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A new representation of Dirac’s delta distribution, based on the so-called
q-exponentials, has been recently conjectured. We prove here that this conjecture is
indeed valid. © 2010 American Institute of Physics. fdoi:10.1063/1.3478886g

I. INTRODUCTION

Tsallis and Jauregui7 recently conjectured a representation of the Dirac delta distribution,
which they call dqsxd, based on q-exponential functions. However, they could not prove their
conjecture and used numerical experiments that suggest its validity. In this note, we provide a
rigorous mathematical approach to this problem and prove their conjecture by recourse to the
notion of superstatistics.

II. q-EXPONENTIALS AND SUPERSTATISTICS

Statistical mechanics’ most notorious and renowned probability distribution is that deduced by
Gibbs for the canonical ensemble,1,2 usually referred to as the Boltzmann–Gibbs equilibrium
distribution,

pGsid =
exps− bEid

ZBG
, s1d

with Ei the energy of the microstate labeled by i, b=1 /kBT the inverse temperature, kB the
Boltzmann constant, and ZBG the partition function. The exponential term FBG=exps−bEd is called
the Boltzmann–Gibbs factor. Recently Beck and Cohen3 advanced a generalization, called super-
statistics, of this BG factor, assuming that the inverse temperature b is a stochastic variable. The
generalized statistical factor FGS is thus obtained as the multiplicative convolution,

FGS = E
0

` db

b
fsbdexps− bEd , s2d

where fsbd is the density probability of the inverse temperature.
As stated above, b is the inverse temperature, but the integration variable may also be any

convenient intensive parameter. Superstatistics, meaning “superposition of statistics,” takes into
account fluctuations of such intensive parameters.

Beck and Cohen also show that if fsbd is a Gamma distribution, nonextensive thermostatistics
is obtained, which is of interest because this thermostatistics is today a very active field, with
applications to several scientific disciplines.4–6 In working in a nonextensive framework, one has
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to deal with power-law distributions, which are certainly ubiquitous in physics scritical phenom-
ena are just a conspicuous example8d. Indeed, it is well known that power-law distributions arise
when maximizing Tsallis’ information measure,

Hqsfd =
1

q − 1S1 − E
−`

+`

fsxdqdxD , s3d

subject to appropriate constraints, where qÞ1 is a real positive parameter called the nonextensiv-
ity index. More precisely, in the case of the canonical distribution, there is only one constraint, the
energy E, i.e., kX2l=E.0, and the equilibrium canonical distribution writes in the case q.1,

fqsxd =
1

Zq
s1 − s1 − qdbqx2d1/1−q,

where bq and Zq stand for the nonextensive counterparts of b and ZBG above.
In the rest of this paper, we will assume as in Ref. 7 that 1,q,2.
Let us choose the branch cut s−` ,−1 /1−qg along the negative real axis and define the

q-exponential function for zPC \ s−` ,−1 /1−qg as

eqszd = s1 + s1 − qdzd1/1−q. s4d

This allows us to rewrite the equilibrium distribution in the more natural way,

fqsxd =
1

Zq
eqs− bx2d .

It is a classical result that as q→1+, Tsallis entropy reduces to Shannon entropy,

H1sfd = − E
−`

+`

fsxdlog fsxd . s5d

Accordingly, the q-exponential function eqsxd converges pointwise to the usual exponential func-
tion ex.

III. PROOF OF JAUREGUI–TSALLIS CONJECTURE

A. Definitions and notation

Recall the formula

dstd =
1

2p
E
R

e−ıutdu . s6d

We intend to provide a generalization of this relation; namely, we prove the following represen-
tation conjectured by Tsallis et al. assuming 1,q,2:

dstd =
1

cq
E

R
eqs− ıutddu s7d

for some constant cq. We begin by recalling the mathematical meaning of s6d.
Definition 1: A function w is called rapidly decreasing if w is C` and if for all integers k ,,,

lim
x→6`

xkws,dsxd = 0.

Let S be the set of the rapidly decreasing functions on R and by S8 the set of the continuous
linear functionals over S.

We know from Rudin sRef. 9, p. 184, Theorem 7.4d the following.

093502-2 Chevreuil, Plastino, and Vignat J. Math. Phys. 51, 093502 ~2010!



Proposition 1: If wPS, its Fourier transform Fswd exists and belongs to S. More precisely,
the Fourier transform F is a continuous linear mapping of S into S.

