
Nuclear Physics A 796 (2007) 11–40

Quantum interference terms in non-mesonic weak decay
of Λ-hypernuclei within an RPA formalism

E. Bauer a,b,∗

a Departamento de Física, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina
b Instituto de Física La Plata, CONICET, 1900 La Plata, Argentina

Received 30 July 2007; received in revised form 14 September 2007; accepted 19 September 2007

Available online 21 September 2007

Abstract

Single and double coincidence nucleon spectra in the Λ-hypernuclei weak decay are evaluated and
discussed using a microscopic formalism. Nuclear matter is employed together with the local density
approximation which allows us to analyze the 12

ΛC hypernucleus non-mesonic weak decay. Final state in-
teractions (FSI) are included via the first order (in the nuclear residual interaction) terms to the RPA, where
the strong residual interaction is modelled by a Bonn potential. At this level of approximation, these FSI
are pure quantum interference terms between the primary decay (ΛN → NN) and (ΛN → NN → NN),
where the strong interaction is responsible for the last piece in the second reaction. Also the Pauli exchange
contributions are explicitly evaluated. We show that the inclusion of Pauli exchange terms is important.
A comparison with data is made. We conclude that the limitations in phase space in the RPA make this
approximation inadequate to reproduce the nucleon spectra. This fact does not allow us to draw a definite
conclusion about the importance of the interference terms.
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1. Introduction

A hypernucleus is a bound system of non-strange and strange baryons and it is an impor-
tant source of information about baryon–baryon strangeness-changing weak interactions. In the
present contribution, we focus on the Λ-hypernuclei, which can be produced by a hadronic
reaction—such as (π,K)—or by an electromagnetic one—such as (e, e0K). The Λ is generally
formed in an excited state and then, via the emission of a series of γ -rays, it reaches its ground
(1s1/2)-state. The Λ decays via the weak interaction mainly by two decay mechanisms: the so-
called mesonic decay (Λ → πN) and the non-mesonic one (NM), where no meson is present
in the final state (ΛN → nN). The mesonic decay is the main decay process for the free Λ,
but when the Λ is within the nuclear environment it is strongly inhibited by the Pauli principle.
In this case, the non-mesonic weak decay becomes the most important decay mechanism. This
decay can be stimulated either by protons or neutrons, where the corresponding decay widths are
denoted as Γp ≡ Γ (Λp → np) and Γn ≡ Γ (Λn → nn), respectively. Just after the Λ-decays,
the resultant nucleons are still within the nucleus and in their way out they can interact strongly
with any nucleon of the nucleus. Finally, two or more nucleons are ejected from the nucleus and
it is the nucleon spectra of these emitted nucleons the magnitude which can be measured. For
review articles one can see [1,2], while some of the experimental works are [3–11].

For the non-mesonic Λ-decay, there are two quantities which deserves special attention. The
first one is the ratio Γn/p ≡ Γn/Γp where theory predicts a value smaller than 0.5, while the
so-called experimental result has a value closer to one. The second quantity is the asymmetry
of the protons emitted in the NM decay of polarized hypernuclei. In this case, data indicate a
value close to zero, while most of the theoretical works predict a large negative number. Just
recently, the incorporation of the σ -meson suggests a solution to this problem (see [12,13], and
references therein). In the present work, however, we will not deal with the asymmetry. For Γn/p ,
the connection between the theory and the experimental results is not straightforward because
there is no direct measurement of this ratio. Both Γn and Γp are the decay widths of the so-
designed primaries disintegration and as mentioned above, data give us results on the nucleon
spectra which emerge from the nucleus. The connection between Γn/p and the nucleon spectra is
a theoretical problem in itself. Before going on, it is interesting to resume some of the theoretical
efforts in dealing with Γn/p .

The main ingredients required in the evaluation of the transition rate (ΛN → nN), are the
transition potential and the wave functions which represent the Λ and the nucleons. The first
microscopic scheme for Γn/p has been proposed by Adams [14], who has used the nuclear mat-
ter framework, one pion exchange model (OPE), 1T = 1/2 piece of the ΛNπ coupling and
short range correlations (SRC). While this model fairly reproduce the total NM decay width
ΓNM, it produce ratios smaller than 0.20. Some of the improvements over Adams’ model are:
(i) the inclusion of heavier mesons than the pion in the ΛN → NN -transition potential [15–24];
(ii) the inclusion of interaction terms that violates the isospin 1T = 1/2 rule has been consid-
ered in [25,27]. Alternatively, (iii) the transition potential can be described in terms of the quark
degree of freedom [28–32], which automatically introduces the 1T = 3/2 contribution. And
(iv) the employment of finite nucleus wave functions instead of plane waves, a scheme usually
called wave function method (WFM) [16,17,19,20,22,23,26,27]. This list does not pretend to be
complete. However, we should mention that in all these works the discrepancy between theory
and experiment remains.

We turn now to the interpretation of data. As mentioned, it is the spectra of nucleons emerg-
ing from the nucleus, the quantity which is measured. The nucleons originated in the Λ-decay
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interact strongly with others nucleons before leaving the nucleus. These interactions are called
final state interactions (FSI). Again, we can distinguish two issues: (i) the primary decays and
(ii) a model for the FSI. Regarding the first point, we should note that (ΛN → nN) is not the
only NM-weak decay mechanism: the NM-decay width can be also stimulated by two-nucleons
(ΛNN → nNN). The corresponding decay width is called Γ2. This two-body induced decay
is originated from ground state correlation in the hypernuclei [33–38]. An estimation of Γ2 is
important in the analysis of data, because this process is a source of nucleons which cannot
be distinguished from those stemming from Γ1 ≡ Γn + Γp . However, the two-nucleon induced
decays are not included in the present calculation.

There are several models for the FSI among which we focus on two of them: the intranu-
clear cascade code (INC) [35,39–41] and the microscopic model developed in [42]. The INC
is a semi-phenomenological approach. The starting point in the INC is the microscopic evalua-
tion of Γn, Γp and Γ2. Afterwards, the nucleons produced in the weak decay are followed in a
semi-classical manner until they leave the nucleus. By means of this emulation of the physical
conditions of the hypernuclear decay, a more accurate agreement between the theoretical results
and the data is achieved. The analysis of the experimental information using the INC, produce
ratios (Γn/p)exp ∼ 0.4–0.6. However, one limitation of the INC is that the quantum interference
terms between the primary weak decay reaction (ΛN → NN) and any other reaction which has
the same initial and final state, such as (ΛN → NN → NN), cannot be included. On the other
hand and to the best of our knowledge, the microscopic model described in [42], is the only
microscopic model which puts in the same level of theoretical effort the weak decay mechanism
and the FSI. Due to its character, the microscopic model automatically includes the quantum
interference terms. Some details of the microscopic model are given in the next section.

While the theoretical prediction starts with the primary decay and should end in the nucleon
spectra, the analysis of the experiment begins with the spectra, goes back and a value for Γn/p

is determined. This is done using several models, among which the INC is certainly one of
the more elaborated ones. It should be noted, that the INC is employed in two ways: for the
theoretical prediction of the nucleon spectra and for the interpretation of data. In any case, for
the extraction of the Γn/p-experimental value one needs two theoretical inputs: Γ2 and the FSI.
Now, if several models for these inputs produce the same ratio Γn/p , it is reasonable to name it as
the experimental value for Γn/p . Therefore, an accurate evaluation of the quantum interference
terms together with an alternative formalism to the INC, is important.

In the present contribution, we further developed the microscopic model of [42] presenting
results for the nucleon spectra, with emphasis in the quantum interference terms. The paper is
organized as follows. In Section 2 we present the microscopic model for the nucleon spectra.
This is done in general terms, including the two-body induced contribution. In Section 3, explicit
expression within the first order contribution to the RPA are shown. In Section 4, the numerical
results are discussed and finally, in Section 5 we give our conclusions.

2. The microscopic model for the nucleon spectra

In this section the microscopic model developed in [42] is briefly summarized with the addi-
tion of Γ2. In fact, Γ2 is the sum of three terms: Γnn ≡ Γ (Λnn → nnn), Γnp ≡ Γ (Λnp → nnp)

and Γpp ≡ Γ (Λpp → npp) (for details see [38]). The inclusion of Γ2 in this section is done for
completeness. As mentioned in the introduction, this quantity is not included in the numerical
results. We are interested in reporting expressions for the single and double nucleon spectra: NN

and NNN 0 , which represent the number of nucleons of kind N = n,p vs. its kinetic energy, TN
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and number of pairs of nucleons NN 0 vs. TN + TN 0 or vs. the relative angle between N and N 0,
cos(θNN 0), respectively. Without FSI, the expressions for NN and NNN 0 are,

N0
n = 2Γ̄n + Γ̄p + 3Γ̄nn + 2Γ̄np + Γ̄pp, (2.1)

N0
p = Γ̄p + Γ̄np + 2Γ̄pp, (2.2)

N0
nn = Γ̄n + 3Γ̄nn + Γ̄np, (2.3)

N0
np = Γ̄p + 2Γ̄np + 2Γ̄pp, (2.4)

N0
pp = Γ̄pp, (2.5)

where we have used the normalization, Γ̄N ≡ ΓN/ΓNM, with ΓNM = Γ1 + Γ2. The index 0,
indicates that there is no FSI. The multiplicative factors in the right-hand side of these equations
are the number of particles (pairs of particles) of kind N (NN 0) produces by the primary decay.
Explicit expressions for Γ1 and Γ2 are reported in [24] and [38], respectively. As mentioned, the
nucleon spectra are the number of particles (or pairs of particles) which angle or kinetic energy
lays within a certain range. Therefore, Γ1 and Γ2 are cut into pieces which correspond to certain
angles- or kinetic energies-ranges. This is easily implemented by adding steps functions (in the
integrand of Γ1 and Γ2), which limit the integration to such ranges.

