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Abstract

We revisit the theoretical predictions for anomalous radiative decays of pseu-

doscalar and vector mesons. Our analysis is performed in the framework of

the Nambu–Jona-Lasinio model, introducing adequate parameters to account

for the breakdown of chiral symmetry. The results are comparable with those

obtained in previous approaches.

I. INTRODUCTION

The analysis of vector and axial-vector meson physics represents a nontrivial task from
the theoretical point of view. This is basically due to the characteristic energy scales at
which these particles manifest, namely an intermediate range between low energy hadron
physics and the high energy region where QCD can be treated perturvatively. In order to
deal with the subject, one possible approach is to start from an effective meson Lagrangian;
another possible way is to derive the corresponding effective interactions from QCD-inspired
fermionic schemes.

In the last two decades, the development of chiral effective models [1] has provided a
profitable framework to analyze various phenomena related to the physics of vector and
axial-vector mesons [2–4]. These models have been built taking into account the symmetries
of QCD, together with the so–called axial anomaly introduced through the Wess-Zumino-
Witten (WZW) [5] effective action. As an alternative approach, the analysis of spin one
meson physics can be performed by starting with the Lagrangian proposed by Nambu and
Jona–Lasinio (NJL) [6]. This Lagrangian is based in 4-fermion interactions, showing the
chiral symmetry of QCD, and leads to an effective theory for scalar, pseudoscalar, vector
and axial–vector mesons after proper bosonization. The effective meson Lagrangian can be
obtained by constructing a generating functional, and evaluating the real and imaginary
parts of the fermion determinant [7].
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In this work we follow this second approach, studying the phenomenology of spin 1
mesons in the framework of the NJL model. We propose a fermionic Lagrangian that shows
an approximate U(3)L⊗U(3)R chiral symmetry, explicitly violated by current quark masses,
as is the case of QCD in the limit of large number of colours NC . In particular, we revisit the
predictions given by this model for anomalous radiative decays of vector mesons, taking into
account the explicit breakdown of the SU(3) flavour symmetry to SU(2) isospin symmetry
with the assumption mu = md 6= ms. We perform the bosonization of the NJL theory by
carrying out an expansion of the fermion determinant in terms of the meson fields. This gives
rise to a set of one–loop Feynman diagrams [8–12] from which one can derive the relevant
effective meson interactions. Taking into account present experimental data, we analyze
possible input parameters for the model, in order to obtain an acceptable phenomenological
pattern for the observed anomalous decays of pseudoscalar and vector mesons.

The paper is organized as follows: In Sect. II we introduce the NJL Lagrangian and the
bosonization technique. In Sect. III we derive the effective Lagrangian to account for vector
and axial-vector meson interactions, considering the explicit breakdown of flavour SU(3)
symmetry. This leads to some relations between vector meson masses and decay constants
that can be written in terms of symmetry breaking parameters. Then, in Sect. IV, we
concentrate on the anomalous radiative decays of pseudoscalar and vector mesons, which
proceed through the U(1) axial anomaly. In Sect. V we discuss the numerical results for the
corresponding branching ratios, in comparison with the present experimental information.
Finally in Sect. VI we present our conclusions. The Appendix includes a brief description
of the regularization scheme used throughout our analysis.

II. NAMBU–JONA–LASINIO LAGRANGIAN AND BOSONIZATION

Chiral effective models have proved to reproduce the low energy hadron phenomena
with significant success. For that reason, a significant effort has been done in order to
derive these effective schemes from a microscopic theory as QCD. The effective four fermion
Lagrangian proposed by Nambu and Jona–Lasinio [6], which shows the chiral symmetry of
QCD, represents one of the most popular ways to achieve this goal. The NJL model provides,
after proper bosonization, not only the expected effective couplings for scalar, pseudoscalar,
vector and axial–vector mesons but also the Wess–Zumino–Witten sector [5] which accounts
for the anomalous meson decays. The explicit form of the NJL Lagrangian reads

L = q̄(i 6∂ − m̂0)q + 2G1

[

(q̄
1

2
λaq)2 + (q̄iγ5

1

2
λaq)2

]

−2G2

[

(q̄γµ1

2
λaq)2 + (q̄γµγ5

1

2
λaq)2

]

, (1)

where q denotes the N -flavour quark spinor, λa, a = 0, . . . , N2 − 1 are the generators

of the U(N) flavour group (we normalize λ0 =
√

2/N 11) and m̂0 stands for the current
quark mass matrix, which explicitly breaks the chiral symmetry. The coupling constants
G1 and G2, as well as the quark masses, are introduced as free parameters of the model.
In the absence of the mass term, the NJL Lagrangian shows at the quantum level the
SU(N)A ⊗ SU(N)V ⊗ U(1)V symmetry characteristic of massless QCD.
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It is possible to reduce the fermionic degrees of freedom to bosonic ones by standard
bosonization techniques. With the introduction of colorless boson fields and an appropriate
use of the Stratonovich identity, one obtains an effective action where the fermions couple
to the bosons in a bilinear form. The couplings driven by G1 in (1) lead to the introduction
of scalar and pseudoscalar boson fields, whereas those carrying G2 lead to the inclusion of
vector and axial–vector mesons.

