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FINITE-DIMENSIONAL POINTED HOPF ALGEBRAS

OVER FINITE SIMPLE GROUPS OF LIE TYPE II.

UNIPOTENT CLASSES IN SYMPLECTIC GROUPS

NICOLÁS ANDRUSKIEWITSCH, GIOVANNA CARNOVALE AND

GASTÓN ANDRÉS GARCÍA

Abstract. We show that Nichols algebras of most simple Yetter-Drin-

feld modules over the projective symplectic linear group over a finite

field, corresponding to unipotent orbits, have infinite dimension. We

give a criterium to deal with unipotent classes of general finite simple

groups of Lie type and apply it to regular classes.

The call of cthulhu

Contents

1. Introduction 1
2. Preliminaries on racks 2
3. Preliminaries on finite simple groups of Lie type 4
4. Unipotent classes in finite symplectic groups 17
References 32

1. Introduction

This is the second paper of a series intended to determine the finite-
dimensional pointed Hopf algebras with group of group-likes isomorphic to
a finite simple group of Lie type. An Introduction to the whole series was
given in Part I [ACG]. The base field is C. Let p be a prime number, m ∈ N,
q = pm and Fq the field with q elements. In this paper we consider Nichols
algebras associated to unipotent conjugacy classes in symplectic groups G =
PSp2n(q), n ≥ 2, see e. g. [W, MaT]. We consider also here the non-simple
group PSp4(2) ≃ S6 for convenience.
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Let O a conjugacy class of G. We seek to determine all O that collapse
[AFGV1, 2.2], that is, the dimension of the Nichols algebraB(O, q) is infinite
for every finite faithful 2-cocycle q. Our main result says

Theorem 1.1. Let O be a unipotent conjugacy class in G. If O is not listed

in Table I, then it collapses.

PSp2n(q)

n type q Remark
≥ 2 W (1)a ⊕ V (2) even cthulhu, Lemma 4.22

(1r1 , 2) odd, 9 or cthulhu, Lemma 4.22
not a square

3 W (1)⊕W (2) 2 cthulhu, Lemma 4.25
2 W (2) even cthulhu, Lemma 4.26

(2, 2) 3 one class cthulhu
Lemma 4.5

V (2)2 2 cthulhu, Lemma 4.24

Table I

In the next paper of the series we will deal with the non-semisimple classes
in G; for this we will also need to consider the unipotent classes in the finite
unitary groups.

Notation. We denote the cardinal of a set X by |X|. If k < ℓ are positive
integers, then we set Ik,ℓ = {i ∈ N : k ≤ i ≤ ℓ} and simply Iℓ = I1,ℓ.

Let G be a group; N < G, respectively N ⊳ G, means that N is a
subgroup, respectively a normal subgroup, of G. The centralizer, respec-
tively the normalizer, of x ∈ G is denoted by CG(x), respectively NG(x);
the inner automorphism defined by conjugation by x is denoted by Adx. If
F ∈ AutG, then GF denotes the subgroup consisting of points fixed by F .

2. Preliminaries on racks

Recall that a rack is a non-empty set X with a self-distributive binary
operation ⊲ such that x⊲ is bijective for all x ∈ X. The archetype of a rack
is a conjugacy class in a group with the conjugation operation. This notion
allows considerable flexibility in the treatement of the conjugacy classes.

2.1. Collapsing criteria. We use criteria from [ACG, AFGV1] to prove
Theorem 1.1; see [ACG] for more details. Let X be a rack. One says that

◦ X is of type D provided that there is a decomposable subrack Y = R
∐

S
with elements r ∈ R, s ∈ S such that

(2.1) r ⊲ (s ⊲ (r ⊲ s)) 6= s.

◦ X is of type F if it has a family of mutually disjoint subracks (Ra)a∈I4 and
a family (ra)a∈I4 such that for all a, b ∈ I4
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• Ra ⊲ Rb = Rb;
• ra ∈ Ra and ra ⊲ rb 6= rb when a 6= b.

◦ X is cthulhu if it is neither of type D nor of type F.

◦ X is sober if every subrack is either abelian or indecomposable.

Theorem 2.1. [AFGV1, Theorem 3.6]; [ACG, Theorem 2.2]. A rack X of

type D (respectively, F) collapses. �

Lemma 2.2. Let G be a finite group, P < G, π : P → L a quotient map

and x ∈ P . If OL
π(x) is of type D, respectively F, then OG

x is again so.

Proof. The class OG
x contains the subrack OP

x and π induces a rack epimor-

phism OP
x → OL

π(x). The statement follows from [ACG, Remark 2.9]. �

Recall the convention in [ACG]: all racks considered in this series are
crossed sets.