The next step is the inclusion of the FSI. To this end, we introduce the quantity Γi,i0→j .
This function results from evaluating any possible Goldstone diagram for the Λ-weak decay,
where the strong interaction is present after the weak decay takes place. The index, j , is the final
state (i.e., the emitted nucleons), taking the values: j = nn,np,nnn,nnp, etc. At variance, the
indices i, i0 refer to the two primary weak decays of each diagram and can have the values i

(or i0) = n,p,nn,np,pp; which stand for the transitions amplitudes (Λn → nn), (Λp → np),
(Λnn → nnn), (Λnp → nnp) and (Λpp → npp), respectively. It is important to be aware of the
fact that the decay widths, Γn, Γp , Γnn, etc., are the square of a transition amplitude ((ΛN →
nN) or (ΛNN → nNN)). In this sense, Γi,i0→j does not represent only a decay width, but also
some interference terms, which are pure quantum mechanical effects.

By the addition of the FSI in Eqs. (2.1)–(2.5) we obtained,

Nn = 2Γ̄n + Γ̄p + 3Γ̄nn + 2Γ̄np + Γ̄pp +
X
i,i0;j

Nj(n)Γ̄i,i0→j , (2.6)

Np = Γ̄p + Γ̄np + 2Γ̄pp,+
X
i,i0;j

Nj(p)Γ̄i,i0→j , (2.7)

Nnn = Γ̄n + 3Γ̄nn + Γ̄np +
X
i,i0;j

Nj(nn)Γ̄i,i0→j , (2.8)

Nnp = Γ̄p + 2Γ̄np + 2Γ̄pp +
X
i,i0;j

Nj(np)Γ̄i,i0→j , (2.9)

Npp = Γ̄pp +
X
i,i0;j

Nj(pp)Γ̄i,i0→j , (2.10)

where the factors Nj(N) are the numbers of nucleons of the type N in the state j . In the same
way, Nj(NN 0) are the numbers of pairs of nucleons of the type NN 0 in the state j . Let us give two
examples. If j = np, Nnp(n) = 1, Nnp(p) = 1, Nnp(nn) = 0, Nnp(np) = 1, Nnp(pp) = 0; and if j =
nnn, Nnnn(n) = 3, Nnnn(p) = 0, Nnnn(nn) = 3, Nnnn(np) = 0, Nnnn(pp) = 0. In these expressions,
the summation over i, i0 and j , runs over the values of these indices mentioned above.
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Fig. 1. Amplitudes A1, A2 and A3, described in the text. A dashed line represents the ΛN -transition potential and the
wavy line is the strong residual interaction.

Before we end this section, we make some further considerations about the quantum interfer-
ence terms. All decay widths come from the square of a transition amplitude. When no FSI are
included, the only transitions amplitudes are (ΛN → nN) and (ΛNN → nNN). For simplicity,
we focus on (ΛN → nN). There is no interference term between (Λn → nn) and (Λp → np)

because the final state is different. When the FSI come into play, the strong interaction allows
many others transitions amplitudes. In this case, as different reactions can end in the same final
state and as the initial state is the same hypernuclear state for all the processes, the total transi-
tion amplitude is the sum of all these terms. The squares of the individual terms, are the decay
widths, while the crossed products are the interference terms. Within our model, Γi,i0→j contain
both decay widths and interference terms. Note that the strong interaction is present in Γ2 as a
ground state correlation, that is, the strong interaction acts before the weak transition potential.

As an additional comment, we note that the interference terms can be grouped into two cat-
egories: (a) the ones with i = i0 and (b) the ones with i 6= i0. It is perhaps more convenient to
explain these categories by means of an example. Let us propose three transition amplitudes: A1,
A2 and A3 shown in Fig. 1. The A1-transition amplitude represents the Λn → nn-primary decay,
while A2 and A3 include secondary decays, due to the action of the strong interaction. There is
an interference term between A1 and A2 (i = i0), where the strong interaction appears in first
order. It is clear that the square of A1 + A2 is positive, but the interference terms between both
terms can be either positive or negative. The interference terms between A1 and A3 is an example
of the i 6= i0-category. It is convenient to discuss these two interference contributions in terms of
self-energy diagrams. For simplicity, we refer to the ddd-diagram in Fig. 4, in the next section.
This diagram has two one particle–one hole bubbles. When all particles (holes) are neutron par-
ticles (neutron holes) we have the interference term between A1 and A2. When one particle–hole
bubble is an nn−1, the other one is a pp−1 and the cut (which represents the physical state) is in
the nn−1-bubble, we have the interference terms between A1 and A3.

In order to avoid misinterpretations, two final points should be addressed. In first place, the
index i (or i0) refers always to the primary decay, where the primary decay is the one induced by
the ΛN -transition potential. In Fig. 1, A2 has i = n, and for A3 we have i = p. The second point
deals with the ΛN -transition potential. Also from the A2 and A3-amplitudes, it is appealing to
re-define the transition potential as a dressed one, with the inclusion of particle–hole polarization
effects. Such a potential, is still a two-body operator and in this case, the definition of i (in A3, for
example) would be ambiguous. The fallacy in the idea of using this dressed transition potential
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Fig. 2. Example of an A2-exchange term.

lies in the following: the complete expression for A2 (or A3) has also three exchange terms. One
of them is shown in Fig. 2. From this figure, it is clear that the combined action of the ΛN -
transition potential and the nuclear residual interaction cannot be replaced by a single two-body
operator.

3. Explicit expressions for Γi,i0→j

In this section we present expressions for the functions Γi,i0→j , using non-relativistic nuclear
matter together with the local density approximation (LDA) [43], which allows us to discuss any
particular hypernucleus. Eqs. (2.6)–(2.10) are general expressions for NN and NNN 0 . Although
Γi,i0→j is completely defined, one has to choose some set of Goldstone diagrams which represent
the Λ-decay to obtain the explicit expressions for this function. This set has an infinite number
of diagrams and a priori any sub-set of diagrams could be equally important. In this work and
as a first step in the evaluation of the nucleon spectra, we have decided to study the RPA-like
diagrams. The direct part of the RPA, known as ring approximation, is perhaps the simplest
manner to implement the strong interaction into this problem. The Pauli exchange terms are
known to be important for these particular set of diagrams (see [44]) and consequently the RPA
looks as a natural first step. In [42] we have presented expressions for Γi,i0→j within the ring
approximation. However, no comparison with data has been done, because of the absence of the
Pauli exclusion principle.

Let us call by Γ a generic function which can be either Γ1, Γ2 or Γi,i0→j . Instead of giving
the expression for Γ , it is more convenient to work with the partial decay width Γ (k, kFn, kFp),
where, k is the Λ energy–momentum, kFn and kFp are the Fermi momentum for neutrons and pro-
tons, respectively. To evaluate Γ (k) for a particular nucleus one can use either an effective Fermi
momentum or the local density approximation. In this work the LDA is adopted, which make
kFn and kFp position-dependent. They are defined as kFn(p)

(r) = h̄c(3π2ρn(p)(r))
1/3, where

ρn(r) = ρ(r)N/(N + Z) and ρp(r) = ρ(r)Z/(N + Z), with ρ(r), N and Z being, respec-
tively, the density profile, number of neutrons and number of protons of the nuclear core of the
hypernucleus. In the last case, it is equivalent to write the function Γ (k, kFn, kFp) in terms of the
densities as Γ (k,ρn(r), ρp(r)). The LDA reads,

Γ (k) =
Z

dr Γ
¡
k,ρn(r), ρp(r)

¢¯̄
ψΛ(r)

¯̄2
, (3.1)
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Fig. 3. Goldstone diagrams for the direct and exchange contributions to the Λ decay width, respectively.

where for the Λ wave function ψΛ(r), we take the 1s1/2 wave function of a harmonic oscilla-
tor. The final result is obtained by averaging over the Λ momentum distribution, |ψ̃Λ(k)|2, as
follows,

Γ =
Z

dk Γ (k)
¯̄
ψ̃Λ(k)

¯̄2
, (3.2)

where ψ̃Λ(k) is the Fourier transform of ψΛ(r) and k0 = EΛ(k) + VΛ, being VΛ the binding
energy for the Λ.