To be definite, let us consider the vector meson sector with N = 3 flavours, u, d and s.
By means of the Stratonovich identity, the vector–vector coupling in (1) can be transformed
as

− 2G2(q̄γ
µ1

2
λaq)2 → − 1

4G2
Tr V 2

µ + iq̄γµVµq, (2)

where Vµ ≡ −i
8
∑

a=0

V a
µ λa/2. The spin 1 fields V a

µ can be identified with the usual nonet of

vector mesons,

V =
(−i)√

2





















ρ0√
2
+

ω8√
6
+

ω1√
3

ρ+ K∗+

ρ− − ρ0√
2
+

ω8√
6
+

ω1√
3

K∗0

K∗− K̄∗0 −2ω8√
6
+

ω1√
3





















(3)

which transform in such a way to preserve the chiral symmetry of the original NJL La-
grangian (and therefore that of QCD). Notice that the first term in the right hand side of
Eq. (2) is nothing but a mass term for the vector fields V a

µ , thus the vector–meson masses
are governed by the coupling G2 in the NJL Lagrangian. It can be seen that these masses
are degenerate in the limit where the quark masses are degenerate.

Now, the quark fields can be integrated out, leading to an effective Lagrangian which
only contains bosonic degrees of freedom. This procedure can be carried out by taking into
account the generating functional

Z = N
∫

DVDqDq̄ exp
{

i
∫

dx4
[

− 1

4G2
Tr V 2

µ + q̄(i 6∂ − m̂0 + i 6V )q
]}

(4)

and performing the calculation of the fermion determinant (a detailed analysis can be found
in [7]). A similar procedure can be followed for the full NJL Lagrangian (1), leading to the
interactions involving scalar, pseudoscalar and axial–vector bosons. In this way, the final
effective Lagrangian is written only in terms of spin 0 and spin 1 colorless hadron fields.

Here we have performed the bosonization by carrying out an expansion of the fermion
determinant, which gives rise to a set of one–loop Feynman diagrams [8]. In order to build
up the final effective meson Lagrangian, we have obtained the local part of the relevant
interactions by taking the leading order of a gradient expansion in powers of the external
momenta, and considering the dominant contributions in 1/NC. The divergent integrals
have been treated using a proper–time regularization scheme with a momentum cut–off,
keeping the leading contributions. The procedure is developed in detail in the next section.
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III. EFFECTIVE MESON COUPLINGS AND SYMMETRY-BREAKING

PARAMETERS

In this section we describe the effective meson interactions derived from the NJL La-
grangian. We begin by calculating the relevant one–loop self–energy diagrams contributing
to the meson kinetic and mass terms, and those leading to the effective weak and strong
meson decay couplings. Notice that the meson fields introduced through the bosonization
technique acquire their dynamics via the self–energy one–loop diagrams.

In our framework, the poles of the quark propagators occur at the so–called constituent
masses, i.e. dynamically generated masses which arise as a consequence of the spontaneous
breakdown of the chiral symmetry. The constituent masses appear as solutions of Schwinger-
Dyson self-consistency equations (gap equations), which are governed by the scalar coupling
G1 in the NJL Lagrangian (1). Here we will not concentrate in the scalar sector of the
model, thus the constituent quark masses, as well as the pseudoscalar boson masses, will be
considered as free parameters.

Our main interest is focused in the anomalous radiative decays of vector mesons. Never-
theless, we need to consider also the axial–vector sector of the model, since the axial–vectors
mix with the pseudoscalars at the one–loop level (P − A mixing).

A. Kinetic terms and masses of the spin-1 mesons

The generating functional (4) gives rise to effective kinetic terms for the spin-1 vector
mesons via one–loop diagrams, as shown in Fig. 1(a). The analysis in the case of the axial–
vector mesons can be performed in an analogous way, with the additional ingredient of P−A
mixing given by Fig. 1(b).

The loop in Fig. 1(a) gives a contribution to the vector meson self-energy given by

iNC

∫ d4k

(2π)4
Tr

6k− 6p+m1

(k − p)2 −m2
1

λaγµ
6k +m2

k2 −m2
2

λbγν , (5)

where m1 and m2 are the constituent masses of the quarks entering the loop, NC is the
number of colors, and the trace acts over the flavour and Dirac indices.

