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Heisenberg, 1927: Given two (or more) quantum 
observables one cannot predict with certainty and 
simultaneously the outcomes of both 

THE UNCERTAINTY PRINCIPLE 

UNCERTAINTY RELATION: GENERAL FORM 

• state-independent 
• = 0 only if A and B share at least one 
eigenstate (commute: particular case) 
• >0 in other case 

Uncertainty measure associated to the 
probability distributions of the outcomes 



UNCERTAINTY RELATIONS 

HEISENBERG-ROBERTSON RELATION (1929) 

PRELIMINARIES AND NOTATION 

Observables 

Overlap: 

Quantum states 

Probability vectors 

T: unitary transformation matrix 
Pure states 

(discrete, non-degenerate spectra) 



PART I: ENTROPIC  

UNCERTAINTY RELATIONS 

S. Zozor, G.M. Bosyk, and M. Portesi, General entropic uncertainty relations for N-level systems,  to be submitted (2013) 
S. Zozor, G.M. Bosyk, and M. Portesi, On a generalized entropic uncertainty relation for the qubit, J. Phys. A: Math. Theo.  46 465301 (2013) 



ENTROPY AND UNCERTIANTY RELATIONS 

GOAL AND PREVIUOS RESULTS 

RÉNYI ENTR0PY 

p: probability vector  
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METHOD: CONSTRAINED MINIMIZATION 

Step 1 Step 2 

N = 4  P = 0.4 

maxima probabilities 



RESULTS AND EXAMPLES 
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PART II: FIDELITY-BASED   

UNCERTAINTY RELATIONS 

G.M. Bosyk, T.M. Osán, P.W Lamberti and M. Portesi, Geometric formulation of the uncertainty principle, arXiv:1308.4029v2 [quant-ph] (2013) 



LANDAU-POLLAK INEQUALITY FOR PURE STATES 

maxima probabilities 

Sketch of the proof: 

Step 2: apply the triangle inequality  

Step 3: choose the eigenstates that maximize the probabilities 

Step 4: use decreasesing property of arccos 

Step 1: consider Wootters metric between state      and    



FIDELITY & PURIFICATION 

FIDELITY 

PURIFICATION 

 normalization 

 identity of indiscernibles  

 symmetry  

 both pure sates 

 one pure state  

measure of similarity of quantum 
states 

mixed quantum states  pure quantum states 

Link between fidelity and purifications 



LANDAU-POLLAK INEQUALITY FOR MIXED STATES 

maxima probabilities 

Sketch of the proof: 

Step 1: consider Wootters metric between    ,     and     purifications of   ,    and   , resp. 

Step 2: use triangle inequality 

Step 3: choose the purifications that maximize the overlaps with   : 

Step 4: use decreasing property of arccos 

we proof triangle inequality for the angle!!! 

Step 5: use that  

Step 6 and 7: similar to LPI for pure states, i.e, choose max probabilities and use that arccos decreases  

We prove: 



FIDELITY-BASED UNCERTAINTY RELATIONS 

Metric between quantum states 

Fidelity-Based metrics 

Uncertainty measure 

MAIN RESULT 

 non-negativy 

 symmetry 

 triangle inequality 

Examples: 
 Angle 

 Bures 

 Root-infidelity 



COMPARISON FOR KNOWN METRICS 

Metric 

Angle (A) 

Bures (B) 

Root-infidelity (RI) 

LPI is the tightest UR!!! 



SUMMARY 

 We revisit the formulation of Uncertainty Principle: 
 going beyond Heisenberg-like uncertainty relations 

 
 General Entropic Uncertainty Relations for N-level systems 

 lower bound for the sum of Rényi entropies of arbitrary entropic indices 
 c-optimal bound for overlap > 1/2 (improves all c-dependent bounds, 
e.g. Deutsch, MU, etc) 
 improves PRZ bound in several situations 
 easy to calculate (solve a one-dimensional minimization problem) 
х open: extension to POVM measurements (LPI to POVM?) 
 

 Geometric formulation of Uncertainty Principle 
 extension of LPI to mixed states 
 family of fidelity-based uncertainty relations 
х conjecture: angle metric gives the tightest uncertainty relation (LPI) within 
this framework 
х open: extension to POVM measurement 