As remarked in the last section, the expressions for Γi,i0→j are obtained as if they were decay
widths. In this spirit, it is convenient to overview the derivation of Γ1, because this simplifies the
derivation of Γi,i0→j . In Fig. 3 we show the direct and exchange Γ1-contributions. The distinction
between Γn and Γp can be ascribed to the isospin of the hole line, where when hi is a neutron–
(proton–)hole we are considering the Γn (Γp)-decay width. To get the analytical expressions for
these diagrams we have employed the Golstone rules (for a more detailed version, see [24]),

Γ ant
thi

(k, kFn, kFp ) = −2 Im
Z

d4p1

(2π)4

Z
d4pi

(2π)4
Gpart(p1)Gpart(pi)Ghole(hi)

× 1

4

X
all spins,tp1,tpi

hγΛ|¡V ΛN
¢†|γp1γpiγhiianthγp1γpiγhi |V ΛN |γΛiant,

(3.3)

where for simplicity, γi represents the spin (s), isospin (t) and energy–momentum of the parti-
cle i. The energy–momentum carried by the transition potential, V ΛN , cannot be specified until
we separate the direct and the exchange terms. The meaning of the subindexes pi and hi is shown
in Fig. 3, where due to the momentum conservation, hi = p1 + pi − k. The direct and exchange
matrix elements are,

hγΛ|¡V ΛN
¢†|γp1γpiγhiianthγp1γpiγhi |V ΛN |γΛiant

= hγΛ|¡V ΛN(q)
¢†|γp1γpiγhiihγp1γpiγhi |V ΛN(q)|γΛi

− hγΛ|¡V ΛN(q 0)
¢†|γpiγp1γhiihγp1γpiγhi |V ΛN(q)|γΛi, (3.4)

where the minus sign comes from the crossing of the fermionic lines. Due to energy–momentum
conservation, we have q = k − p1 and q 0 = k − pi . The first (second) term in the right-hand side
of Eq. (3.4) originates the direct (exchange) contribution to the decay width.
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The particle and hole propagators are,

Gpart(p) = θ(|p| − kF )

p0 − EN(p) − VN + iε
(3.5)

and

Ghole(h) = θ(kF − |h|)
h0 − EN(h) − VN − iε

, (3.6)

where EN is the nucleon total free energy and VN is the nucleon binding energy. The value of the
Fermi momentum depends on whether we have a proton or a neutron. The ΛN → NN transition
potential V ΛN , is,

V ΛN(NN)(q) =
X

τΛ(N)=0,1

OτΛ(N)
VΛN(NN)

τΛ(N)
(q), (3.7)

where we have included the nuclear residual interaction V NN , which is employed soon. The
isospin dependence is given by,

OτΛ(N)
=

½
1, for τΛ(N) = 0,

τ 1 · τ 2, for τΛ(N) = 1.
(3.8)

The values τ = 0,1 stand for the isoscalar and isovector parts of the interaction, respectively.
The spin and momentum dependence of the transition potential is,

VΛN
τΛ

(q) = ¡
GF m2

π

¢©
SτΛ(q)σ 1 · q̂ + S0

τΛ
(q)σ 2 · q̂ + PL,τΛ(q)σ 1 · q̂σ 2 · q̂ + PC,τΛ(q)

+ PT,τΛ(q)(σ 1 × q̂) · (σ 2 × q̂) + iSV,τΛ(q)(σ 1 × σ 2) · q̂ª
, (3.9)

where the quantities SτΛ(q), S0
τΛ

(q), PL,τΛ(q), PC,τΛ(q), PT,τΛ(q) and SV,τΛ(q) contain short
range correlations (SRC) and are given in Appendix B of [24]. They are built up from the full
one-meson-exchange potential (OMEP), which involves the complete pseudoscalar and vector
meson octets (π,η,K,ρ,ω,K∗). It is self evident that the S- (P )-terms are the parity violating
(parity conserving) terms of the transition potential.

The nuclear residual interaction is drawn as,

VNN
τN

(q) =
µ

f 2
π

m2
π

¶©
VC,τN

(q) + Vσ,τN
(q)σ 1 · σ 2 + VL,τN

(q)σ 1 · q̂σ 2 · q̂ª
, (3.10)

where the functions VC,τN
(q), Vσ,τN

(q) and VL,τN
(q) are adjusted to reproduce any effective

OMEP-nuclear residual interaction.
We have now all the elements required for the evaluation of Γi,i0→j within the RPA approxi-

mation. The ring approximation has been discussed in [42], where the advantage of the ring series
is that it can be summed up to infinite order in a very simple way. The situation is different in the
RPA, where the corresponding series can be summed up only in some particular cases: when the
nuclear residual interaction is represented by a contact or by a separable interaction. For a general
finite range interaction there is no way out but to evaluate each exchange term individually. The
problem is quite involved because matrix elements must be antisymmetrized for both V ΛN and
V NN . The lowest order RPA-contribution is the one in which V NN appears in first order, being
the only one reported in the present contribution. In the lowest RPA-contribution, there are two
matrix elements with V ΛN and one with V NN . Each matrix element has a direct and an exchange
part. This makes a total of eight different diagrams, which are shown in Fig. 4. Unfortunately, in
nuclear matter each diagram must be evaluated individually. In the next section and by means of
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Fig. 4. Goldstone diagrams for the first order contribution to the RPA-series. The meaning of the notation is explained
in the text. The dashed and wavy lines stand for V ΛN and V NN , respectively. An up (down) going arrow represents a
particle (hole), while an arrow with a wide line represents the Λ.

the numerical analysis, we discuss this approximation. Using the standard Goldstone rules, this
lowest order RPA-contribution is written as,

Γi,i0→j (k, kFn, kFp )

= −2 Im
Z

d4p1

(2π)4

Z
d4hi

(2π)4

Z
d4hi0

(2π)4

1

4

X
Gpart(p1)Gpart(pi)

× Gpart(pi0)Ghole(hi)Ghole(hi0)

× hγΛ|¡V ΛN(q 0)
¢†|γp1γpi0γhi0 ianthγp1γpi0γhi0 |V NN(t)|γp1γpiγhiiant

× hγp1γpiγhi |V ΛN(q)|γΛiant. (3.11)

The summation runs over all spins, while the isospin sum cannot be specified until one sets the
final state j . The energy–momentum carried by each fermionic line is shown in Fig. 5 for the
direct term. Due to the energy–momentum conservation in each vertex, for all the contributions
we have pi = hi + k − p1 and pi0 = hi0 + k − p1; while the energy–momentum carried by V NN

and V ΛN depends on the topology of each diagram. These values, together with some more
details on the exchange terms are specified in Appendix A.

It is convenient to re-write Eq. (3.11) as,

Γi,i0→j =
X

Γ
αβδ

i,i0→j
, (3.12)
α,β,δ=d,e
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Fig. 5. Here we have repeated the ddd-contribution from Fig. 4, in order to assign values to the momentum transfer. The
remainder contributions have the same pattern.

where the super-indexes α, β and δ, refer to the direct (d) and exchange (e) matrix elements
h|(V ΛN)†|id+e, h|V NN |id+e and h|V ΛN |id+e , respectively. For instance, for the direct contribu-
tion, we have αβδ = ddd . Note that α (β and δ), can take the ‘value’ d or e, which makes the
total of eight different contributions, being ddd the first order term to the ring series.

By inspection of the diagrams in Fig. 4, we notice that the strong interaction split these graphs
into two pieces. In the lower piece particles are named as p1 and pi , while in the upper portion
we have p1 and pi0 . Each diagram gives two contributions: the first one with p1 and pi (p1 and
pi0 ) on (off) the mass shell, and the inverse situation. Then, it is convenient to differentiate these
two possibilities by the super-index l and u, respectively, as follows,

Γ
αβδ,u

i,i0→j
(k, kFn, kFp ) ≡ Γ

αβδ

i,i0→j
(k, kFn, kFp )

¯̄
p1,pi0 on the mass shell,

Γ
αβδ,l

i,i0→j
(k, kFn, kFp ) ≡ Γ

αβδ

i,i0→j
(k, kFn, kFp )

¯̄
p1,pi on the mass shell. (3.13)

The origin of these two terms comes from the energy integration in Eq. (3.11), which produces an
expression with two poles: one in the upper and the other in the lower part of the diagram. Clearly,
the distinction between l and u, is redundant for the direct contribution, due to the symmetry of
the diagram.

In order to perform the summation on spin and isospin quantum numbers it is convenient to
write,

Γ
αβδ,l(u)

i,i0→j
(k, kFn, kFp ) =

X
τ,τN ,τ 0=0,1

T αβδ,l(u)

i,i0→j ;τ 0τN τ
Γ̃

αβδ,l(u)

i,i0→j ;τ 0τN τ
(k, kFn, kFp ), (3.14)

where

T αβδ,u

i,i0→j ;τ 0τN τ
=

X
u

htΛ|Oτ 0 |tp1tpi0 thi0 iαhtpi0 thi0 |OτN
|tpi thiiβhtp1tpi thi |Oτ |tΛiδ,

T αβδ,l

i,i0→j ;τ 0τN τ
=

X
l

htΛ|Oτ 0 |tp1tpi0 thi0 iαhtpi0 thi0 |OτN
|tpi thiiβhtp1tpi thi |Oτ |tΛiδ. (3.15)

In the isospin summation, l (u) means that the final state j is in the lower (upper) piece of the
diagram. To avoid confusion, we give an example: let i = n, i0 = p and j = np. The l sum is
zero because for the final state j , there are no protons in the lower portion of the diagram. The u

sum reduces to one term which isospin projections for each particles are tp1 = tpi = thi0 = −1/2
and tpi0 = thi = 1/2.