As stated above, we will take only the leading order in the external momentum p, which
means to evaluate the integral at p = 0 after extracting the relevant kinematical factors. In
this case, this is equivalent to consider only the divergent piece of (5):

Π(V )
µν = I2(m1, m2)

[

1

3
(pµpν − p2gµν) +

1

2
(m2 −m1)

2
]

, (6)

where

I2(mi, mj) ≡ −i
NC

(2π)4

∫

d4k
1

(k2 −m2
i )(k

2 −m2
j )

. (7)

As it was previously mentioned, in order to regularize the divergence we use the proper–time
regularization scheme [13] with a cut–off Λ, which will be treated as a free parameter of the
model. Details of the procedure can be found in the Appendix. We obtain
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I2(mi, mj) =
NC

16π2

∫ 1

0
dx Γ

(

0,
(m2

i −m2
j )x+m2

j

Λ2

)

. (8)

From (6), the kinetic terms for the vector mesons in the effective Lagrangian are given
by

L(V )
kin = −1

4

2

3
I2(mu, mu)

[

ρµνρ
µν + 2ρ+µνρ

−µν
+ ωµνω

µν + αφµνφ
µν

+2β
(

K∗+
µνK

∗−µν +K∗0
µνK̄

∗0µν
)]

, (9)

where V µν ≡ ∂µV ν − ∂νV µ, and

α =
I2(ms, ms)

I2(mu, mu)
, β =

I2(mu, ms)

I2(mu, mu)
(10)

parameterize the magnitude of the SU(3) flavour symmetry breaking.
The kinetic Lagrangian in (9) has been expressed in terms of the vector fields in (3),

with the additional rotation

ω8 = φ cos θ0 + ω sin θ0

ω1 = −φ sin θ0 + ω cos θ0 , (11)

which diagonalizes the neutral sector. It is easy to see that here the rotation is “ideal”, i.e.,
the spin 1 mass eigenstates ρ and ω are composed by pure light u and d quarks, while the
φ meson is a bound state s̄s. The ω − φ rotation angle is given by sin θ0 = 1/

√
3. Slight

deviations from the ideal mixing condition will be considered below to allow for the decay
φ → π0γ observed recently.

The mass terms for the vector mesons are given by the (Vµ)
2 term in (2), plus a divergent

one–loop contribution given by the second term in the square brackets in (6), which vanishes
in the SU(3) flavour limit. This leads to

L(V )
mass =

1

8G2

[

ρµρ
µ + 2ρ+µ ρ

−µ
+ ωµω

µ + φµφ
µ + 2K∗+

µK
∗−µ + 2K∗0

µK̄
∗0µ
]

+(ms −mu)
2β I2(mu, mu)(K

∗+
µK

∗−µ +K∗0
µK̄

∗0µ) . (12)

Notice that (as expected) the mass terms turn out to be diagonal in the (ω, φ) basis.
We proceed now to the wave function renormalization required by the kinetic terms in

(9). The vector meson fields can be properly redefined by Vµ → Z
1/2
V Vµ, with

Z−1
ρ = Z−1

ω =
2

3
I2(mu, mu) (13a)

Z−1
K∗ =

2

3
β I2(mu, mu) = β Z−1

ρ (13b)

Z−1
φ =

2

3
α I2(mu, mu) = αZ−1

ρ . (13c)

Then from (12) one obtains
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m2
ρ = m2

ω =
Zρ

4G2
, m2

K∗ =
m2

ρ

β
+

3

2
(ms −mu)

2 , m2
φ =

m2
ρ

α
, (14)

thus the φ meson mass can be written in terms of the ρ mass and the flavour symmetry
breaking parameter α. In the case of the K∗, the corresponding mass relation includes both
the parameter β and a quark–mass dependent contribution that arises from the loop in Fig.
1 (a).

A similar analysis can be performed for the axial–vector meson sector. By replacing
γα → γαγ5 in the quark–meson vertices in Fig. 1 (a), one finds

Π(A)
µν =

2

3
I2(m1, m2)

[

(pµpν − p2gµν)−
3

2

(m2 +m1)
2

2

]

, (15)

leading to the kinetic Lagrangian

L(A)
kin = −1

4

2

3
I2(mu, mu)

[

a1µνa
µν
1 + 2a1

+
µνa

−µν
1 + f1µνf

µν
1

+2βK+
1 µνK

−µν
1 + 2βK0

1µνK̄
0µν
1 + αf ′

1µνf
′µν
1

]

(16)

and the mass terms

L(A)
mass =

1

8G2

[

a1µa
µ
1 + 2a+1 µa

−µ
1 + f1µf

µ
1 + f ′

1µf
′µ
1 + 2K+

1 µK
−µ
1 + 2K0

1µK̄
0µ
1

]

+I2(mu, mu)
[

2m2
u(a1µa

µ
1 + 2a+1 µa

−µ
1 + f1µf

µ
1 )

+(mu +ms)
2β(K1

+
µK

−µ
1 +K1

0
µK̄

0µ
1 ) + 2m2

sαf
′

1µf
′µ
1

]

. (17)

As in the vector meson case, the Lagrangian is diagonal in the chosen basis, where f1 and
f ′

1 are obtained from the U(3) states A8 and A1 through an ideal rotation. Notice that
both neutral and charged axial–vector boson masses receive a contribution proportional
to G−1

2 , which arises from field transformations as in Eq. (2), plus additional (positive)
contributions proportional to the quark masses. In this way, the axial–vector mesons are in
general expected to be heavier than their vector meson counterparts.

