

November 22nd, 2013 Córdoba, Argentina FaMAF

BEYOND HEISENBERG: Entropic and Fidelity-Based Uncertainty Relations Gustavo Martin BOSYK IFLP & Dto. de Física, UNLP

THE UNCERTAINTY PRINCIPLE

Heisenberg, 1927: Given two (or more) quantum observables one cannot predict with certainty and simultaneously the outcomes of both

UNCERTAINTY RELATION: GENERAL FORM

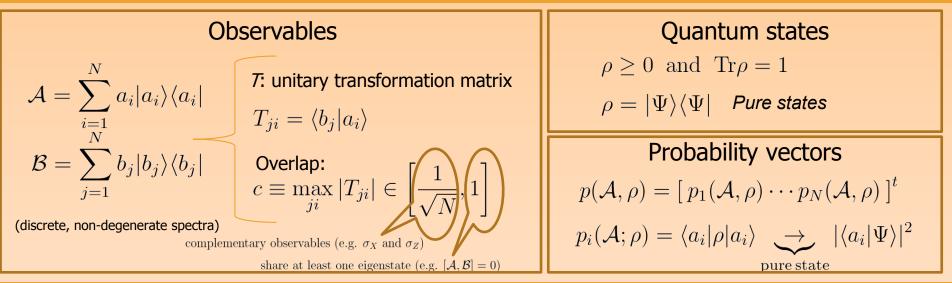
$$\mathcal{U}(\mathcal{A},\mathcal{B},\rho) \geq \mathfrak{B}(\mathcal{A},\mathcal{B})$$

Uncertainty measure associated to the probability distributions of the outcomes

- state-independent
- = 0 only if A and B share at least one eigenstate (commute: particular case)
 > 0 in other case
- >0 in other case

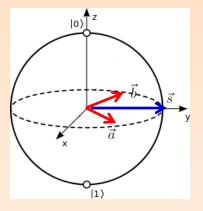
UNCERTAINTY RELATIONS

PRELIMINARIES AND NOTATION



HEISENBERG-ROBERTSON RELATION (1929)

 $V(\mathcal{A}; \rho) V(\mathcal{B}; \rho) \geq \frac{1}{4} |\langle [\mathcal{A}, \mathcal{B}] \rangle_{\rho}|$ $V(\mathcal{A}; \rho) = \sum_{i} (a_{i} - \langle \mathcal{A} \rangle_{\rho})^{2} p_{i}(\mathcal{A}; \rho)$ $\langle \mathcal{A} \rangle_{\rho} = \sum_{i} \overset{i}{a_{i}} p_{i}(\mathcal{A}; \rho)$



qubit system
$$(N = 2)$$

 $\rho = \frac{1}{2}(I + \vec{s} \cdot \vec{\sigma}), \ \vec{\sigma} = (\sigma_X, \sigma_Y, \sigma_Z), \ \|\vec{s}\| \le 1$
 $\mathcal{A} = \vec{a} \cdot \vec{s}, \ \|\vec{a}\| = 1$ $\mathcal{B} = \vec{b} \cdot \vec{s}, \ \|\vec{b}\| = 1$
HR UR:
 $\sqrt{1 - (\vec{a} \cdot \vec{s})^2} \sqrt{1 - (\vec{b} \cdot \vec{s})^2} \ge \left| (\vec{a} \times \vec{b}) \cdot \vec{s} \right|$

PART I: ENTROPIC UNCERTAINTY RELATIONS

S. Zozor, G.M. Bosyk, and M. Portesi, *General entropic uncertainty relations for N-level systems,* to be submitted (2013) S. Zozor, G.M. Bosyk, and M. Portesi, *On a generalized entropic uncertainty relation for the qubit,* J. Phys. A: Math. Theo. **46** 465301 (2013)