E. Bauer / Nuclear Physics A 796 (2007) 11–40 21
Performing the energy integration, the spin summation and after some algebra, we obtain,

Γ̃
αβδ,l

i,i0→j ;τ 0τN τ
= −¡

GF m2
π

¢2 (−1)NF

(2π)7

µ
f 2

π

m2
π

¶Z Z Z
dp1 dhi dhi0 Sαβδ

τ 0τN τ
(q, q 0, t)θ(q0)θ(q 0

0)

× θ
¡|p1| − kFp1

¢
θ
¡|pi | − kFpi

¢
θ
¡
kFhi − |hi |

¢
× θ

¡|pi0 | − kFpi0
¢
θ
¡
kFhi0 − |hi0 |

¢
× P

q 0
0 − (EN(pi0) − EN(hi0))

δ
¡
q0 − ¡

EN(pi ) − EN(hi )
¢¢

, (3.16)

Γ̃
αβδ,u

i,i0→j ;τ 0τN τ
= −¡

GF m2
π

¢2 (−1)NF

(2π)7

µ
f 2

π

m2
π

¶Z Z Z
dp1 dhi dhi0 Sαβδ

τ 0τN τ
(q, q 0, t)θ(q0)θ(q 0

0)

× θ
¡|p1| − kFp1

¢
θ
¡|pi | − kFpi

¢
θ
¡
kFhi − |hi |

¢
× θ

¡|pi0 | − kFpi0
¢
θ
¡
kFhi0 − |hi0 |

¢
× P

q0 − (EN(pi ) − EN(hi ))
δ
¡
q 0

0 − ¡
EN(pi0) − EN(hi0)

¢¢
. (3.17)

In these expressions, NF is the number of crossing of fermionic lines and P indicates the prin-
cipal value. Explicit expressions for the functions Sαβδ

τ 0τN τ
(q, q 0, t) can be found in Appendix A.

Here q (q 0) is the energy–momentum carried by the transition potential in the lower (upper) part
of the diagram, while t corresponds to the nuclear interaction. We present in this section explicit
expressions for the direct contribution, whereas the exchange ones are shown in Appendix A.
The Sddd

τ 0τN τ
(q, q 0, t) reads,

Sddd
τ 0τN τ (q) = 4

©
(S0

τ 0S0
τ + PC,τ 0PC,τ )VC,τN

+ (Sτ 0Sτ + PL,τ 0PL,τ )VL,τN

+ 2(SV,τ 0SV,τ + PT,τ 0PT,τ )VT ,τN

ª
, (3.18)

where for the direct contribution we have, q 0 = t = q . By means of Eqs. (3.1) and (3.2), the
dependence on the Fermi and Λ-momenta in the partial widths is eliminated. For the (ddd)-
diagrams, we have Γ̃

ddd,l
i,i0→j ;τ 0τN τ

= Γ̃
ddd,u
i,i0→j ;τ 0τN τ

≡ Γ̃ ddd
i,i0→j ;τ 0τN τ

/2. By performing the summa-

tion over isospin for all possible primary decays and final states, we have,

Γ ddd
n,n→nn = Γ̃

ddd,n
n,n→nn,111 + Γ̃

ddd,n
n,n→nn,000 + Γ̃

ddd,n
n,n→nn,110 + Γ̃

ddd,n
n,n→nn,101 + Γ̃

ddd,n
n,n→nn,011

+ Γ̃
ddd,n
n,n→nn,100 + Γ̃

ddd,n
n,n→nn,010 + Γ̃

ddd,n
n,n→nn,001,

Γ ddd
n,p→nn = Γ̃

ddd,n
n,p→nn,111 + Γ̃

ddd,n
n,p→nn,000 + Γ̃

ddd,n
n,p→nn,110 − Γ̃

ddd,n
n,p→nn,101 − Γ̃

ddd,n
n,p→nn,011

− Γ̃
ddd,n
n,p→nn,100 − Γ̃

ddd,n
n,p→nn,010 + Γ̃

ddd,n
n,p→nn,001,

Γ ddd
p,n→nn = Γ̃

ddd,n
p,n→nn,111 + Γ̃

ddd,n
p,n→nn,000 − Γ̃

ddd,n
p,n→nn,110 − Γ̃

ddd,n
p,n→nn,101 + Γ̃

ddd,n
p,n→nn,011

+ Γ̃
ddd,n
p,n→nn,100 − Γ̃

ddd,n
p,n→nn,010 − Γ̃

ddd,n
p,n→nn,001,

Γ ddd
n,p→np = Γ̃

ddd,n
n,p→np,111 + Γ̃

ddd,n
n,p→np,000 + Γ̃

ddd,n
n,p→np,110 − Γ̃

ddd,n
n,p→np,101 − Γ̃

ddd,n
n,p→np,011

− Γ̃
ddd,n
n,p→np,100 − Γ̃

ddd,n
n,p→np,010 + Γ̃

ddd,n
n,p→np,001,

Γ ddd
p,n→np = Γ̃

ddd,n
p,n→np,111 + Γ̃

ddd,n
p,n→np,000 − Γ̃

ddd,n
p,n→np,110 − Γ̃

ddd,n
p,n→np,101 + Γ̃

ddd,n
p,n→np,011

+ Γ̃
ddd,n − Γ̃

ddd,n − Γ̃
ddd,n

,
p,n→np,100 p,n→np,010 p,n→np,001
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Γ ddd
p,p→np = 4Γ̃

ddd,p

p,p→np,111 + Γ̃
ddd,n
p,p→np,111 + Γ̃

ddd,n
p,p→np,000 − Γ̃

ddd,n
p,p→np,110 + Γ̃

ddd,n
p,p→np,101

− Γ̃
ddd,n
p,p→np,011 − Γ̃

ddd,n
p,p→np,100 + Γ̃

ddd,n
p,p→np,010 − Γ̃

ddd,n
p,p→np,001, (3.19)

where in the right-hand side of these equations, we have put an additional super-index (n or p)
which is the isospin projection of the p1 particle. As we are using different Fermi momenta for
protons and neutrons, the knowledge of the isospin projection of each particle is required. This
information about p1 together with the transition i, i0 → j is enough to this end. The particular
Γ ddd

i,i0→j
contribution can be further simplified by the identification of a part of the integral in

Eqs. (3.16) and (3.17), with the Lindhard function (details can be found in [42]).
Finally, the expressions for Γ

αβδ

i,i0→j
with αβδ 6= ddd , can be found in Appendix A. For the

first order contribution (in the nuclear residual interaction, V NN ) to the RPA, which from now
on is named as RPA 1, we can write,

Γ RPA 1
i,i0→j =

X
αβδ

¡
Γ

αβδ,l

i,i0→j
+ Γ

αβδ,u

i,i0→j

¢
. (3.20)

The final step is to show the expressions for the spectra. In the present contribution the two-
body induced decay is not evaluated. Then, it is convenient to re-write Eqs. (2.6)–(2.10), within
the first order contribution to the RPA as the only FSI,

Nn = 2Γ̄n + Γ̄p +
X
i,i0;j

Nj(n)Γ̄
RPA 1
i,i0→j , (3.21)

Np = Γ̄p +
X
i,i0;j

Nj(p)Γ̄
RPA 1
i,i0→j , (3.22)

Nnn = Γ̄n +
X
i,i0;j

Nj(nn)Γ̄
RPA 1
i,i0→j , (3.23)

Nnp = Γ̄p +
X
i,i0;j

Nj(np)Γ̄
RPA 1
i,i0→j , (3.24)

Npp = 0, (3.25)

where the normalization is now, Γ̄ ≡ Γ/Γ1. These are already explicit expressions for the NN

and NNN -spectra, once some step functions limiting the range of the momentum (or angle) of the
final particles are incorporated in Eqs. (3.3), (3.16) and (3.17). Also an additional step function is
required if an energy threshold is considered. It should be noted that the RPA 1, together with any
other contribution in which the nuclear residual interaction appears in first order (or in any odd
order), is an interference term. The diagrams where the nuclear residual interaction is present
an even number of times, has both interference terms and decay widths, being the decay widths
the ones where the cut is in the middle of the diagram. In the next section we present numerical
results for these expressions.