Finally, we have to take into account the mixing between the axial–vector mesons and
the pseudoscalars. This requires the analysis of the pseudoscalar–axial vector couplings
and the pseudoscalar kinetic terms, given by the one–loop diagrams in Fig. 1 (b) and (c)
respectively. The effective couplings read

Lmix = −iI2(mu, mu)
[

2mu(∂µπ
0aµ1 + ∂µπ

+a−µ
1 + ∂µπ

−a+µ
1 + ∂µηuf

µ)

+ β(mu +ms)(∂µK
+Kµ−

1 + ∂µK
−Kµ+

1 + ∂µK
0K̄0µ

1 + ∂µK̄
0K0µ

1 )

+ 2αms∂µηsf
′µ] , (18)

while the pseudoscalar kinetic Lagrangian is given by

L(P )
kin = −1

2
I2(mu, mu)

[

∂µπ
0∂µπ0 + 2∂µπ

+∂µπ− + ∂µηu∂
µηu + α ∂µηs∂

µηs

+ 2β ∂µK
+∂µK− + 2β ∂µK

0∂µK̄0
]

. (19)
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Once again, we have chosen a basis for the neutral fields in which the states ηu, ηs are
obtained from the U(3) states η8, η1 through an ideal rotation. However, these states cannot
be treated as approximate mass eigenstates due to the presence of the U(1)A anomaly, which
breaks the U(3) symmetry down to SU(3). Although formally of order 1/NC, this anomaly
leads to a relatively large mass splitting between the observed η and η′ physical states.
Still, large NC considerations are shown to be powerful enough to deal with the interactions
of the η1 and η8 fields as members of an U(3) nonet. As stated, we will not concentrate
here in the pseudoscalar mass sector, and consequently, in the U(1)A symmetry breaking
mechanism responsible for the η′ mass. In the NJL framework, one way to proceed is to
include the so-called ’t Hooft interaction [14,15], which emulates the effect of the anomaly.
Instead of following this way (which means to include six-fermion interaction vertices) we
will introduce the η − η′ mixing angle as a parameter of the model. Thus we write ηu and
ηs in terms of the physical states as

ηu = cosϕP η + sinϕP η′

ηs = − sinϕP η + cosϕP η′ . (20)

In order to write the effective Lagrangian in terms of the physical fields, one needs not
only the relevant wave function renormalizations but also the diagonalization of the P − A
couplings. This can be achieved by means of the transformations

P → Z
1/2
P P , Aµ → Z

1/2
A Aµ + CPZ

1/2
P ∂µP , (21)

where P = π, K, ηu, ηs, and

Cπ = i 2 I2(mu, mu)Zρ
mu

m2
a1

= Cηu

CK = i 2 I2(mu, mu)Zρ
(mu +ms)

2m2
K1

Cηs = i 2 I2(mu, mu)Zρ
ms

m2
f ′

. (22)

The wave function renormalization for the pseudoscalar sector yields

Z−1
π = Z−1

ηu = I2(mu, mu)

(

1− 6m2
u

m2
a1

)

Z−1
K = βI2(mu, mu)

[

1− 3

2

(mu +ms)
2

m2
K1

]

Z−1
ηs = αI2(mu, mu)

(

1− 6m2
s

m2
f ′

)

, (23)

where the axial–vector meson masses can be read from (17). As can be immediately seen
from (16), the wave function renormalization for the axial–vector mesons is equivalent to
that performed in the vector meson sector, c.f. Eq. (13). Using these relations and those in
(14), the axial–vector meson masses turn out to be constrained by
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m2
a1

= m2
ρ + 6m2

u

m2
K1

= m2
K∗ + 6mums (24)

m2
f ′ = m2

φ + 6m2
s .

B. Weak and strong decay constants

We want to analyze the ability of the effective model under consideration to describe the
low energy behaviour of pseudoscalar and vector mesons. Let us begin by studying some
fundamental decay processes, in order to evaluate the relevant decay constants in terms of
the model parameters.

The pseudoscalar weak decay constants Fπ and FK can be obtained from the one–loop
transitions represented in Fig. 2, where P = π, K. As in the self–energy case, these diagrams
are found to be logarithmically divergent and can be regularized using the proper–time
scheme. We will keep as before only the leading contributions in the limit of vanishing
external momenta, which amounts to take only the divergent piece of the loop integrals.