ENTROPY AND UNCERTIANTY RELATIONS

RÉNYI ENTROPY

1

$$H_{\lambda}[p] = \frac{1}{1-\lambda} \ln \sum_{i=1}^{N} p_{k}^{\lambda}, \quad \lambda \geq 0$$

p: probability vector $\{p \in \mathcal{P} = [p_{1} \cdots p_{N}]^{t} \in [0,1]^{N}, \sum_{k} p_{k} = 0$
 \Rightarrow Shannon entropy: $H_{1}[p] = -\sum_{i} p_{i} \ln p_{i}$
 \Rightarrow Colision entropy: $H_{2}[p] = -\ln \sum_{i}^{i} p_{i}^{2}$
 \Rightarrow Min entropy: $H_{\infty}[p] = -\ln \max_{i}^{i} p_{i}$

$$p_{k} = \delta_{ki} : H_{\lambda}[p] = 0 \qquad p = \left\lfloor \frac{1}{N} \cdots \frac{1}{N} \right\rfloor^{t} : H_{\lambda}[p] = \ln N$$

$$\diamond H_{\lambda}[p]$$
 is Schur-concave

 $\diamond H_{\lambda}[p]$ is concave in p for $\lambda \in [0,1]$

 $\diamond H_{\lambda}[p]$ for fixed p decreases with λ

GOAL AND PREVIUOS RESULTS

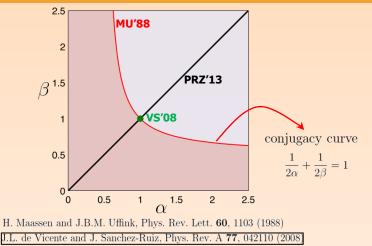
$$H_{\alpha}\left[p(\mathcal{A},\rho)\right] + H_{\beta}\left[p(\mathcal{B},\rho)\right] \ge \overline{\mathfrak{B}}_{\alpha,\beta} > 0, \ (\alpha,\beta) \in \mathbb{R}^{2}_{+}$$

T-optimal bound

$$\mathfrak{B}_{\alpha,\beta}(T) = \min_{\substack{\rho \\ \text{Solved only for qubit systems } (N=2), \\ \text{SZ, GMB, MP, JPA 46, 465301 (2013)}} (H_{\alpha}[p(\mathcal{A}, \rho)] + H_{\beta}[p(\mathcal{B}, \rho)]) \geq \overline{\mathfrak{B}}_{\alpha,\beta}$$

c-optimal bound

$$\widetilde{\mathfrak{B}}_{\alpha,\beta}(c,N) = \min_{T \in \mathrm{U}(N),\max|T_{ji}|=c} \mathfrak{B}_{\alpha,\beta}(T)$$



Z. Puchała, Ł. Rudnicki, and K. Życzkowski, J. Phys. A: Math. Theor. 46, 272002(2013)

METHOD: CONSTRAINED MINIMIZATION

 $\begin{array}{c} H_{\alpha}\left[p(\mathcal{A},\rho)\right] + H_{\beta}\left[p(\mathcal{B},\rho)\right] \geq \overline{\mathfrak{B}}_{\alpha,\beta}(c) > 0, \ (\alpha,\beta) \in R_{+}^{2} \\ \text{Landau-Pollak inequality (LPI): } \arccos \sqrt{P_{\mathcal{A};\rho}} + \arccos \sqrt{P_{\mathcal{B};\rho}} \geq \arccos c \\ \max \text{maxima probabilities}_{P_{\mathcal{A};\rho}} = \max_{i} \langle a_{i} | \rho | a_{i} \rangle \text{ and } P_{\mathcal{B};\rho} = \max_{j} \langle b_{j} | \rho | a_{j} \rangle \\ \text{Step 1} \\ H_{\lambda,\min}(P) = \min_{p \in \mathcal{P}} H_{\lambda}(p) \text{ s.t. } \max_{k} p_{k} = P \in \left[\frac{1}{N}, 1\right] \\ \text{Equivalent problem:} \\ \overline{\mathfrak{B}}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{B}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{f}_{\alpha,\beta}(c) = \underbrace{\left[\max_{p \in \mathcal{P}} H_{\alpha,\min}(P_{\mathcal{A}}) + H_{\beta,\min}(P_{\mathcal{A}}) \right]}_{\alpha,\beta} \\ \text{for all } \mathbf{$

Equivalent problem:

$$p = [P \ q_{1} \cdots q_{N-1}]^{t} \text{ and find } q \in \mathbb{R}^{N-1} \text{ that maximizes}$$

$$f_{\lambda}(q) = \frac{\sum_{k} q_{k}^{\lambda} - (1-P)}{\lambda - 1} \quad \text{s.t.} \quad \substack{q \in \mathcal{HC}_{P} \equiv [0; P]^{N-1}}{q \in \mathcal{HP}_{P} \equiv \left\{q : \sum_{k} q_{k} = 1-P\right\}}$$