4. Results and discussion

In this section we present the numerical results for the Nn, Np , Nnn and Nnp-spectra using
the first order contribution to the RPA. The LDA allows us to discuss the 12

ΛC hypernucleus. The
transition potential is represented by the exchanges of the π , η, K , ρ, ω and K∗-mesons, which
formulation has been taken from [19] and the values of the different coupling constants and cut-
off parameters appearing in the transition potential have been taken from [45]. For the nuclear
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Fig. 6. Nn and Np-free kinetic energy spectra for 12
ΛC. The continuous line is our result, while the dashed line represents

the INC one. The energy is given in MeV and the spectra have been evaluated using 10 MeV steps for the kinetic energy.
We have used Γn = 0.267 and Γp = 0.936, given in units of Γ 0 = 2.52 × 10−6 eV, where Γ 0 is the decay width of
the Λ in free space. For the evaluation of Γn,p , we have used Eq. (3.3) (together with Eqs. (3.1) and (3.2)), with the
transition potential and parameters described in the first paragraph of the present section.

residual interaction, we have used the Bonn potential [46] in the framework of the parametriza-
tion presented in [47], which contains the exchange of π , ρ, σ and ω mesons, while the η and
δ-mesons are neglected. In implementing the LDA, the hyperon is assumed to be in the 1s1/2
orbit of a harmonic oscillator well with frequency h̄ω = 10.8 MeV. As already stated, we have
employed different values for the proton and neutron Fermi momenta, kFn and kFp , respectively.

To start with, let us discuss the free spectra, that is, the spectra without final state interaction.
To this end in Eqs. (3.21)–(3.25) all RPA 1-terms are eliminated. For the free spectra, the INC
and the microscopic scheme should give the same result. Therefore, we make a comparison of
our values with those of the INC, in order to test our values for the spectra. From a technical point
of view, both methods evaluate the spectra differently. While in the INC, the emitted particles
are classified according to their energies (or relative angles), in the present microscopic model
the integral which represents the decay width is partitioned in energy (or relative angles) regions.
These two procedures are equivalent. However, some differences show up, which are explained
soon in this section. In Fig. 6 we present our result for the Nn- and Np-spectra and compare it
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Fig. 7. Isospin components to the Np-free kinetic energy spectra. The dashed line is the contribution where a proton
is attached to the Λ-decay vertex, the dotted–dashed line represents the contribution where a neutron is attached to the
same vertex, while the continuous line is the total contribution. Units are the same as in Fig. 6.

with the corresponding INC-result from [41]. Related to the INC, we notice that our value for
the Nn-maximum is shifted towards a higher energy, while the opposite occurs for Np . In fact,
this shift is more marked in Np .

To understand the origin of this behavior in Fig. 7 we have split Np into their two isospin
components. The first isospin component is the charge-exchange one, where there is a proton in
the Λ-vertex (that is, in the p1-position in Fig. 3). The second is the charge-conserving contri-
bution, which has a neutron in the just mentioned place. The first contribution is multiplied by
a factor four (due to the isospin), while we have a factor one for the charge-conserving term.
This makes the first contribution to be the dominant one. Notice that the transition potential is
not the same for both contributions, because only the isovector terms in the transition potential
act for the charge-exchange contribution. In addition, our results show that the particle attach to
the Λ-vertex is slower than the other particle. This fact has a simple physical interpretation. In
the expression for Γp (or Γn), we take the principal value for the mesons propagators in the tran-
sition potential (note that the pole contribution in the pion propagator gives the mesonic decay
width). Therefore, the pion pole is excluded, but as we are getting closer to it, the energy carried
by the transition potential is of the order of the pion mass. In this case, the energy left to the
p1-particle becomes small, while the pi -energy is the one carried by the transition potential. As
the weight of the pion propagator is more important in the proximity of the pole, this favors the
just described energy distribution. Going back to the comparison with the INC, the discrepancy
is a consequence that for the available results this model makes no distinction between the inner
isospin components (a fact that is not mandatory in the INC). We have implemented an isospin
average to get rid of this difference, but we do not reproduce these results as they simply show
the agreement between both methods.

We turn now to the inclusion of FSI. In the present contribution, we have limited the FSI to
the first order contribution to the RPA. In Table 1, we present our results for Γi,i0→j , within three
different approximations: the first order contribution (in the nuclear residual interaction) to the
RPA (RPA 1), the same first order term to the ring series (ring 1), and the full ring approximation
taken from [42]. The values quoted in this table result from the integration of the spectra over the
whole energy region. The difference between RPA 1 and ring 1 is the inclusion of the exchange
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Table 1
Numerical results for Γi,i0→j , within several approximations. Note that Γn,p→j = Γp,n→j . The RPA 1 (ring 1)-line is
the first order contribution to the RPA (ring), while the ring-line represents the total ring approximation take from [42].
All values are given in units of Γ 0

Approximation Γn,n→nn 2Γn,p→nn 2Γn,p→np Γp,p→np

RPA 1 0.0076 0.0096 0.0064 0.0994
ring 1 0.0066 0.0090 0.0068 0.0895
ring 0.0261 0.0391 0.0371 0.1310

terms. For Γn,n→nn, the exchange terms increase this quantity by ∼ 14%, while this percentage is
∼ 11% for Γp,p→np . Although they are different quantities, it is interesting to comment that the
exchange terms produce also an increase of ∼ 34% and ∼ 30% in Γn and Γp , respectively [24].
For the two remainders terms, we have an increase (decrease) of ∼ 5% (∼ 30%) for Γn,p→nn

(Γn,p→np).
The next point is to make an estimation of the accuracy of the first order RPA-contribution

to account for the full RPA series. To this end, we compare the full ring series with ring 1. We
can see that only for Γp,p→np , the ring 1 is an adequate approximation, while there is a strong
discrepancy for all the others terms. The reason for this behavior relays upon the inner isospin
structure of the ring (or RPA) approximation. As already stated, the Γp,p→np is dominated by
graphs where a proton is attached to the Λ-weak decay vertex. The particle–hole bubbles (which
propagates as the ring series), are built up from a neutron particle and a proton hole. The charge-
conservation does not allow any other particle–hole configuration. The situation is different for
Γn,n→nn, Γn,p→nn, Γn,p→np and the Γp,p→np-contribution with a neutron in the Λ-vertex. As
an example, we consider the second order contribution to Γn,n→nn. This contribution has three
particle–hole bubbles. The upper and lower bubbles can be only a neutron particle–neutron hole
configuration. But the intermediate bubble can be either a neutron particle–neutron hole or a pro-
ton particle–proton hole one. Higher order contributions can have more complex configurations
(for details, see [42]). In general terms, the convergence of the ring series is fast only when the
particle–hole bubbles are of the same kind.

Also from Table 1, it is observed that the first order exchange contribution (which results from
the difference between RPA 1 and ring 1), is smaller than the sum of all the remaining ring terms
(which results from the difference between ring and ring 1). In spite of this, the preference for the
RPA 1 over the ring approximation is based on the following point. The ring approximation can
be used instead of the full RPA, as long as we have some knowledge on the exchange terms. The
first order exchange terms are different for each isospin configuration. This does not allow us to
draw any conclusion about the magnitude of the higher order exchange terms required to build up
the RPA, because the isospin structure of higher order terms is different, as discussed in the above
paragraph. From this analysis and our numerical values, it is clear that the ring approximation
result is quite uncertain (due to our ignorance on the magnitude of the higher order exchange
terms). From all these points, it is concluded that the RPA 1 is not an approximation to the full
RPA, but it should be seen as a model in itself.

We analyze now the effect of the FSI on the spectra, where the free term has been sub-
tracted. This is done in Figs. 8 and 9, for the RPA 1-contribution to the single and double kinetic
energy spectra, respectively. Let us recall that within the RPA 1-model, all FSI are quantum in-
terference terms. The Γn,n→j and Γp,p→j contributions have i = i0 and for convenience are
called as diagonal interference terms, while the Γn,p→j - and Γp,n→j -ones have i 6= i0 and are
named as non-diagonal interference terms. It should be noted that the Γ̄i,i0→j -functions can be
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Fig. 8. First order RPA contribution to the single nucleon kinetic energy spectra for 12
ΛC. For convenience, the free

spectra have been subtracted. The continuous line is our final RPA 1-result and the dashed line represents the result
without non-diagonal interference terms.

either positive or negative. We present values with and without the non-diagonal interference
terms. Throughout this section we pay much attention to study the relative importance of the
non-diagonal interference terms. Certainly, the possibility of neglecting these terms would sim-
plify the calculation. In Fig. 8, a typical RPA-behavior is shown. From Table 1, together with
Eqs. (3.21)–(3.25), the non-diagonal interference terms increase the sum of (Nn − N0

n) and
(Np − N0

p), in ∼ 18% and ∼ 7%, respectively.
In Fig. 9 a similar analysis is done for the double kinetic energy spectra. Here, the non-

diagonal interference term increases (Nnp − N0
np) in ∼ 6%, while the effect over (Nnn − N0

nn) is
very important: it increases the result in more than a factor of two. To understand these factors,
we refer again to Table 1. Among all the Γi,i0→j , Γp,p→np is the dominant one. Non-diagonal
interference terms are the next contribution in magnitude, but they are one order of magnitude
smaller. Only for Nnn, the Γp,p→np contribution is not present. In this case, the non-diagonal
interference term becomes very important. Once more, the reason for this behavior relays upon
the isospin factors. A charge-exchange isospin vertex has a factor

√
2, in comparison with a factor

one for the charge-conserving. And within our approximation, charge-exchange contributions are
only present in Γp,p→np .
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Fig. 9. The same as Fig. 8, but for the double-nucleon spectra.