The decay constants FP are defined as usual by

〈0|Jµ5(0)|P (q)〉 = i
√
2FP qµ . (25)

It is easy to see that the contributions from Fig. 2 (a) and (b) lead to

Fπ = 2 I2(mu, mu)muZ
1/2
π (1 + i 2muCπ)

= 2 I2(mu, mu)muZ
1/2
π

(

1− 6
m2

u

m2
a1

)

FK = I2(mu, mu) β (mu +ms)Z
1/2
K [1 + i (mu +ms)CK ]

= I2(mu, mu)β (mu +ms)Z
1/2
K

[

1− 3

2

(mu +ms)
2

m2
K1

]

, (26)

where have made use of Eqs. (22). In these equations, the first terms arise from the graph
in Fig. 2 (a), whereas the contributions proportional to Cπ,K are due to the P − A mixing
diagrams. Using now Eqs. (23), we end up with the simple relations

Fπ =
2mu

Z
1/2
π

, FK =
(mu +ms)

Z
1/2
K

. (27)

Next, let us study the basic decay constants gρ, gK∗ and gφ, which account for the strong
decays of the vector mesons into two pseudoscalars. The decay constants can be defined
from the total decay rates according to

Γ(ρ → ππ) =
g2ρ
4π

mρ

12

(

1− 4m2
π

m2
ρ

)3/2

Γ(K∗ → Kπ) =
g2K∗

4π

mK∗

16

{[

1− (mK +mπ)
2

m2
K∗

] [

1− (mK −mπ)
2

m2
K∗

]}3/2

8



Γ(φ → KK) = Γ(φ → K+K−) + Γ(φ → K0K̄0)

=
g2φ
4π

mφ

24





(

1− 4m2
K+

m2
φ

)3/2

+

(

1− 4m2
K0

m2
φ

)3/2


 . (28)

Notice that for the φ → KK width we have taken into account the mass difference between
the neutral and charged kaons. Though tiny, this mass difference becomes important in view
of the very narrow phase space allowed.

Within the effective model analyzed here, the decay rates (28) are dominated by the
one–loop graphs shown in Fig. 3. As before, we keep here the dominant, logarithmically
divergent contribution, and the leading order in the external momenta (the corresponding
diagrams with two axial–vector legs vanish in this limit). From the evaluation of the ρ → ππ
and ρ → a1π diagrams, and using (13), (22) and (23), we find

gρ = I2(mu, mu)Z
1/2
ρ Zπ (1 + i 2muCπ) = Z1/2

ρ . (29)

In the case of gφ the evaluation of the dominant contribution is more involved, since the
loop includes two different quark propagators. The loop integral has the form

I3 ≡ −i
NC

(2π)4

∫

d4k
k2

(k2 −m2
u)(k

2 −m2
s)

2
. (30)

Once again the divergence is logarithmic, thus it is natural to express the integral in terms
of I2(mi, mj). However, owing to the flavour symmetry breakdown, there is an ambiguity at
the moment of choosing the infinite part of (30). Here we follow the criterion of respecting
the natural hierarchy given by the quark content of the decaying vector meson, that means,
we use the k2 factor in the integrand to remove the m2

u pole. We have then

I3 → α I2(mu, mu) . (31)

Taking into account the wave function renormalization for the φ and K mesons, together
with the corresponding pseudoscalar–axial vector mixing, we end up with

gφ =

√
α

β
gρ . (32)

In the same way we proceed for the case of the K∗ to two meson decay. Here, due to the
SU(3) symmetry breaking, the analogous of Eq. (29) for gK∗ leads to a relation between gK∗

and gρ which can be written in terms of Zπ,K and Cπ,K . At first approximation, however,
the dependence on these parameters cancels and one can write

gK∗ ≃ gρ . (33)

In this way, both φ and K∗ strong decay constants can be predicted in terms of the
measured value of gρ and the symmetry breaking parameters α and β. The corresponding
numerical evaluation will be done in Sect. V.
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IV. ANOMALOUS RADIATIVE DECAYS OF PSEUDOSCALAR AND VECTOR

MESONS

Our goal is to test the ability of this relatively simple, NJL–like model to reproduce the
observed pattern for the anomalous radiative decays of pseudoscalar and vector mesons once
the breakdown of chiral symmetry is taken into account. These decays are mainly originated
by the U(1)A anomaly. In the framework of our model, they occur through the well–known
triangle graphs shown in Fig. 4, which lead to an anomalous Wess–Zumino–Witten effective
Lagrangian. The corresponding diagrams including an axial–vector which mixes with the
pseudoscalar meson gives a vanishing contribution [16]. This can be seen e.g. by looking at
the effective anomalous Lagrangian obtained by gauging the Wess–Zumino–Witten action,
as shown in Ref. [3].

The couplings between the vector mesons and the outgoing (on–shell) photons follow
from the assumption of vector meson dominance of the electromagnetic interactions. In our
framework, these couplings can be obtained from quark–loop diagrams connecting photons
and vector mesons (see Ref. [7,11] for details). After the proper inclusion of the symmetry
breaking parameters α and β, the V − γ couplings read

jemµ = em2
ρ Z

−1/2
ρ

(

ρµ +
1

3
ωµ +

√
2

3

m2
φ

m2
ρ

√
α φµ

)

. (34)

Let us begin by analyzing the decays of the neutral pseudoscalars π0, η and η′ into two
photons. These processes arise at the one–loop level from the triangle diagrams shown in
Fig. 4 (a). The diagrams are found to be convergent, and the limit of vanishing external
momenta can be taken trivially. For π0 → γγ we get