Lemma 2.3. [ACG, Lemma 2.10 (i)] Let X and Y be racks. Assume that

there are y1 6= y2 ∈ Y , x1 6= x2 ∈ X such that x1 ⊲ (x2 ⊲ (x1 ⊲ x2)) 6= x2,

y1 ⊲ y2 = y2. Then X × Y is of type D. �

2.2. Conjugacy classes and subgroups. For recursive reasoning, we need
to consider how a conjugacy class splits when intersected with a subgroup.
Let G be a finite group, N < G and x ∈ N . Let C(N,x) be the set of
N -conjugacy classes contained in OG

x . We start with the case N normal.

Remark 2.4. [ACG, Remark 2.1] If N ⊳ G, then OG
x is a union of N -

conjugacy classes isomorphic to each other as racks.

Next relevant case is N = GF , where F ∈ AutG. Recall that G acts on
itself by x ⇀ y = xyF(x−1), x, y ∈ G. Let H1(F , G) be the set of F-twisted
conjugacy classes in G, i. e. the orbits with respect to the action ⇀.

Remark 2.5. Let M < G be F-stable, g, h ∈ G, x ∈ GF . Set z := g−1F(g),

w := h−1F(h). Then

(a) gxg−1 ∈ GF ⇐⇒ z ∈ CG(x).

(b) gMg−1 is F-stable ⇐⇒ z ∈ NG(M).

(c) Assume that z ∈ NG(M). Then (gMg−1)F = g(MAd z◦F )g−1.

(d) Assume that z ∈ CG(M). Then (gMg−1)F = g(MF )g−1, and hence

[(gMg−1)F , (gMg−1)F ] = g[MF ,MF ]g−1.

(e) Assume that z ∈ CG(M) and x ∈ MF , respectively x ∈ [MF ,MF ].

Then gxg−1 ∈ (gMg−1)F , respectively ∈ [(gMg−1)F , (gMg−1)F ],

and there are rack isomorphisms

OMF

x ≃ O
(gMg−1)F

gxg−1 , respectively O[MF ,MF ]
x ≃ O

[(gMg−1)F ,(gMg−1)F ]
gxg−1 .
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(f) Assume that z ∈ CG(M), x ∈ MF and OMF

x is of type D, respec-

tively F, then OGF

gxg−1 is of the same type.

(g) Assume that z ∈ CG(M), x ∈ [MF ,MF ] and O
[MF ,MF ]
x is of type

D, respectively F, then O
[GF ,GF ]
gxg−1 is of the same type.

(h) If z, w ∈ CG(x), then OGF

gxg−1 = OGF

hxh−1 if and only if z and w belong

to the same F-twisted conjugacy classes in CG(x).

Proof. (a), (b), (c) and (d) are straightforward; (e) follows from (a) and (d),

while (f) and (g) follow from (e). (h): Assume that OGF

gxg−1 = OGF

hxh−1 ; take

k ∈ GF such that kgxg−1k−1 = hxh−1 and u = h−1kg. Then u ∈ CG(x)

and u ⇀ z = w. Conversely, if u ∈ CG(x) satisfies u ⇀ z = w, then

k = hug−1 ∈ GF and kgxg−1k−1 = hxh−1. �

By Remark 2.5 (h), the map ϕ : C(GF , x) → H1(F , CG(x)) sending

OGF

gxg−1 to the class of z, is well-defined and injective.

Lemma 2.6. Let M < G be F-stable, such that x ∈ M . Assume that every

element in the image of ϕ has a representative in CG(M) ⊂ CG(x).

(1) If x ∈ MF and OMF

x is of type D, respectively F, then O is so for

every O ∈ C(GF , x).

(2) If x ∈ [MF ,MF ] and O
[MF ,MF ]
x is of type D, respectively F, then O

is so for every O ∈ C([GF , GF ], x).

Proof. (1). By Remark 2.5 (a) and the assumption, there exists g ∈ G such

that gxg−1 ∈ GF , O = OGF

gxg−1 and z = g−1F(g) ∈ CG(M). Then Remark

2.5 (f) applies. The proof of (2) is similar, using Remark 2.5 (g). �

3. Preliminaries on finite simple groups of Lie type

3.1. Algebraic groups. We mainly follow [MaT] as a source on algebraic
groups and finite groups of Lie type, with exceptions signaled along the text.

Let k = Fq be the algebraic closure of Fq. All algebraic groups are affine
and defined over k. If H is an algebraic group, then H◦ indicates the con-
nected component of H containing the identity. Also, X(H) = Mor(H,k×)
is the group of characters of H, and X∗(H) = Mor(k×,H) is the set of
multiplicative one-parameter subgroups in H.

Let G be a simple algebraic group, Gad its adjoint quotient, Gsc its simply
connected cover, with projection π : Gsc → G. We fix a maximal torus T

of G and a Borel subgroup B containing it. The unipotent radical of B is
denoted by U. We add a subscript ad or sc for the maximal torus and Borel
of Gad or Gsc; our choices are compatible with projections, e. g. π(Tsc) = T.