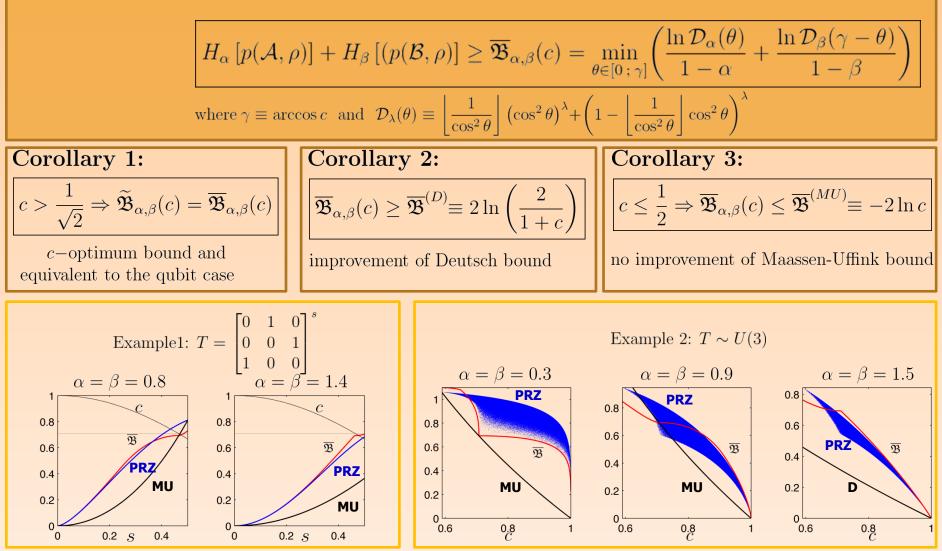
$$\bullet \mathcal{HC}_{P} \cap \mathcal{HP}_{P}: \text{ convex polytope of pure points}$$

$$\left[\underbrace{P \cdots P}_{M \text{ times}} \quad 1 - MP \quad \underbrace{0 \cdots 0}_{N-M-1 \text{ times}}\right]^{t}, \quad M = \left[\frac{1}{P}\right]$$

$$\bullet \int_{0}^{s} \int_{0}$$

RESULTS AND EXAMPLES

Proposition: $\forall (\alpha, \beta) \in \mathbb{R}^2_+$



PART II: FIDELITY-BASED UNCERTAINTY RELATIONS

G.M. Bosyk, T.M. Osán, P.W Lamberti and M. Portesi, *Geometric formulation of the uncertainty principle*, arXiv:1308.4029v2 [quant-ph] (2013)

LANDAU-POLLAK INEQUALITY FOR PURE STATES

$$\operatorname{arccos} \left(\begin{array}{c} P_{\mathcal{A};\Psi} + \operatorname{arccos} \left(\begin{array}{c} P_{\mathcal{B};\Psi} \end{array} \right) \geq \operatorname{arccos} c \\ \\ \text{maxima probabilities} \end{array} \right) = \left| \begin{array}{c} P_{\mathcal{A};\Psi} = \max_{i} |\langle a_{i} | \Psi \rangle|^{2} \\ P_{\mathcal{B};\Psi} = \max_{i} |\langle b_{i} | \Psi \rangle|^{2} \end{array} \right|$$

 \diamond if c < 1 then $P_{\mathcal{A};\Psi}$ and $P_{\mathcal{B};\Psi}$ cannot both be equal to one

$$\diamond$$
 if $c = \frac{1}{\sqrt{N}}$ and $P_{\mathcal{A};\Psi} = 1$ then $P_{\mathcal{B};\Psi} = \frac{1}{N}$

Sketch of the proof:

Step 1: consider Wootters metric between state $|\Psi\rangle$ and $|a_i\rangle$, $|b_j\rangle$ eigenstates of \mathcal{A} and \mathcal{B}

Wotters metric: $d_{\rm W}(\varphi, \psi) = \arccos |\langle \varphi | \psi \rangle|$

Step 2: apply the triangle inequality T_{ij} $\operatorname{arccos}(\langle a_i | \Psi \rangle) + \operatorname{arccos}(\langle b_j | \Psi \rangle) \geq \operatorname{arccos}(\langle a_i | b_j \rangle)$

Step 3: choose the eigenstates that maximize the probabilities $\operatorname{arccos} \sqrt{P_{\mathcal{A};\Psi}} + \operatorname{arccos} \sqrt{P_{\mathcal{B};\Psi}} \ge \operatorname{arccos} |\langle a_{i'}|b_{j'}\rangle|$