Γ(π0 → γγ) =
α2m3

π

64π3

(

Z1/2
π

2mu

)2

=
α2m3

π

64π3F 2
π

, (35)

where α is the electromagnetic fine structure constant. This expression coincides with the
result obtained in standard Chiral Perturbation Theory [1]. In the case of η and η′ decays to
two photons, one has the additional problem of η− η′ mixing. In our framework, instead of
dealing with the U(3) states η1 and η8, it is natural to work with the ηu and ηs states defined
above, which determine the flavour content of the quark propagators in the loop. Taking
into account the corresponding pseudoscalar wave–function renormalizations, we find

Γ(η → γγ) =
α2m3

η

64π3

[

5

3Fπ

cosϕP −
√
2

3Fs

sinϕP

]2

Γ(η′ → γγ) =
α2m3

η′

64π3

[

5

3Fπ
sinϕP +

√
2

3Fs
cosϕP

]2

, (36)

where, in analogy with Fπ and FK , we have defined

Fs ≡
2ms

Z
1/2
ηs

. (37)
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Now we analyze the radiative vector meson decays V → Pγ. The corresponding widths
can be conveniently parameterized as

Γ(V → Pγ) =
αg2ρ
24π

C2
V P

F 2
π

(

M2
V −M2

P

4πMV

)3

, (38)

where the coefficients CV P can be obtained from the loop diagrams shown in Fig. 4 (b).
Clearly, the evaluation of the relevant triangle quark loops is entirely similar to that per-
formed for the P → γγ case.

For the processes ρ0, ω → π0γ we can use Eqs. (13a), (27) and (29) to eliminate the
pseudoscalar and spin 1 wave function renormalization factors. In this way the coefficients
Cρ0π0 and Cωπ0 are simply given by

Cρ0π0 = 1 , Cωπ0 = 3 . (39)

The same procedure applies in the case of V → η, η′γ processes, with the additional inclusion
of the η − η′ mixing angle and the flavour symmetry breaking parameter α. We have

Cρ0η = 3 cosϕP

Cωη = cosϕP

Cφη = 2Fπ sinϕP/(
√
αFs)

Cφη′ = 2Fπ cosϕP/(
√
αFs) ,

(40)

where ϕP is the ηu − ηs mixing angle defined in (20).
For the decaysK∗ → Kγ, the calculation is slightly more complicated due to the presence

of different constituent masses for the quark propagators in the loop. The coefficients depend
now on the symmetry breaking parameter β and the mass ratio λ ≡ ms/mu according to

CK∗+K+ = f(λ)Fπ/(
√
βFK)

CK∗0K0 = g(λ)Fπ/(
√
βFK) ,

(41)

where functions f(λ) and g(λ) are defined as

f(λ) =

[

1 + 6λ− λ2

2(1− λ2)
+

λ (2 λ2 + 1) lnλ2

(1− λ2)2

]

g(λ) =

[

1 +
λ lnλ2

(λ2 − 1)

]

. (42)

Finally let us consider the decays η′ → ργ and η′ → ωγ, which can be treated in a
completely similar way just taking into account the spin 0 character of the decaying particle
when averaging over the initial spin states. Using the same parameterization as in (38) we
obtain

Cρ0η′ = 3 sinϕP

Cωη′ = sinϕP .
(43)

We have skipped in this discussion the decay φ → π0γ since the corresponding coefficient
Cφπ vanishes in our framework, owing to the purely strange flavour content of the φ meson.
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However, in view of the present experimental results, it is interesting to remove the ideal
mixing angle condition in the ω−φ sector allowing for a tiny nonstrange component for the
φ field. If this is parameterized by a small mixing angle ϕV , one trivially gets [12]

Cφπ0 = Cωπ0 sinϕV = 3 sinϕV . (44)

The present experimental value for the branching ratio φ → π0γ leads to a mixing angle ϕV

of about 3.2◦ [12,17], which does not represent a significant change in the other, nonvanishing
radiative decay widths involving φ and ω.

V. MODEL PARAMETERS AND NUMERICAL ANALYSIS

In order to perform the phenomenological analysis of the model, and to obtain definite
predictions for pseudoscalar and vector meson decay processes, it is necessary to establish a
strategy, choosing a suitable set of parameters to be used as input values.