The root system of G is denoted by Φ, identified as a subset of X(T); the
set of positive roots relative to T and B is denoted by Φ+ and the simple
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roots by α1, . . . , αn, numbered as in [Bou]. The Weyl group NG(T)/T is
denoted by W ; (−,−) is the W -invariant bilinear form on the R-span of Φ.
Let 〈 , 〉 : X(T) × X∗(T) → Z be given by 〈χ, λ〉 = m if (χ ◦ λ)(x) = xm.
The coroot system of G is denoted by Φ∨ = {β∨ : β ∈ Φ} ⊂ X∗(T), where

〈α, β∨〉 = 2(α,β)
(β,β) , for all α ∈ Φ. Hence

α(β∨(ζ)) = ζ
2(α,β)
(β,β) , α, β ∈ Φ, ζ ∈ k

×.

For α ∈ Φ, there is a monomorphism of abelian groups xα : k → U; we set
Uα for the image of xα, called a root subgroup. We adopt the normalization
of xα and the notation for the elements in T from [Sp2, 8.1.4]. We recall the
commutation rule: txα(a)t

−1 = xα(α(t)a), for t ∈ T and α ∈ Φ. The group
U is generated by the root subgroups Uα, for α ∈ Φ+. More precisely, let us
fix an arbitrary ordering on Φ+; then every u ∈ U has a unique expression
as a product (with respect to the fixed ordering)

u =
∏

α∈Φ+

xα(cα), cα ∈ k, α ∈ Φ+.(3.1)

Let supp(u) = {α ∈ Φ+ | cα 6= 0}, that of course depends on the ordering.
In the sequel we will use frequently the Chevalley’s commutator formula
(3.2) below, see [St1, Lemma 15, p. 22 and Corollary, p. 24]. Let α, β ∈ Φ+

such that α+β ∈ Φ+. Fix a total order in the set Γ of pairs (i, j) of positive

integers such that iα+ jβ ∈ Φ. Then there exist integers cαβij such that

xα(ξ)xβ(η)xα(ξ)
−1xβ(η)

−1 =
∏

(i,j)∈Γ

xiα+jβ(c
αβ
ij ξiηj), ∀ξ, η ∈ k.(3.2)

(Clearly, (3.2) also holds when α+ β is not a root, as Uα and Uβ commute
in this case). Let m, respectively M , be the maximum integer for which
β −mα ∈ Φ, respectively β +Mα ∈ Φ. Then the α-string through β is the

set of roots of the form β −mα, . . . , β +Mα, and m−M =
2(β, α)

(α,α)
. It is

known that, up to a nonzero scalar, cαβ11 = m + 1. If the Dynkin diagram
of G is simply-laced, then m + 1 = 1; otherwise, |m + 1| ∈ {1, 2, 3}. Then

cαβ11 6= 0 except in the cases listed in Table II.

p type of Φ α β

3 G2 α1 2α1 + α2

2α1 + α2 α1

α1 + α2 2α1 + α2

2α1 + α2 α1 + α2

2 Bn, Cn, F4 orthogonal to each other
G2 α1 α1 + α2

α1 + α2 α1

Table II
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Let Σα = {β ∈ Φ+ : α + β ∈ Φ but (α, β) does not appear in Table II},
for α ∈ Φ+. If β ∈ Σα, then xα(ξ) and xβ(η) do not commute for ξ, η ∈ k×.

3.2. Conjugacy classes in finite simple groups of Lie type.

3.2.1. Finite simple groups of Lie type. Let H be a semisimple algebraic
group defined over Fq. A Steinberg endomorphism F : H → H is an ab-
stract group automorphism having a power equal to a Frobenius map [MaT,
Definition 21.3]. We may assume that F is the product of a Frobenius en-
domorphism with an automorphism of H induced by a non-trivial Dynkin
diagram automorphism. The subgroup HF is called a finite group of Lie
type [MaT, Definition 21.6].

Let G be a simple algebraic group and let F be a Steinberg endomorphism
of Gsc. Assume that it descends to a Steinberg endomorphism of G (again
called F ), that happens when kerπ is F -stable, see [MaT, Example 22.8]
for precise conditions. In particular, F descends to Gad ≃ G/Z(G) always,
and to G when it is Fq-split. It is well-known that Gad is a simple abstract
group [MaT, Proposition 12.5] but GF

ad is not simple in general. However

G := GF
sc/Z(GF

sc) is a finite simple group except for the following 8 examples
[MaT, Theorem 24.17]:

• PSL2(2) ≃ S3; PSL2(3) ≃ A4; PSp4(2) ≃ S6;
• PSU3(2),

2B2(2
2) (both solvable);

• G2(2) ≃ AutPSU3(3),
2G2(3) ≃ AutPSU2(8) (almost simple);

• 2F4(2), that contains a normal subgroup isomorphic to the Tits
group, with index 2.