In the sequel, we use the notation ŵ=Fswd.
Definition 2: Let now f be a bounded measurable function.11 We let Tf be the linear continu-

ous mapping,

∀w P SkTf,wl =E fstdwstddt .

B. Proofs

In order to prove the usual representation s6d, we simply have to show that for all wPS,

E dukTe−ıut,wl = 2pws0d .

Of course kTe−ıut ,wl= ŵsud. Hence the result.
We now turn to the proof of s7d. In this respect, let us pick a wPS. We have

kTeqs−ıutd,wl =E eqs− ıutdwstddt =E EWe−ıutsq−1dWwstddt ,

where we have used the equality

eqs− ıutd = EWe−ıutsq−1dW. s8d

Here

EWgsWd ,
1

GS 1

q − 1
DE0

+`

gswde−wws1/q−1d−1dw

is the expectation of gsWd, where W is a Gamma distributed random variable with shape parameter
1 /q−1 and g some function such that the above definition makes sense.

We note that s8d expresses the fundamental principle of the superstatistical theory.
On the other hand, we have

1

GS 1

q − 1
DE E e−wws1/q−1d−1uwstdudtdw #E uwstdudt .

As obviously w is summable, we can apply the Fubini–Lebesgue theorem and we obtain

kTeqs−ıutd,wl = EWE e−ıutsq−1dWwstddt = EWŵsusq − 1dWd

=
1

GS 1

q − 1
DE e−wws1/q−1d−1ŵsusq − 1dwddw .

Now, consider

E
R

kTeqs−ıutd,wldu .

As q,2, we have, by the change of variable u°v=usq−1dw,
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E dwE ue−wws1/q−1d−1ŵsusq − 1dwdudu =
euŵsvdudv

q − 1
E e−wws1/q−1d−2dw , ` ,

since, by Proposition 1, ŵPS. Thanks to the Fubini–Lebesgue theorem, we deduce that

E
R

kTeqs−ıutd,wldu =
1

GS 1

q − 1
D

eŵsvddv
q − 1

E e−wws1/q−1d−2dw =

GS 1

q − 1
− 1D

sq − 1dGS 1

q − 1
D2pws0d .

We have proved the result with

cq =
2p

2 − q
.

IV. REMARKS ON JAUREGUI–TSALLIS APPROACH

In their approach,7 the authors chose an empirical approach starting from the usual q=1 case:
expressing the Dirac delta as the limit,

dsxd =
1

c1
lim

L→+`
E

−L

+L

e−ikxdk =
2

c1
lim

L→+`

sinsLxd
x

,

the normalization constant c1 can be obtained formally as

c1 = 2 lim
L→+`

E
−`

+` sinsLxd
x

dx = 2p .

The extension to q-exponentials reads

dqsxd =
2

s2 − qdcq
lim

L→+`

sinS2 − q

q − 1
arctanssq − 1dLdD

xs1 + sq − 1dL2x2d2−q/2sq−1d ,

so that the normalization constant cq can be obtained formally as

cq =
2

2 − q
lim

L→+`
E

−`

+` sinS2 − q

q − 1
arctanssq − 1dLdD

xs1 + sq − 1dL2x2d2−q/2sq−1d dx .

This integral can be equivalently expressed using the change of variable z=tan u as

Iq , 2E
0

p
2

sinS2 − q

q − 1
uDscos ud2−q/sq−1d−1

sin u
du .

The authors then evaluate the integral Iq for a finite number of rational values of the parameter
qP g1,2f only, for which the symbolic computation software MAPLE gives the value Iq=p /2.
However, this approach can be circumvented given the fact that the integral Iq can be found in Ref.
10 sp. 3.638.3d with the value Iq=p /2∀qP g1,2f so that, following the above mentioned empiri-
cal approach used in Ref. 7, it can be deduced that cq=2p/2−q. This allows us to confirm the
correctness of the two representations of the number p deduced from this result in Ref. 7 fEqs.
s23d and s25dg.
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V. CONCLUSION

We have proved that the representation of the Dirac delta distribution s7d using q-exponential
functions, as conjectured by Tsallis et al., is valid. In particular, sid we compute the exact normal-
ization constant in the representation of the Dirac delta and siid we explicit the set of functions,
namely, the set of rapidly decreasing functions defined in Definition 1, for which this distribution
acts as the Dirac delta.
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