Let us begin with the basic decay processes analyzed in Section III. Using the π± and K±

weak decays, it is possible to write the pseudoscalar wave function renormalization factors
Zπ and ZK in terms of the well–measured decay constants Fπ and FK , which will be taken
as input parameters. In the same way, the wave function renormalization factor Zρ can be
obtained from the phenomenological value gρ ≃ 6 arising from (28). Now, from (8) and
(13a), we can relate gρ with the loop integral I2(mu, mu) to estimate

mu

Λ
≃ 0.26 . (45)

Next we use the mass relations (14) to determine a phenomenological acceptable set of values
for the cut–off Λ and the strange quark mass ms. A reasonable choice is

ms ≃ 510 MeV , Λ ≃ 1.2 GeV , (46)

which lead to mφ = 0.99 GeV (exp. 1.02 GeV) and mK∗ = 0.91 GeV (exp. 0.89 GeV), with
a light quark mass mu = md ≃ 310 MeV. The symmetry breaking parameters α, β and λ
defined in the previous sections are then given by

α ≃ 0.6 , β ≃ 0.76 , λ ≃ 1.6 . (47)

Using the relations (32) and (33), the phenomenological value of gρ, together with the
results in (47) allow to predict the values for the strong decay constants gK∗ and gφ. In this
way we obtain

Γ(K∗ → Kπ) ≃ 44 MeV
Γ(φ → K0K̄0) ≃ 1.3 MeV
Γ(φ → K+K̄−) ≃ 2.0 MeV

(48)

while the corresponding experimental values read Γ(K∗ → Kπ) = 50.8 ± .9 MeV, Γ(φ →
K0K̄0) = 1.51± 0.03 MeV and Γ(φ → K+K−) = 2.19± 0.03 MeV [18]. The results are in
agreement with the predicted values within an accuracy of a 15% level, which can be taken
as a lower bound for the expected intrinsic theoretical error of the model.
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As an alternative procedure, we could have derived the values for Fπ and FK from the
relations (23), where the axial-vector meson masses can be taken either from Eqs. (24) or just
as input parameters. For instance, with the chosen value of mu we can obtain from Eq. (24)
a prediction for the a1 mass of about 1080 MeV [18]. This value is somewhat low, but once
again agrees within a 15% accuracy with the present experimental result of ma1 = 1230±40
MeV. In fact, it is natural to expect the model to describe the axial-vector meson sector only
in a roughly approximate way, due to the relatively high masses involved, the broad character
of the resonances and the admixtures with close states with same quantum numbers. Hence
we choose to rely on the well-known low energy decay constants Fπ and FK as our input
magnitudes.

Finally, using the analytical expressions obtained in the previous section, we can look at
the model predictions for pseudoscalar and vector meson radiative decays. In the case of the
decays involving η and η′ mesons, it is necessary to fix two more input parameters, which
can be chosen as the decay constant Fs (or equivalently the pseudoscalar wave function
renormalization Zηs) and the η1 − η8 mixing angle θP . The latter is related with ϕP by

ϕP =
π

2
− θ0 + θP , (49)

where θ0 ≃ 35.3◦ is the “ideal” rotation angle introduced above.
Our numerical results are shown in Table I, where we quote the values corresponding

to four different sets for Fs and θP , together with the present experimental widths [18]. In
order to get the theoretical results, we have used the physical values for the pseudoscalar and
vector meson masses entering Eq. (38). We have chosen the values of Fs and θP that lead
to a better agreement for the whole set of decays, always having in mind that an intrinsic
theoretical error of at least 15% can be expected from the NJL scheme. In general, we find
that the best results for θP lie within the usually expected range between −10◦ and −20◦

[17,19], while the model seems to prefer a rather large value for the ratio Fs/Fπ, higher than
3/2. We quote for completeness the results corresponding to a ratio Fs/Fπ = 1.4, favored by
large-NC arguments [20], which leads in this case to too large widths for the decays involving
η and φ mesons.

When varying Fs and θP , and comparing with the experimental values, it is found that an
accurate agreement for certain widths worsens the predictions in other cases. Nevertheless,
considering the relatively important intrinsic theoretical error of the model, it can be said
that the values in Table I show a phenomenologically acceptable pattern for the pseudoscalar
and vector meson anomalous radiative decays. Our results are found to be of similar quality
to those presented e.g. in Ref. [3], where the authors start from a nonlinear sigma model,
and Ref. [12], where a different parameterization of the chiral–flavour symmetry breaking is
introduced (notice that several experimental values have changed in the last years).

VI. CONCLUSIONS

Starting from an effective four–fermion NJL Lagrangian, we have analyzed the phe-
nomenology associated with anomalous radiative decays of pseudoscalar and vector mesons.
The effective interactions between spin 0 and spin 1 mesons have been derived from the
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bosonization of the fermionic theory through the evaluation of the relevant quark loop dia-
grams, taking the leading order both in the external momenta and 1/NC power expansions.
The divergent loops have been treated using a proper–time regularization scheme with a
momentum cut–off Λ.

We have taken into account the breakdown of the chiral symmetry considering constituent
quark masses mu = md 6= ms. The departure of the effective couplings from the global
SU(3) flavour symmetry limit has been introduced through the parameters α and β, which
correspond to properly regularized fermion loop integrals.

In order to perform the phenomenological analysis, we have chosen a few fundamental
input parameters, namely the basic decay constants Fπ, FK and gρ, the ρ meson mass, the
momentum cut–off (or equivalently the light quark massmu), and the constituent mass of the
strange quark ms. We have also taken into account the physical values of the pseudoscalar
meson masses. To account for the decays involving η and η′ mesons, this set has been
complemented with the parameter Fs and the η − η′ mixing angle θP . We have shown that
with the choice Λ ≃ 1.2 GeV and ms ≃ 510 MeV this simple model leads to an acceptable
pattern for the vector meson mass spectrum, as well as the branching ratios for the strong
decays ρ → ππ, φ → KK and K∗ → Kπ. The agreement is found within a 15% level, that
can be taken as a lower bound for the intrinsic theoretical error of the model.