Henceforth we assume that G = GF
sc/Z(GF

sc) is not one of these 8 groups
and call it a finite simple group of Lie type. Notice that π(GF

sc) = [GF ,GF ]
and there is the alternative useful description G ≃ [GF ,GF ]/π(Z(GF

sc)). In
particular, G ≃ [GF

ad,G
F
ad] [MaT, Proposition 24.21].

3.2.2. Conjugacy classes. There is a huge literature on the description of the
conjugacy classes in G, see for instance the bibliography in [Hu, LS, MaT].
We shall give precise references as they are needed. To start with, we recall
the following arguments:

⋄ Every F -stable G-conjugacy class O meets GF [MaT, Theorem 21.11
(a)], a consequence of the Lang-Steinberg Theorem [MaT, Theorem 21.7].

⋄ Let O be an F -stable G-conjugacy class, x ∈ O ∩GF and

(3.3) A(x) := CG(x)/CG(x)
◦.

Then C(GF , x) is in bijection with H1(F,A(x)) [Hu, 8.5], [MaT, Theorem
21.11 (b)].

From the preceding two facts, we see that to determine the conjugacy
classes in G, one possible way is to consider the following questions:

(a) Describe the F -stable G-conjugacy classes.
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(b) For a given F -stable G-conjugacy classO, describe theGF -conjugacy
classes in O ∩GF .

(c) Pass this information to G.

These questions were treated in extent in the literature. We will recall
the known answers for different kinds of conjugacy classes along the way.
Now we state some other useful facts.

⋄ The Borel subgroup B and the maximal torus T are chosen F -stable,
which is possible by [MaT, Corollary 21.12]. Hence so is U = [B,B].

⋄ The subgroup WF of F -fixed points in the Weyl group W is isomorphic
to NGF (T)/TF by [MaT, Proposition 23.2]; clearly, NGF (T) = NG(T)∩GF .
Even more, every element in WF has a representative in N[GF ,GF ](T) [MaT,

Corollary 24.2].

3.3. Unipotent classes in finite simple groups of Lie type. We need
to describe the unipotent conjugacy classes in finite simple groups of Lie
type. We keep the notations and assumptions from 3.2.1 for G, F and G;
let π : GF

sc → G = GF
sc/Z(GF

sc) be the natural projection. Every x ∈ Gsc

has a Chevalley-Jordan decomposition x = xsxu = xuxs, with xs semisimple
and xu unipotent. This decomposition boils down to the group G and to the
finite groups GF , [GF ,GF ] and G, where it agrees with the decomposition
in the p-part, namely xu, and the p-regular part, namely xs.

3.3.1. Unitary groups. In some inductive arguments we use the unitary
groups PSUn(q). When dealing with them we will use the following matrix

description. Let Jn =

(
1

. .
.

1

)
= J

−1
n ∈ GLn(k). Let Frq, respectively

F , be the Frobenius endomorphism of GLn(k) raising all entries of the ma-
trix to the q-th power, respectively given by F (X) = Jn

t(Frq(X))−1
Jn,

X ∈ GLn(k). Following [MaT, Examples 21.14(2), 23.10(2)], the unitary
and special unitary groups are GUn(q) = GLn(k)

F , SUn(q) = SLn(k)
F .

Also, SUn(q) can be realized as a subgroup of SLn(q
2) [W]. If h ∈ N, then

F 2h(X) = Frq2h(X), F 2h+1(X) = Jn
t(Frq2h+1(X))−1

Jn.

Hence GUn(q), respectively SUn(q), PSUn(q), can be identified with a
subgroup of GUn(q

2h+1), respectively SUn(q
2h+1), PSUn(q

2h+1).

The unipotent conjugacy classes in SUn(q) are described as the unipotent
conjugacy classes in SLn(q). Indeed,

⋄ Every unipotent class in SUn(q) has a type : u ∈ SUn(q) is of type
λ = (λ1, . . . , λk) if the elementary factors of its characteristic polynomial
equal (X − 1)λ1 , (X − 1)λ2 , . . . , (X − 1)λk , where λ1 ≥ λ2 ≥ · · · ≥ λk.
Conversely, since all unipotent classes in G = SLn(k) are F -stable (by a
direct computation), for any type there is a unipotent class in SUn(q), by
the Lang-Steinberg theorem.

⋄ By [Hu, 8.5] every unipotent class in GLn(k) meets GUn(q) in exactly
one class, since CGLn(k)(x) is connected for every x [SS, I.3.5].
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⋄ Since SUn(q) is normal in GUn(q), Remark 2.4 says that all unipotent
classes in SUn(q) with the same type are isomorphic as racks.