In Fig. 10, we present our final result for the single kinetic energy spectra Nn and Np and
we make a comparison with data. In this figure, the free spectra are also shown. The RPA 1-
approximation improves the free result, as it reduces the spectra in the high energy region, while
it produces an increase at low energies. However, it is clear that some important FSI are missing.
The comparison of our results with data in the low energy region gives us an indication of these
missing terms. The Goldstone diagram used to evaluate the free spectra (see Fig. 3), has a two
particles–one hole (2p1h) configuration. In fact, we have one particle attached to the Λ-weak
decay vertex, plus a one particle–one hole bubble (1p1h), attached to the strong vertex. The
RPA 1 adds basically configurations restricted to 1p1h-bubbles (plus the corresponding exchange
terms). The next RPA-order or even the full RPA, is always restricted to this phase space. It is
likely that the required increase in phase space would be obtained by the addition of second order
self-energy configurations. Our knowledge from electron scattering, is that the self-energy opens
the 3p2h-decay channel and moves intensity towards the low energy region. The inclusion of
this kind of contribution is beyond the scope of the present contribution. In the same figure, we
present our RPA 1-results with SRC in the nuclear residual interaction (for details about SRC,
see [42] and references therein). This result is discussed soon.
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Fig. 10. Final result of the Nn and Np kinetic energy spectra for 12
ΛC. The continuous (dot-dashed) line is our RPA 1-result

without (with) SRC in the nuclear residual interaction and the dashed line represents the free result. Data are from
KEK-E369 [6] (not-filled circles) and KEK-E508 [7] (filled circles).

In Fig. 11, the double kinetic energy spectra are shown together with the free spectra. In
this case, the RPA 1-approximation does not affect the spectra very much. Finally, in Fig. 12,
the opening angle distribution of nn and np pairs is compared with data. Also in these figures
we present both the free and the RPA 1-results. These figures give us further evidence of the
importance of including 3p2h-final states. The two emitted particles from the 2p1h final state,
emerge from the nuclei mainly with back-to-back angles. The reason is the following: from
momentum conservation, we have k +hi = p1 +pi (see Fig. 3). The Λ-wave function is peaked
at |k| = 0, while |hi | ranges from 0 up to kF . In the particular case when |k| = |hi | = 0, we
have p1 = −pi , which represents the extreme case of back-to-back kinematics. The kinematical
conditions are very different for the 3p2h-states, which allows the existence of any angle between
two of the three outgoing particles.

Going back to Fig. 12, the data shows intensity in forward angles, which from the theoretical
point of view would required final states like the 3p2h-mentioned ones. It is clear also that
not only the distribution, but also the area does not match. The origin of this discrepancy can
be understood from Fig. 10. In accordance with the data, our spectra (in Fig. 12), have been
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Fig. 11. Final result of the Nnn and Nnp kinetic energy spectra for 12
ΛC. The continuous line is our RPA 1-result without

SRC in the nuclear residual interaction and the dashed line represents the free result.

evaluated using an energy threshold of 30 MeV for both protons and neutrons and our complete
spectra (in Fig. 10), have very little intensity for energies smaller than the threshold, while data
suggests that the theoretical spectra should move towards lower energies. In spite of this, and
due to the big error bars, we believe that this point requires much more efforts from both the
theoretical and the experimental point of view.

In Table 2, we show our values for Nn/Np and Nnn/Nnp , which result from the integration
of the corresponding spectra over the whole energy region. The objective of this table is to make
a comparison of the RPA 1-result with the full ring series and with ring 1. For this reason, no
energy threshold has been implemented, as this would affect the result, making the analysis of
the different approximations more difficult. In the first line, we show the results without FSI,
where the values quoted as ‘dir’, refer to the first diagram in Fig. 3, while the complete result
is the sum of both diagrams (direct plus exchange), in the same figure.1 From this table, we see

1 To avoid confusion, it is worth to mention that the word ‘exchange’ has been used for two different contributions: the
plain use of ‘exchange’ refers to the Pauli exchange term, while by ‘charge-exchange’ we indicate an isospin component.
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Fig. 12. Opening angle distribution of nn and np pairs. The continuous line is our RPA 1-result without SRC in the
nuclear residual interaction and the dashed line represents the free result. Data are from [11].

Table 2
The ratios Nn/Np and Nnn/Nnp for 12

ΛC hypernucleus. Within parenthesis we present our results without the non-
diagonal interference terms. The index ‘dir’ indicates the values without exchange terms. The line named as ring,
represents the full ring series, while the direct part in line RPA 1, is called ring 1 as in the text. The ring values have
been taken from Tables 2 and 3 of [42]

Ref. Nn/Np [Nn/Np]dir Nnn/Nnp [Nnn/Nnp]dir

LDA, no-FSI 1.571 1.458 0.285 0.229
LDA with RPA 1 1.545 (1.530) 0.273 (0.265)
LDA with ring 1 1.445 (1.430) 0.222 (0.215)
LDA with ring [42] 1.514 (1.459) 0.257 (0.229)

that exchange terms are important, specially for the free case. The RPA 1 has a small influence.
In spite of this fact, it should be mentioned that the non-diagonal interference terms represents
around half of the FSI-contribution. We observe that the RPA 1 decreases instead of increasing,
the free value. The opposite situation occurs with the full ring series. This behavior is understood
as a consequence of the absence (presence) of charge-exchange terms in Γi,i0→j with i, i0 6=
p,p, in RPA 1 (ring approximation). Moreover, the ring approximation leaves these ratios almost
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Table 3
The ratios Nn/Np and Nnn/Nnp for 12

ΛC hypernucleus. The index ‘diag’, indicates the values without the quantum
interference terms between the (Λn → nn) and (Λp → np)-amplitudes. In accordance with data, for Nn/Np we have
used an energy threshold of 60 MeV for both protons and neutrons, while the reported values for Nnn/Nnp , correspond
to angles which satisfy cos(θ) < −0.80, together with an energy threshold of 30 MeV (for both protons and neutrons)

Ref. Nn/Np (Nn/Np)diag Nnn/Nnp (Nnn/Nnp)diag

LDA, no-FSI 1.791 0.279
LDA with RPA 1 1.863 1.858 0.272 0.267
KEK-E508 [7] 2.00 ± 0.09 ± 0.14
KEK-E508 [8] 0.40 ± 0.09 ± 0.04

unchanged (with respect with the free result) when the non-diagonal interference terms are not
considered, while their inclusion have more effect than in RPA 1 (or ring 1). As a further comment
from this table, it is clear that the magnitude of the exchange terms is important enough to object
the use of the ring series.

In Table 3, we show our final results for Nn/Np and Nnn/Nnp , and compare them with data.
For Nn/Np , we have used an energy threshold of 60 MeV for both protons and neutrons, in
accordance with [7]; while the results for Nnn/Nnp correspond to angles between the outgoing
particles, for which cos(θ) < −0.80 and an energy threshold of 30 MeV [8]. The increase in
Nn/Np , when compared with the results in Table 2, is easily understood in terms of the discussion
done in Fig. 6: The dominant charge-exchange term in N0

p makes the maximum in the proton-
induced spectra to be placed at a smaller energy position than the neutron-induced one. It should
be mentioned that we present this table for completeness. Our good result for Nn/Np could be
misinterpreted. The INC is used for two purposes: the theoretical prediction of the spectra and
the extraction of the so-called experimental value for the Γn/Γp-ratio. For the second point,
certain coefficients are evaluated which, together with data for Nn/Np (or Nnn/Nnp), are used
to obtained (Γn/Γp)exp (for details, see [39] and [40]). Within the INC, the comparison between
the theoretical prediction for Nn/Np and Nnn/Nnp , with data makes much sense. Our point of
view is different: our final aim is the reproduction of the experimental nucleon spectra. The value
for Γn/Γp would be the one predicted by our model, as the reproduction of the spectra would
produce an exact match between the theoretical and the experimental ratio, by definition. Clearly,
the determination of the ratio Γn/Γp is important because it tests our knowledge of the baryon–
baryon strangeness-changing weak interactions, which is one of the main motivations for these
studies. We believe that it is not possible to disentangle completely this issue from the many-body
problem which is intricate by itself.