We have evaluated within this framework the branching ratios for anomalous radiative
decays of pseudoscalar and vector mesons. In the case of those processes involving the η
and η′, the contrast between the predictions of our model and the present experimental
data is optimized for a θP mixing angle between −10◦ and −20◦, in agreement with usual
expectations. On the other hand, we find that the preferred ratio Fs/Fπ lies in the range
1.75 to 2, which is a rather high value in comparison with the result arising from large NC

considerations. In general, taking into account the relatively large theoretical error, we see
that the model leads to reasonably good predictions for the main radiative pseudoscalar and
vector meson decay widths. The quality of our results is comparable to that obtained in
previous works which use different effective models and/or parameterizations for the flavour
symmetry breaking effects.

APPENDIX:

The divergent integrals I2(mi, mj) have been regularized within the proper–time scheme
[13]. One makes use of the relation

1

An+1
→ 1

n!

∫

∞

1/Λ2

ds sne−sA , (A1)

which holds for Λ sufficiently large. If we let Λ be a momentum cut–off for our theory, we
have for equal masses mi = mj

I2(m,m) =
NC

(2π)4

∫

d4kE
1

(k2
E +m2)2

→ NC

(2π)4

∫

d4kE

∫

∞

1/Λ2

ds s e−s(k2
E
+m2) =

NC

16π2
Γ

(

0,
m2

Λ2

)

, (A2)
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where kE is the momentum in Euclidean space, and Γ(α, x) is the Incomplete Gamma
Function,

Γ(α, x) ≡
∫

∞

x
tα−1 e−t dt . (A3)

In the case where mi 6= mj, Eq. (A2) can be generalized using the Feynman parameter-
ization

1

(k2
E +m2

i )(k
2
E +m2

j )
=
∫ 1

0
dx

1

(k2
E +B2(x))2

, (A4)

where B2(x) = m2
i + (m2

j −m2
i ) x. Using the same regularization procedure as before one

ends up with

I2(mi, mj) →
NC

16π2

∫ 1

0
dx Γ

(

0,
B2(x)

Λ2

)

. (A5)

15



FIGURES

V

a

�

; A

a

�

V

b

�

; A

b

�

q

2

q

1

P

a

A

b

�

q

2

q

1

P

a

P

b

q

2

q

1

(a) (b) (c)
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[6] Y. Nambú and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 (1961).
[7] D. Ebert and H. Reinhardt, Nucl. Phys. B 271, 188 (1986); M. Wakamatsu and W.

Weise, Z. Phys. A 331, 173 (1988).
[8] T. Eguchi, Phys. Rev. D 14, 2755 (1976).
[9] D. Ebert and M. Volkov, Z. Phys. C 16, 205 (1983).
[10] M. Volkov, Ann. Phys. 157, 282 (1984).
[11] D. Ebert, A. Ivanov and M. Volkov, Fortschr. Phys. 37, 487 (1989).
[12] M. Volkov, Phys. Part. Nucl. 24, 35 (1993).
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TABLES

TABLE I. Radiative decays of pseudoscalar and vector mesons. The second and third columns

show the model predictions for different values of the ratio Fs/Fπ and the η1− η8 mixing angle θP .

The present experimental values for the decay rates are quoted in the last column.

Process ΓNJL (KeV) Γexp (KeV)

Fs/Fπ = 2 Fs/Fπ = 1.75 Fs/Fπ = 1.75 Fs/Fπ = 1.4

θP = −10◦ θP = −15◦ θP = −20◦ θP = −20◦

π0 → γγ 7.7 × 10−3 7.7× 10−3 7.7× 10−3 7.7× 10−3 (7.7 ± 0.6)× 10−3

η → γγ 0.53 0.63 0.76 0.71 0.46 ± 0.04

η′ → γγ 4.97 4.48 3.79 4.16 4.28 ± 0.44

η′ → ρ0γ 108 89.5 71.1 71.1 59 ± 5

η′ → ωγ 10.0 8.2 6.5 6.5 6.1 ± 0.8

ρ0 → π0γ 85 85 85 85 102 ± 25

ω → π0γ 806 806 806 806 720 ± 40

ρ0 → ηγ 51 60 68 68 36± 14

ω → ηγ 6.6 7.7 8.8 8.8 5.5 ± 0.8

φ → ηγ 65.0 70.0 55.6 86.9 57.8 ± 1.5

φ → η′γ 0.30 0.46 0.52 0.82 0.30 ± 0.16

K∗+ → K+γ 62 62 62 62 50 ± 5

K∗0 → K0γ 160 160 160 160 117 ± 10
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