3.3.2. The isogeny argument. Section 4 is devoted to unipotent classes in
Chevalley groups. By the isogeny argument, Lemma 3.1 below, it is enough
to treat the unipotent classes in GF

sc or [G
F ,GF ]. This takes care of Question

(c) in 3.2.2 and gives flexibility to choose G in a suitable form, e. g. in matrix
form. Let G be a semisimple algebraic, resp. finite, group and Gu the set of
unipotent, resp. p-elements, in G.

Lemma 3.1. [ACG, Lemma 1.2] Let Z be a central subgroup of G whose

elements are all semisimple, respectively p-regular. Then the quotient map

π : G → G/Z induces a rack isomorphism π : Gu → (G/Z)u and a bijection

between the sets of G-conjugacy classes in Gu and in (G/Z)u. �

3.3.3. A reduction argument. The determination of the unipotent conjugacy
classes in G and those that are F -stable, Question (a) in 3.2.2, is well-
known, see [Hu, Chapter 7], [LS, Chapters 7, 17, 22]. But the description of
the GF -conjugacy classes in O ∩ GF for an F -stable G-conjugacy class O,
Question (b) in 3.2.2, is more delicate; for example there is a class in Sp4(k)
which splits into 2 classes in Sp4(q) of different size [LS, Table 8.1]. Similar
examples occur for other groups. This was not the case when G = SLn(k)
and F is Fq-split by Remark 2.4. To start with, observe that UF , which is a
p-Sylow subgroup of GF and [GF ,GF ] [MaT, Corollary 24.11], is isomorphic
to its image in G by Lemma 3.1. Hence, every unipotent element in GF ,
or in G, is conjugated to an element in UF . Also, the [GF ,GF ]-classes into
which a GF -class in [GF ,GF ] splits are all isomorphic as racks, see Remark
2.4.

The following result combines Remark 2.5, Lemma 2.6 and [Hu, 8.5].

Lemma 3.2. Let M be an F -stable subgroup of G and x ∈ MF .

Let g ∈ G such that z = g−1F (g) ∈ CG(x). Assume that the class of z in

H1(F,A(x)) has a representative in CG(M).

(a) If OMF

x is of type D, respectively F, then OGF

gxg−1 is so.

(b) If x ∈ [MF ,MF ] and O
[MF ,MF ]
x is of type D, respectively F, then

O
[GF ,GF ]
gxg−1 is so.

Assume that every element in H1(F,A(x)) has a representative in CG(M).

This happens for instance if CG(x) = CG(M)H with H connected.

(c) If OMF

x is of type D, resp. F, then O is so for every O ∈ C(GF , x).

(d) If x ∈ [MF ,MF ] and O
[MF ,MF ]
x is of type D, respectively F, then O

is so for every O ∈ C([GF ,GF ], x). �
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3.4. Criteria to collapse for unipotent classes. Let G be a finite simple
group of Lie type and O a unipotent conjugacy class in G. We realize O
as a unipotent conjugacy class in [GF ,GF ], where as above, G is a simple
algebraic group and F is a Steinberg endomorphism of G.

Definition 3.3. Let α, β ∈ Φ+ such that α+ β ∈ Φ but the pair α, β does

not appear in Table II. We fix an ordering of Φ+. We say that O has the

αβ-property if there exists u ∈ O ∩ UF such that α, β ∈ suppu and

α+ β =
∑

1≤i≤r

γi, with r > 1, γi ∈ suppu

=⇒ r = 2, {γ1, γ2} = {α, β}.

(3.4)

Remarks 3.4. Let u ∈ O ∩ UF .

(i) If there exist simple roots α and β ∈ suppu adjacent in the Dynkin

diagram of Φ (so that α+ β is a root), then O has the αβ-property.

(ii) Let α, β ∈ Φ+ such that O has the αβ-property. By (3.4), neither α

nor β can be decomposed as a sum of roots in supp(u). Using the Chevalley

commutator formula (3.2), we infer that α and β lie in the support of u for

every ordering on Φ+, and the αβ-property is independent of the ordering.

3.4.1. Unipotent classes of type D in Chevalley and Steinberg groups. We
give a criterium to determine if unipotent classes in Chevalley and Steinberg
groups are of type D. In this subsection, we assume that q is odd. Recall that
the only groups corresponding to very twisted Steinberg endomorphisms in
odd characteristic are the Ree groups 2G2(3

2h+1). See [C, Section 12.4].

Proposition 3.5. Let G be a finite simple group of Lie type. Assume O

has the αβ-property, for some α, β ∈ Φ+ such that q > 3 when (α, β) = 0.

Then O is of type D.

Proof.

Step 1. If there exists t ∈ T∩ [GF ,GF ] such that 1 6= α(t) 6= β(t), then O is

of type D.