As a final point for this section and beyond the limitations in phase space in the RPA, the nu-
clear residual interaction employed in the RPA, should be discussed. To perform this calculation
we have chosen the Bonn potential where we have neglected SRC in all results except for the
ones in Fig. 10. From this figure, we can see that the addition of SRC reduce significantly the
RPA 1-contribution. The interaction without SRC, has been selected to explore the RPA results
under extreme conditions. The final outcome shows us that the RPA does not alter the free spec-
tra very much. The addition of SRC makes this contribution even less important. From this, we
can conclude that the RPA 1 is adequate enough to explore the RPA contribution and from our
whole analysis, it is clear that the RPA does not represent the relevant kind of FSI required to
describe the Λ-weak decay spectra. From the INC we know that the FSI are important, which
states our problem as the finding of the most significant diagrams to account for the FSI. We
do not known a priori the answer to this question. To obtain some insight about this problem,
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the RPA has been a good starting point due to its simplicity. The search of the relevant set of
diagrams has an additional difficulty, which is the selection of the nuclear residual interaction,
together with the adjustment of some potential-parameters. The Bonn potential is one possible
choice, but the truth is that we do not know the strong interaction in this energy–momentum
region. However, the INC provides us with a powerful tool to settle the strong interaction: in our
microscopic scheme it is easy to turn off the interference terms not contained in the INC. Under
these conditions, and once the adequate set of diagrams are found, the INC-result can be used to
fix the strong interaction. Note that the INC does not employ an effective strong interaction but
the experimental scattering cross section between nucleons. This would give us some confidence
on the strong interaction so adjusted. For this particular purpose, the use of the INC is better than
the data themselves, because the theoretical model for the weak transition potential would be the
same in both the INC and in our microscopic model. Afterwards, the interference terms should
be added and a comparison with data should be done. In our opinion, it is this whole schedule
the one which should be employed to test our knowledge of the baryon–baryon strangeness-
changing weak interactions. The present contribution is a step forward in this direction. In [42],
we have presented our scheme in general terms. That model has been developed in the present
work, but for a particular kind of FSI. In a forthcoming work, the 3p2h-decay channel which is
not contained in the RPA and can be represented by second order self-energy contributions, will
be included. At variance with the present calculation, this kind of FSI contains both decay widths
and interference terms.

5. Conclusions

The present work addresses the problem of the theoretical interpretation of the spectra of
nucleons emitted from the non-mesonic weak decay of a Λ-hypernucleus. To the best of our
knowledge, we have presented for the first time a scheme which deals with this issue using a mi-
croscopic formalism. We have presented results for the single and double kinetic energy spectra
and also for the opening angle distribution of nn and np pairs. The FSI have been incorporated
by means of the first order contribution (in the nuclear residual interaction) to the RPA. Our for-
malism naturally contains the quantum interference terms between any pair of decay amplitudes
which end in the same final state. The quantum interference terms appear once the FSI are in-
corporated. From the INC we know that the FSI are important. In a microscopic scheme there is
a huge amount of possible diagrams which constitute these FSI. Beforehand, we do not known
which set of diagrams is the most significant one. The RPA has been considered as a starting
point in this analysis because it simplicity gives us some insight on the kind of the contributions
required. However, the RPA itself does not represent an important contribution. The comparison
of our results with data suggests that the FSI should connect 2p1h with 3p2h configurations.
This kind of study is much more complex and it is beyond the scope of the present contribution.

We have payed a particular attention to the non-diagonal interference terms which are im-
portant within the RPA. In fact, they are very significant in the Nnn-spectra, while they can be
neglected in Nnp . The effect on the Nn-spectra is a moderate increase and it is also small for
the Np-spectra. The origin of this behavior does not relay upon any particularity of the RPA,
but on some isospin factors. We agree that only when the relevant FSI-diagrams are found and
incorporated, we would be able to know if the quantum interference terms are important or not.
But from our results, it is clear that they cannot be ignored.

The existing and more successful formalism which takes care of the same problem is the INC.
The INC is a semi-phenomenological approach, where the trajectory of the particles emitted
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in the weak decay is tracked in their way out of the nucleus. The FSI are incorporated in the
INC using free path and experimental cross sections between nucleons. Unfortunately, it is not
possible to establish a biunique relation between the processes in the INC and in our microscopic
model. The limitation of our microscopic model is the technical difficulty in finding the relevant
FSI-diagrams. However, our scheme improves the INC in two main points. The first one is the
incorporation of the quantum interference terms mentioned above. The second one refers to
the description of light hypernuclei, where the employment of the INC is not appropriate. We
have presented our results using nuclear matter together with the LDA, which is also a bad
approximation for light hypernuclei. However, our expressions are not limited to nuclear matter
and they can be used in a finite nucleus calculation. The incorporation of FSI in this kind of work
is certainly a quite involve task. Our aim is to describe the nuclear spectra of medium hypernuclei
where the use of nuclear matter is possible. However, once this goal is eventually accomplished,
the knowledge of the relevant FSI-diagrams would encourage the evaluation of a finite nucleus
calculation for light hypernuclei.

We would like to comment now on the Γn/Γp-ratio. An experimental determination of this
ratio suffers from two ambiguities: the possible contribution of two-body induced non-mesonic
weak decay (which are originated from ground state correlations, GSC) and the effect of FSI. It
is worth to mention here that these two processes should not be confused. The two-body induced,
is part of the primary decay as shown in Eqs. (2.1)–(2.5). After the primary decay takes place,
the strong interaction between nucleons (i.e., the FSI) starts acting. The FSI affects nucleons
from both one- and two-body induced decays. A final 3p2h-state, for example, can be originated
either from a GSC (without FSI) or from the action of FSI over a one-body induced decay.
Moreover, there is an interference term between these processes, as the initial and final state is
the same. This interference term cannot be evaluated within the INC as it is a pure quantum
mechanic effects. Beyond technical difficulties, this kind of contributions are formally part of the
Γi,i0→j in Eqs. (2.6)–(2.10). This is just one example, the theoretical problem of the inclusion of
both GSC and FSI, is certainly a very difficult problem. Any experimental determination of the
Γn/Γp-ratio, assumes a model for this theoretical problem.

Referring to the INC, it is used to predict nucleon spectra and to extract the so-called ex-
perimental value for the Γn/Γp-ratio. For the extraction of the ratio, the experimental value for
Nn/Np or Nnn/Nnp (together with the corresponding error bars) is used as an input. To put it
in simple terms, a typical theoretical value for the ratio is, Γn/Γp ∼ 0.3, while data analyzed by
means of the INC, gives a result (Γn/Γp)exp ∼ 0.4±0.1 (we have focused on the cos(θ) < −0.80
region, for 12

ΛC). Based on this analysis, it is reasonable to assert that the Γn/Γp-puzzle has been
solved. However, one should be aware of the fact that the experimental information used as an in-
put in the INC is the Nn/Np- (or Nnn/Nnp-)ratio, where here NN (or NNN ) is the integral of the
spectra over energy or angle. Clearly, this integration erase some physical information. In fact,
while the INC reproduce fairly well the Nn-kinetic energy spectra, some discrepancies remains
for the Np-kinetic energy spectra. Having in mind this element, together with the above men-
tioned ambiguities, it is our opinion that the real theoretical problem is the reproduction of the
spectra. From the present contribution, we have indications that the quantum interference terms
should be included in the spectra evaluation. The next step, is to found the relevant FSI-diagrams.
As discussed, the RPA 1-results has given us some hints on this issue.
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Appendix A

In this appendix we present the explicit form for Γ
αβδ

i,i0→j
with αβδ 6= ddd . In order to sim-

plify the expressions, all functions which have the isospin τ - (τ 0-) index, carries an energy–
momentum q (q 0), while the nuclear strong interaction has an isospin index τN and has a
t-energy–momentum transfer. Moreover, as each function is shown in a separate subsection,
the super-index αβδ is written only when it is necessary.

A.1. The Γ ded
i,i0→j

-contribution

The Sded
τ 0τN τ

(q, q 0, t) function is

Sded
τ 0τN τ (q, q 0, t) = 4VC,τN

{Sτ 0Sτ + S0
τ 0S0

τ + 2SV,τ 0SV,τ + PC,τ 0PC,τ

+ 3Pσ,τ 0Pσ,τ + PL,τ 0PL,τ + PL,τ 0Pσ,τ + Pσ,τ 0PL,τ }
+ 4Vσ,τN

©
3Sτ 0Sτ − S0

τ 0S0
τ − 2SV,τ 0SV,τ + 3PC,τ 0PC,τ

− 3Pσ,τ 0Pσ,τ − PL,τ 0PL,τ − 2(PL,τ 0Pσ,τ + Pσ,τ 0PL,τ )
ª
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©
Sτ 0Sτ − ¡

1 + 2(q̂ · t̂)2¢S0
τ 0S0

τ − 2(q̂ · t̂)2SV,τ 0SV,τ

+ ¡−1 + 2(q̂ · t̂)2¢PL,τ 0PL,τ + PC,τ 0PC,τ − Pσ,τ 0Pσ,τ

+ ¡−1 + 2(q̂ · t̂)2¢Pσ,τ 0PL,τ

ª
, (A.1)

where q = k − p1 = q 0 and t = hi − hi0 .
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A.2. The Γ dde
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- and Γ edd
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-contributions
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Sdde
τ 0τN τ (q, q 0, t) = 4VC,τN