Step 4: use decreasesing property of arccos $|\langle a_{i'}|b_{j'}\rangle| \ge \arccos\max_{ij} |\langle a_i|b_j\rangle|$

H.J. Landau and H.O. Pollak, Bell Syst. Tech. J. **40**, 65 (1961) J. Uffink, Ph. D. thesis, University of Utrecht (1990)

FIDELITY & PURIFICATION

FIDELITY

measure of similarity of quantum states

 $F(\rho,\sigma) = \left(\mathrm{Tr}\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right)^2$

- normalization $0 \le F(\rho, \sigma) \le 1$
- identity of indiscernibles $F(\rho,\sigma) = 1$ iff $\rho = \sigma$
- symmetry $F(\rho, \sigma) = F(\sigma, \rho)$
- both pure sates $F(|\psi\rangle\langle\psi|,|\varphi\rangle\langle\varphi|) = |\langle\psi|\varphi\rangle|^2$
- one pure state $F(|\psi\rangle\langle\psi|,\sigma)=\langle\psi|\sigma|\psi\rangle$

PURIFICATION

mixed quantum states \rightarrow pure quantum states

 $\rho \in B(\mathcal{H}) \to |\Psi\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux} : Tr_{aux}(|\Psi\rangle\langle\Psi|) = \rho$

Link between fidelity and purifications

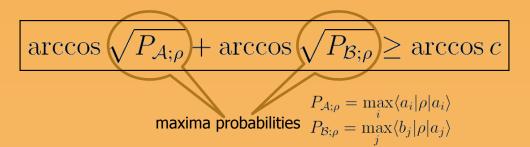
 $F(\rho,\sigma) = \max_{|\varphi\rangle} |\langle \psi | \varphi \rangle|^2$

all purifications of σ

fixed purification ρ

LANDAU-POLLAK INEQUALITY FOR MIXED STATES

We prove:



Sketch of the proof:

Step 1: consider Wootters metric between $|s\rangle$, $|r\rangle$ and $|t\rangle$ purifications of σ , ρ and τ , resp.

Step 2: use triangle inequality $\arccos |\langle s|r\rangle| + \arccos |\langle t|r\rangle| \ge \arccos |\langle s|t\rangle|$

Step 3: choose the purifications that maximize the overlaps with ρ : $F(\sigma, \rho) = \max_{|s\rangle} |\langle s|r\rangle|^2 = |\langle \tilde{s}|r\rangle|^2$ and $F(\tau, \rho) = \max_{|t\rangle} |\langle t|r\rangle|^2 = |\langle \tilde{t}|r\rangle|^2$ $\arccos \sqrt{F(\sigma, \rho)} + \arccos \sqrt{F(\tau, \rho)} \ge \arccos |\langle \tilde{s}|\tilde{t}\rangle|$

Step 4: use decreasing property of arccos $|\langle \tilde{s} | \tilde{t} \rangle| \ge \arccos \sqrt{F(\sigma, \tau)}$

we proof triangle inequality for the angle!!!

Step 5: use that
$$\begin{array}{c} \sigma = |a_i\rangle\langle a_i| \\ \tau = |b_j\rangle\langle b_j| \end{array} \xrightarrow{F(\sigma,\rho) = \langle a_i|\rho|a_i\rangle = p_i(\mathcal{A};\rho)} F(\tau,\rho) = \langle b_j|\rho|b_j\rangle = p_j(\mathcal{B};\rho) \end{array} \xrightarrow{\operatorname{arccos}} \operatorname{arccos} \sqrt{p_i(\mathcal{A};\rho)} + \operatorname{arccos} \sqrt{p_j(\mathcal{B};\rho)} \ge \operatorname{arccos} |\langle a_i|b_j\rangle|$$

Step 6 and 7: similar to LPI for pure states, i.e, choose max probabilities and use that arccos decreases

FIDELITY-BASED UNCERTAINTY RELATIONS

Metric between quantum states

non-negativy

 $d(\rho, \sigma) \geq 0$ and $d(\rho, \sigma) = 0$ iff $\rho = \sigma$

symmetry

 $d(\rho, \sigma) = d(\sigma, \rho)$

• triangle inequality $d(\sigma, \rho) + d(\tau, \rho) \ge d(\sigma, \tau)$

Fidelity-Based metrics

Examples: $d(\rho, \sigma) = f(F(\rho, \sigma))$ • Angle $d_A(\rho, \sigma) = \arccos \sqrt{F(\rho, \sigma)}$

with $f \downarrow$ and f(x) = 0 iff x = 1 • Bures $d_{\rm B}(\rho, \sigma) = \sqrt{2 - 2\sqrt{F(\rho, \sigma)}}$