Fix an ordering of the positive roots ending with α + β < β < α. Since

O has the αβ-property, there exists u ∈ O with

u =
∏

γ∈supp(u)

xγ(aγ) ∈

(
∏

γ∈supp(u)
γ 6=α,β,α+β

Uγ

)
xα+β(aα+β)xβ(aβ)xα(aα),

and aαaβ 6= 0. Let r = u, s = trt−1 ∈ O. Then

〈r, s〉 ⊆ H := 〈Uγ | γ ∈ supp(u)〉.
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Also s ∈
(∏

γ∈supp(u), γ 6=α Uγ

)
xα(α(t)aα); we see using (3.2) and (3.4)

that

OH
r ⊆

(
∏

δ=γ1+···+γl
δ 6=α, γi∈supp(u)

Uδ

)
xα(aα), OH

s ⊆

(
∏

δ=γ1+···+γl
δ 6=α, γi∈supp(u)

Uδ

)
xα(α(t)aα).

Since α(t) 6= 1, OH
r 6= OH

s , hence O
〈r, s〉
r 6= O

〈r, s〉
s . Since rs, sr ∈ UF and

p 6= 2, (rs)2 6= (sr)2 if and only if rs 6= sr. To prove the last inequality, and

conclude that O is of type D, let V := 〈Uγ | γ ∈ supp(u), γ 6= α, β, α + β〉.

Observe that if a right coclass V w of some w ∈ U contains an element of

the form xα+β(z)xβ(y)xα(x), then x, y, z are unique by (3.4) and Remark

3.4 (ii), using (3.2). Again by (3.4) and Remark 3.4 (ii), using (3.2), we see

that the coclass V rs contains xα+β(z)xβ((1+β(t))aβ)xα((1+α(t))aα), with

z = β(t)cα,β11 aαaβ + (1 + (α+ β)(t))aα+β ,

while V sr contains xα+β(z
′)xβ((1 + β(t))aβ)xα((1 + α(t))aα), with

z′ = α(t)cα,β11 aαaβ + (1 + (α+ β)(t))aα+β .

Since α(t) 6= β(t) and cα,β11 aαaβ 6= 0 by assumption, we get that rs 6= sr.

Step 2. If G is a Chevalley group, then there exists t ∈ T ∩ [GF ,GF ] such

that 1 6= α(t) 6= β(t).

Without loss of generality, if α and β have different lengths, we choose β

to be the longest one. Take t = β∨(ζ) ∈ T, where ζ is a generator of F×
q .

Then t ∈ [GF , GF ] by [Sp2, 8.1.4], and α(t) = ζ
2(α,β)
(β,β) , β(t) = ζ2. If Φ is

simply-laced then r = 2(α,β)
(β,β) = −1 and 1 6= α(t) 6= β(t). If Φ is of type G2,

then r ∈ {−1, 1} and the same assertion follows. If Φ is doubly-laced, then

r ∈ {−1, 0}. But if r = 0, then β(t) = ζ2 6= 1 since by assumption q > 3.

Thus 1 6= β(t) 6= α(t) and the claim follows by interchanging α and β.

Hence the Proposition for Chevalley groups follows from Steps 1 and 2.

Step 3. If G is a Steinberg group, then there exists t ∈ T ∩ [GF ,GF ] such

that 1 6= α(t) 6= β(t).

Here Φ is simply-laced so 2(α,β)
(β,β) = −1. Assume first that the Dynkin

diagram automorphism θ associated with F is an involution. Then the 〈θ〉-

orbit of β is either {β} or {β, θ(β)}. In the former case, take t = β∨(ζ) ∈ T

for a generator ζ of F×
q and conclude as in Step 2. In the latter, take t =

β∨(ξ)(θβ)∨(ξq) ∈ T for a generator ξ of F×
q2
. Then t ∈ π(GF

sc) = [GF ,GF ];
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α(t) ∈ {ξ−1, ξ−1±q, ξ−1+2q} and β(t) ∈ {ξ2, ξ2−q}. Hence α(t) 6= 1, β(t)

unless q = 3 and either

(α, β) = −1, (α, θβ) = 0 and (β, θβ) = −1, or(3.5)

(α, β) = −1, (α, θβ) = 1 and (β, θβ) = 0.(3.6)

Let q = 3. If Φ is of type Dn or E6, then case (3.5) never occurs because

(β, θβ) = 0 whenever β 6= θβ. If Φ is of type An, then case (3.5) occurs only

if β = εi − εj , for i < j and either: α = εl − εi for l < i, 2j = n + 2, and

l 6= j, n + 2 − i, or α = εj − εl for j < l, 2i = n + 2; and l 6= i, n + 2 − j.

In both situations we take t = α∨(ξ)(θα)∨(ξ3) for ξ a generator of F×
9 . This

gives the claim in case (3.5).