©
(q̂ · q̂ 0

)(Sτ 0Sτ + Sτ 0S0
τ − 2Sτ 0SV,τ ) + PC,τ 0PC,τ

+ 3PC,τ 0Pσ,τ + PC,τ 0PL,τ

ª
+ 4Vσ,τN

©
(q̂ · q̂ 0

)
¡
S0

τ 0S0
τ + Sτ 0S0

τ + 2(S0
τ 0SV,τ + SτSV,τ 0 − S0

τ SV,τ 0)
¢

− 3Pσ,τ 0Pσ,τ + ¡−1 + 2(q̂ · q̂ 0
)2¢PL,τ 0PL,τ + 3PC,τPσ,τ 0

+ PC,τPL,τ 0 − (Pσ,τ 0PL,τ + PL,τ 0Pσ,τ )
ª

+ 4VL,τN

©
(q̂ · q̂ 0

)(S0
τ 0S0

τ + SτS
0
τ 0 + 2S0

τ 0SV,τ ) − Pσ,τ 0Pσ,τ

+ ¡−1 + 2(q̂ · q̂ 0
)2¢PL,τ 0PL,τ + PC,τPσ,τ 0

+ PC,τPL,τ 0 + ¡−1 + 2(q̂ · q̂ 0
)2¢Pσ,τ 0PL,τ − PL,τ 0Pσ,τ

ª
, (A.3)

where q = k − p1, t = k − p1 and q 0 = p1 − hi0 .
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For Γ edd0 we have, Γ
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A.3. The Γ ede
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where q = p1 − hi , t = k − p1 and q 0 = p1 − hi0 .
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A.4. The Γ dee
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+ 2SτSV,τ 0 − 6Sτ 0SV,τ − 2S0
τ SV,τ 0 − S0

τ 0SV,τ ) + 3PC,τ 0PC,τ

+ 3Pσ,τ 0Pσ,τ + ¡
1 − (q̂ · q̂ 0

)2¢PL,τ 0PL,τ + 9PC,τ 0Pσ,τ − 3Pσ,τ 0PC,τ

+ 3PC,τ 0PL,τ − PL,τ 0PC,τ + Pσ,τ 0PL,τ + PL,τ 0Pσ,τ

ª
+ 2VL,τN

©
(q̂ · q̂ 0

)(Sτ 0Sτ + Sτ 0S0
τ − 2Sτ 0SV,τ )

+ ¡−q̂ · q̂ 0 + 2(q̂ · t̂)(q̂ 0 · t̂)¢(S0
τ 0S0

τ + SτS
0
τ 0 − 2S0

τ 0SV,τ )

+ (q̂ · t̂)(q̂ 0 · t̂)(Sτ SV,τ 0 − S0
τ SV,τ 0) + PC,τ 0PC,τ + Pσ,τ 0Pσ,τ

+ ¡
1 + 4(q̂ · q̂ 0

)(q̂ · t̂)(q̂ 0 · t̂) − 2(q̂ · t̂)2 − 2(q̂ 0 · t̂)2¢PL,τ 0PL,τ

+ 3PC,τ 0Pσ,τ − Pσ,τ 0PC,τ + PC,τ 0PL,τ − ¡
1 − 2(q̂ · t̂)2¢PL,τ 0PC,τ

+ ¡−1 + 4(q̂ 0 · t̂)2¢Pσ,τ 0PL,τ + ¡
1 − 2(q̂ · t̂)2¢PL,τ 0Pσ,τ

ª
, (A.7)

where q = p1 − hi , t = hi − hi0 and q 0 = k − p1.

Γ l
n,n→nn = Γ̃

l,n
n,n→nn,111 + Γ̃

l,n
n,n→nn,000 + Γ̃

l,n
n,n→nn,110 + Γ̃

l,n
n,n→nn,101 + Γ̃

l,n
n,n→nn,011

+ Γ̃
l,n
n,n→nn,100 + Γ̃

l,n
n,n→nn,010 + Γ̃

l,n
n,n→nn,001,

Γ u
n,n→nn = Γ l

n,n→nn,

Γ l
n,p→nn = 2

¡−Γ̃
l,n
n,p→nn,111 − Γ̃

l,n
n,p→nn,110 + Γ̃

l,n
n,p→nn,011 + Γ̃

l,n
n,p→nn,010

¢
,

Γ u
n,p→nn = 0,

Γ l
p,n→nn = 0,

Γ u
p,n→nn = 4

¡
Γ̃

u,n
p,n→nn,111 + Γ̃

u,n
p,n→nn,011

¢
,

Γ l
n,p→np = 0,

Γ u
n,p→np = 2

¡−Γ̃
u,n
n,p→np,111 − Γ̃

u,n
n,p→np,110 + Γ̃

u,n
n,p→np,011 + Γ̃

u,n
n,p→np,010

¢
,

Γ l
p,n→np = 4

¡
Γ̃

l,n
p,n→np,111 + Γ̃

l,n
p,n→np,011

¢
,

Γ u
p,n→np = 0,

Γ l
p,p→np = 2

¡−Γ̃
l,n
p,p→np,111 − Γ̃

l,n
p,p→np,101 + Γ̃

l,n
p,p→np,011 + Γ̃

l,n
p,p→np,001

¢
+ 2

¡
Γ̃

l,p

p,p→np,111 − Γ̃
l,p

p,p→np,110 − Γ̃
l,p

p,p→np,101 + Γ̃
l,p

p,p→np,100

¢
,

Γ u
p,p→np = Γ l

p,p→np. (A.8)

For Γ eed0 we have, Γ
eed,l

0 + Γ
eed,u

0 = Γ
dee,l

0 + Γ
dee,u

0 .

i,i →j i,i →j i,i →j i,i →j i,i →j
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A.5. The Γ eee
i,i0→j

-contribution

The Seee
τ 0τN τ

(q, q 0, t) function is

Seee
τ 0τN τ (q, q 0, t) = 4VC,τN

©
(q̂ · q̂ 0

)(Sτ 0Sτ + S0
τ 0S0

τ + 2SV,τ 0SV,τ ) + PC,τ 0PC,τ

+ 3Pσ,τ 0Pσ,τ + (q̂ · q̂ 0
)2PL,τ 0PL,τ + Pσ,τ 0PL,τ + PL,τ 0Pσ,τ

ª
+ 4Vσ,τN

©
(q̂ · q̂ 0

)
¡
Sτ 0S0

τ + S0
τ 0Sτ − (Sτ 0 + S0

τ )(SV,τ 0 + SV,τ )
¢

+ 6Pσ,τ 0Pσ,τ + ¡
1 − (q̂ · q̂ 0

)2¢PL,τ 0PL,τ + 3(PC,τ 0Pσ,τ + Pσ,τ 0PC,τ )

+ PC,τ 0PL,τ + PL,τ 0PC,τ + 2(Pσ,τ 0PL,τ + PL,τ 0Pσ,τ )
ª

+ 4VL,τN

©
(q̂ · t̂)(q̂ 0 · t̂)(Sτ 0S0

τ + S0
τ 0Sτ + 2SV,τ 0SV,τ )

− ¡
(q̂ · q̂ 0

) − (q̂ · t̂)(q̂ 0 · t̂)¢(Sτ 0 + S0
τ )(SV,τ 0 + SV,τ ) + 2Pσ,τ 0Pσ,τ

+ ¡
1 − (q̂ · q̂ 0

)(q̂ · t̂)(q̂ 0 · t̂) − (q̂ · q̂ 0
)2 − (q̂ · t̂)2 − (q̂ 0 · t̂)2¢PL,τ 0PL,τ

+ PC,τ 0Pσ,τ + Pσ,τ 0PC,τ + (q̂ 0 · t̂)2PC,τ 0PL,τ + (q̂ · t̂)2PL,τ 0PC,τ

+ ¡
1 − (q̂ 0 · t̂)2¢Pσ,τ 0PL,τ + ¡

1 − (q̂ · t̂)2¢PL,τ 0Pσ,τ

ª
, (A.9)

where q = p1 − hi , t = hi − hi0 and q 0 = p1 − hi0 .

Γ l
n,n→nn = Γ̃

l,n
n,n→nn,111 + Γ̃

l,n
n,n→nn,000 + Γ̃

l,n
n,n→nn,110 + Γ̃

l,n
n,n→nn,101 + Γ̃

l,n
n,n→nn,011

+ Γ̃
l,n
n,n→nn,100 + Γ̃

l,n
n,n→nn,010 + Γ̃

l,n
n,n→nn,001,

Γ u
n,n→nn = Γ l

n,n→nn,

Γ l
n,p→nn = 4

¡
Γ̃

l,n
n,p→nn,111 + Γ̃

l,n
n,p→nn,110

¢
,

Γ u
n,p→nn = 0,

Γ l
p,n→nn = 0,

Γ u
p,n→nn = 4

¡
Γ̃

u,n
p,n→nn,111 + Γ̃

u,n
p,n→nn,011

¢
,

Γ l
n,p→np = 0,

Γ u
n,p→np = 4

¡
Γ̃

u,n
n,p→np,111 + Γ̃

u,n
n,p→np,110

¢
,

Γ l
p,n→np = 4

¡
Γ̃

l,n
p,n→np,111 + Γ̃

l,n
p,n→np,011

¢
,

Γ u
p,n→np = 0,

Γ l
p,p→np = −Γ̃

l,n
p,p→np,111 + Γ̃

l,n
p,p→np,000 + Γ̃

l,n
p,p→np,110 + Γ̃

l,n
p,p→np,101

+ Γ̃
l,n
p,p→np,011 − Γ̃

l,n
p,p→np,100 − Γ̃

l,n
p,p→np,010 − Γ̃

l,n
p,p→np,001

+ 4
¡
Γ̃

l,p

p,p→np,111 + Γ̃
l,p

p,p→np,110

¢
,

Γ u
p,p→np = Γ l

p,p→np. (A.10)
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