• Root-infidelity $d_{\rm RI}(\rho,\sigma) = \sqrt{1 - F(\rho,\sigma)}$

Uncertainty measure

$$\mathcal{U}(\mathcal{A};\rho) = f\left(P_{\mathcal{A};\rho}\right)$$

 $\diamond \mathcal{U}(\mathcal{A}; \rho) > 0$ $\diamond \mathcal{U}(\mathcal{A}; \rho)$ is decreasing in terms of $P_{\mathcal{A}; \rho}$ $\diamond \mathcal{U}(\mathcal{A}; \rho) = 0$ if and only if $P_{\mathcal{A};\rho} = 1$ $\diamond \arg \max_{P_{\mathcal{A};\rho}} \mathcal{U}(\mathcal{A};\rho) = \frac{1}{N}$

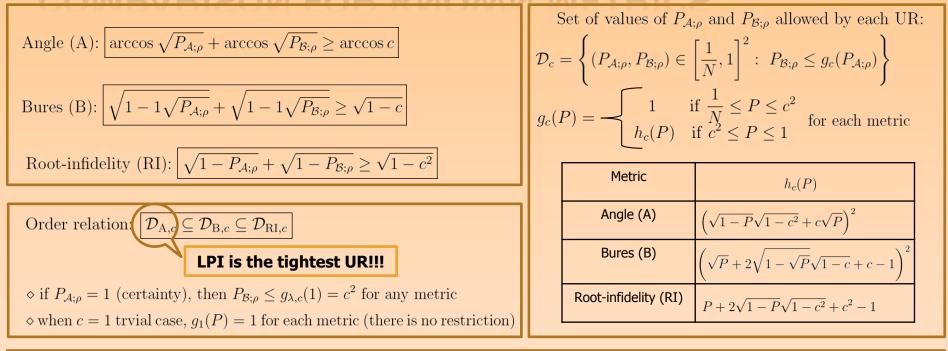
MAIN RESULT

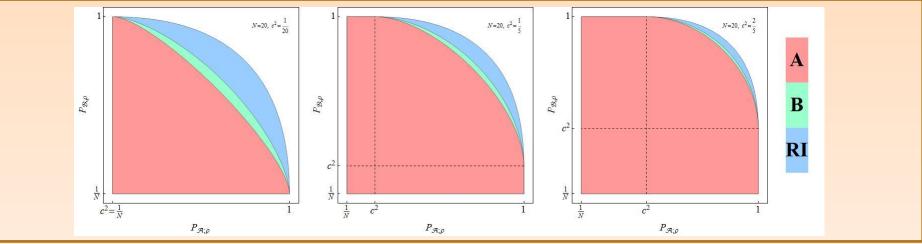
 \mathcal{A} and B observables, and ρ a denisty operator: $\mathcal{U}(\mathcal{A};\rho) + \mathcal{U}(\mathcal{B};\rho) \geq f(c^2)$ where $c = \max_{ij} |\langle b_j | a_i \rangle| \in \left|\frac{1}{\sqrt{N}}, 1\right|$

- \diamond family of uncertainty relations
- \diamond universal (state-independent) lower bound
- \diamond for c < 1: uncertainty-sum is strictly greater than zero (non-trivial)

 \diamond for $c = \frac{1}{\sqrt{N}}$ (complementary observables): certainty on one implies maximum ignorance on the other

COMPARISON FOR KNOWN METRICS





We revisit the formulation of Uncertainty Principle:
 going beyond Heisenberg-like uncertainty relations

□ General Entropic Uncertainty Relations for N-level systems

 \checkmark lower bound for the sum of Rényi entropies of arbitrary entropic indices

 \checkmark c-optimal bound for overlap > 1/ $\sqrt{2}$ (improves all c-dependent bounds,

e.g. Deutsch, MU, etc)

✓ improves PRZ bound in several situations

✓ easy to calculate (solve a one-dimensional minimization problem)
 x open: extension to POVM measurements (LPI to POVM?)

Geometric formulation of Uncertainty Principle

 \checkmark extension of LPI to mixed states

✓ family of fidelity-based uncertainty relations

x conjecture: angle metric gives the tightest uncertainty relation (LPI) within this framework

x open: extension to POVM measurement