By applying θ we observe, using Remark 3.4 (ii) that if α and β satisfy

condition (3.4), then θα and θβ also lie in supp(u). Therefore, (3.4) forces

θ(α+ β) 6= α+ β.

If Φ is of type An, then a pair of roots satisfies (3.6) only if β = εi − εj

with {i, j} ∩ {n − i + 2, n − j + 2} = ∅ and either α = εj − εn−i+2 or

α = εn−j+2 − εi with |{i, j, n − j + 2, n − i+ 2}| = 4. Since in this case

α+ β would be θ-invariant, such pairs are discarded.

If Φ is of type Dn, case (3.6) occurs only if β = εi ± εn, α = εj ∓ εn with

n 6= i 6= j 6= n. We discard such pairs as we did for type An.

Let Φ be of type E6. If a pair (α, β) satisfies (3.6) and (β, α) does not,

we interchange α and β. We verify by inspection that there are no pairs of

roots α and β such that (α, β) and (β, α) are both in case (3.6) and such

that θ(α+ β) 6= α+ β. This gives the claim when θ2 = 1.

Assume now Φ is of type D4 and θ has order 3. We will show that

α2 ∈ {α, β}. Let us fix an ordering of the roots in increasing height ht and let

u ∈ O∩UF be as in Definition 3.3. We consider the support of u with respect

to this ordering. The outer automorphism θ of order 3 permutes α1, α3 and

α4 and fixes α2. By inspection, for simple roots we have α ∈ supp(u) if

and only if θ(α) ∈ supp(u). In addition, γ + γ′ 6∈ Φ if ht(γ) = ht(γ′) ≥ 2

or if ht(γ) = ht(γ′) = 1 and γ, γ′ 6= α2. So, if {α1, α2} 6⊂ supp(u) we

have α ∈ supp(u) if and only if θ(α) ∈ supp(u) for every α ∈ Φ+. Thus, if

α2 6∈ supp(u), condition (3.4) is not verified for any pair α, β ∈ supp(u) such

that α + β ∈ Φ. So, α2 ∈ supp(u). If α1 ∈ supp(u) then we take α = α2,

β = α1. If, instead, α1 6∈ supp(u), then u has the αβ-property if and only

if α1 + α2 + α3 + α4 ∈ supp(u) and {α1 + α2, α2 + α3 + α4} 6⊂ supp(u).

In this case, we have α = α2, β = α1 + α2 + α3 + α4. In both cases,
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we take t = α∨
1 (ξ)(θα1)

∨(ξq)(θ2α1)
∨(ξq

2
) for ξ a generator of F×

q3
. Then,

t ∈ π(GF
sc) = [GF ,GF ], and α(t) = ξ−(1+q+q2) and β(t) ∈ {ξ2, ξ(1+q+q2)}.

Then, 1 6= α(t) 6= β(t) unless q = 3 and β = α1 +α2 +α3 +α4. In this case,

we replace t by tα∨
2 (−1).

Hence the Proposition for Steinberg groups follows from Steps 1 and 3.

Step 4. If G = 2G2(3
2h+1), h ≥ 1, then there exists t ∈ T ∩ [GF ,GF ] such

that 1 6= α(t) 6= β(t).

In this case the possible (unordered) pairs {α, β} are

{α1, α2}, {α1, α1 + α2}, {α2, 3α1 + α2}.

The last two pairs are interchanged by the non-standard graph automor-

phism θ such that xα1(ζ) 7→ xα2(ζ
3) and xα2(ζ) 7→ xα1(ζ) for every ζ ∈ k,

[C, 12.4]. Applying the Steinberg endomorphism Fr3h ◦θ to a representative

in a class O we see that O has the αβ-property for {α1, α1 + α2} if and

only if it has it for {α2, 3α1 + α2}. So, it is enough to consider {α1, α2}

and {α1, α1 +α2}. Let ζ be a generator of F×
32h+1 and let t = α∨

1 (ζ
3h)α∨

2 (ζ).

Then t ∈ TF ∩ [GF ,GF ] and

1 6= α1(t) = ζ2·3
h−1 6= α2(t) = ζ−3h+1+2,

α1(t) = ζ2·3
h−1 6= (α1 + α2)(t) = ζ3

h−1.

Hence the Proposition for Ree groups follows from Steps 1 and 4. �

3.4.2. Unipotent classes of type F in Chevalley and Steinberg groups. In this
subsection we address the case when q is even albeit some results are valid
more generally. We give criteria to determine when a unipotent class is of
type F in Chevalley or Steinberg groups.

Proposition 3.6. Assume that one of the following conditions hold:

• G is a Chevalley group and q /∈ {2, 3, 4, 5, 7};

• G = PSU3(q) and q 6∈ {2, 5, 8};

• G is a Steinberg group and q > 8.

