constraint in the number of bosons can be written
in the momentum space as

∑

k

{

〈b̂†(α)
k↑ b̂

(α)
k↑ 〉+ 〈b̂†(α)

−k↓b̂
(α)
−k↓〉

}

= 2SNc, (31)
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FIG. 2: (a): GS energy per unit cell for S = 1
2
as a function

of J2/J1 for a lattice of 32 sites. The circles are exact results
(ED) and the squares are the SBMFT results. (b): Spin-
Spin correlation function (SSCF) vs distance X in the zig-zag
direction obtained within SBMFT for a 32 × 32 system in1.
For 0 < J2/J1 < 0.41, the SSCF correspond to the Néel
phase with long-rage-order (LRO), for 0.41 < J2/J1 < 0.6
the correlations are short ranged indicating a gap zone with
sort-range-order (SRO), and for 0.6 < J2/J1 the correlations
correspond to the collinear phase (ferromagnetic correlations
in the zig-zag direction). The inset in Fig. (b) shows the
finite size results for the SSCF obtained by ED and SBMFT
for 32 sites. Lines are guides to the eye and different colors
are used for clarity.

where Nc is the total number of unit cells and S is the
spin strength. The mean field equations (29) and (30)
must be solved in a self-consistent way together with the
constraints (31) on the number of bosons. Finding nu-
merical solutions involves finding the roots of 24 coupled
nonlinear equations for the parameters A and B, plus the
additional constraints to determine the values of the La-
grange multipliers λ(α). We perform the calculations for
finite but very large lattices and finally we extrapolate
the results to the thermodynamic limit. We solve nu-
merically for several values of the frustration parameter
J2/J1 and with the values obtained for the MF parame-
ters and the Lagrange multipliers we compute the energy
and the new values for the MF parameters. We repeat
this self-consistent procedure until the energy and the
MF parameters converge. After reaching convergence we
can compute all physical quantities like the energy, the
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D D D D D D D D D
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FIG. 3: Gap in the boson dispersion as a function of J2/J1

for S = 1/2 from Ref.1. In the region J2/J1 ∼ 0.6 the system
remains gapped. Inset: finite size scaling for the gap. (i)
J2/J1 = 0.5 (γ = 0.6451), (ii): Circles correspond to J2/J1 =
0.05 (γ = 0.911) and squares correspond to J2/J1 = 0.35
(γ = 0.758).

spin-spin correlations and the excitation gap. In order
to support the analytical results of the MF approach, we
have also performed exact diagonalization on finite sys-
tems with 18, 24 and 32 spins with periodic boundary
conditions for S = 1/2 using Spinpack23.

3. RESULTS

In Fig. 2(a) we show the ground state energy per unit
cell as a function of the frustration for a system of 32
sites calculated by means of SBMFT and ED, showing
an excellent agreement between both approaches. The
advantage of the SBMFT is that it allows to study much
larger systems: we have studied different system sizes
up to 3200 sites and extrapolated to the thermodynamic
limit.
For the present model we only find commensurate

collinear phases and for these phases, the wave vector
Q0 = Q/2 where the dispersion relation has a minimum
remains pinned at a commensurate point in the Brillouin
zone, independently of the value of the frustration J2/J1.
In the thermodynamic limit, a state with LRO is char-
acterized in the Schwinger boson approach by a conden-
sation of bosons at the wave vector Q0. This implies
that the dispersion of the bosons in a state with LRO is
gapless. As we discussed earlier, we solve the mean field
equations for finite systems, then to detect LRO we cal-
culate the gap in the bosonic spectrum as a function of
J2/J1 for different system sizes and perform a finite size
scaling finding a finite region where the system remains
gapped.
The structure of the different phases can be understood

calculating the spin-spin correlation function (SSCF).
For J2/J1 < 0.41 the SSCF is antiferromagnetic in all
directions and is long-ranged while for 0.6 < J2/J1
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we have found ferromagnetic LRO correlations in the
zig-zag direction that correspond to the CAF phase.
The most interesting result is in the intermediate re-
gion 0.41 < J2/J1 < 0.6 where the results for the SSCF
predict a quantum disordered state with a gap in the
bosonic dispersion and the spin-spin correlation function
shows Néel short range order. A plot of the SSCF for
J2/J1 = 0, 0.2, 0.5 and 0.8 obtained within SBMFT is
presented in Fig. 2b. In Fig. 4 we show the ground state

phase diagram as a function of 1/S1. The classical phase
diagram reduces to that shown in the line 1/Sc = 0 of
Fig. 4 where two collinear phases meet at the classical
critical point J2/J1 = 0.5. On the one hand, for 1/S
smaller than a critical value 1/Sc(J2/J1), the correlation
functions have LRO, characterized by a condensation of
bosons at the wave vector Q0. On the other hand, when
1/S is greater than 1/Sc(J2/J1), the correlation func-
tions have SRO indicating quantum disorder.
In the intermediate region the results found with SBMFT
predict a quantum disordered region 0.41 < J2/J1 < 0.6.
In this region a gap opens in the bosonic dispersion and
the spin-spin correlation function shows Néel short range
order followed by the LRO CAF phase for J2/J1 > 0.6.
In Fig. 3 we show the extrapolation of the boson gap
as a function of the frustration. The inset shows an ex-
ample of the finite size scaling for different values of the
frustration.

Previous results show that for 0.41 < J2/J1 < 0.6 the
ground state has no magnetic order1. The main question
now is: Is this non magnetic quantum phase a quantum
disordered one? Or does it exhibit any other kind of non-
magnetic order?. To answer this question the knowledge
of the spin-spin correlation function is not enough and
one has to check for other types of (non-magnetic) order-
ing patterns.

One kind of non magnetic order that can set in is the
dimer long-range order. The dimer operator on a pair of

sites (i, j) is defined as d̂i,j = 1/4− Ŝi · Ŝj , and one usu-
ally defines the dimer-dimer correlation between bonds

(i, j) and (k, l) as D(i,j),(k,l) =< d̂i,jd̂k,l > − < d̂i,j ><

d̂k,l >. In order to understand the nature of the ground
state in the intermediate region, we have calculated de
dimer-dimer correlation function defined above by means
of exact diagonalization on a 24 sites cluster with peri-
odic boundary conditions for S = 1/2. The correlation
pattern for dimers on first neighbor bonds is displayed in
Fig. 5. We can see that the exact dimer-dimer correla-
tions show a rather fast decay suggesting that there is no
dimer order in the groud state, though due to the small
size of the cluster studied, this is not conclusive and we
cannot discard other ordering patterns.

In summary, the results presented here further support
the existence of a region in the intermediate frustration
regime where the system does not show quantum mag-
netic order for S = 1/2.

Note added: When this manuscript was completed
we became aware of two independent works providing
an analysis of the model using a combination of ex-
act diagonalizations24,25 and an effective quantum dimer
model, as well as a self-consistent cluster mean-field
theory24. Several similar findings show a good corre-
spondence of both approaches.
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by the ESF grant INSTANS, PICT ANPCYT (Grant No
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