If O is a unipotent class in G and has the αβ-property, for some α, β ∈

Φ+, then it is of type F.

Proof.

Step 1. If there exists a family (ta)a∈I4 in T ∩ [GF ,GF ] such that

α(ta)β(tb) 6= α(tb)β(ta) for every a 6= b,(3.7)

then O is of type F.
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Notice that (3.7) implies

(α(ta), β(ta)) 6= (α(tb), β(tb)) for every a 6= b.(3.8)

Let ra := taut
−1
a and Ra := UF ⊲ ra, a ∈ I4. We claim that (3.7) ensures

ra ⊲ rb 6= rb for every a 6= b, and that (3.8) ensures that R =
∐

a∈I4
Ra is a

subrack with Ra ⊲ Rb = Rb.

As in Step 1 of Proposition 3.5, we fix an ordering of Φ+ ending with

α + β < β < α. Let V = 〈Uγ | γ ∈ supp(r), γ 6= α, β, α + β〉. Since O has

the αβ-property, there exists r ∈ O with r ∈ Vxα+β(aα+β)xβ(aβ)xα(aα) and

aαaβ 6= 0. Then ra ∈ Vxα+β((α + β)(ta)aα+β)xβ(β(ta)aβ)xα(α(ta)aα). By

(3.4) and Remark 3.4 (ii), using (3.2), we see that the coclass Vrarb contains

xα+β(x)xβ(y)xα(z) with

x = (α+ β)(ta)aα+β + cα,β11 α(ta)β(tb)aβaα,(3.9)

y = (β(ta) + β(tb))aβ ,(3.10)

z = (α(ta) + α(tb))aα.(3.11)

Arguing as in the proof of Step 1 of Proposition 3.5, we see that ra ⊲ rb 6= rb

and that Ra ⊂ V′xβ(β(ta)y)xα(α(ta)x) with V′ = 〈Uγ | γ 6= α, β〉. By a

direct computation;
∐

a∈I4
Ra is subrack of O, hence O is of type F.

Step 2. If G is a Chevalley group and q > 7, then there exists a family

(ta)a∈I4 in T ∩ [GF ,GF ] satisfying (3.7).

Let ζ be a generator of F×
q . By assumption on q, for ea := a − 1 with

a ∈ I4 we have rea 6≡ reb mod (q−1) for all pairs a 6= b and 1 ≤ r ≤ 3. If α

and β have different lengths, we assume that α is the longest one. Set ta =

α∨(ζea) ∈ T; by [Sp2, 8.1.4], ta ∈ [GF ,GF ]. Then α(ta)β(tb) = ζ2ea+meb

with m ∈ {−1, 0, 1} and a direct verification gives the claim.

Hence the Proposition for Chevalley groups follows from Steps 1 and 2.

Step 3. If G = PSU3(q), for q 6∈ {2, 5, 8}, then there exists ta ∈ T∩[GF ,GF ]

for a ∈ I4 satisfying (3.7).

The only classes with the αβ-property are the regular ones. In this case

we have α = α1, β = θ(α1) = α2 and, for ζ a generator in F
×
q2

we set

(3.12) ta = α∨(ζa−1)β∨(ζ(a−1)q), for a ∈ I4.

Then (α(ta), β(ta)) = (ζ(a−1)(2−q), ζ(a−1)(2q−1)) and the claim follows from

a direct computation.
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Hence the Proposition for PSU3(q) follows from Steps 1 and 3. We

assume in the remaining Steps 4, 5 and 6 that G is a Steinberg group,

G 6= (3)D4(q); by the preceding Step, we also assume that G 6= PSU3(q).

Step 4. If q > 5 and {α, β} ∩ {θ(α), θ(β)} = ∅, then there exists ta ∈

T ∩ [GF ,GF ] for a ∈ I4 satisfying (3.7). The same holds if q = 4, except

when (α, θ(α)) = −1 and (θ(α), β) = 1.

Since θ preserves positivity of roots, we have θ(α) 6= −α, θ(β) 6= −β.

Hence, for m := (α, θ(α)),m′ := (θ(α), β), we have m,m′ ∈ {−1, 0, 1}. Let

ta be as in (3.12) with β = θ(α). Then α(ta) = ζ(a−1)(2+mq), β(ta) =

ζ(a−1)(m′q−1). Therefore, (3.7), follows if |ζ(3+q(m−m′))| ≥ 4. A direct esti-

mate making use of the equalities

gcd(q2 − 1, q ± 3) = gcd(8, q ± 3), for q 6= 3

shows that (3.7) holds for q > 5, or for q = 4 provided that (m,m′) 6= (−1, 1).

Step 5. If q > 7 and β 6= θ(α), then there exist ta ∈ T ∩ [GF ,GF ] for a ∈ I4

satisfying (3.7).

For α = θ(α), or α 6= θ(α) but β = θ(β), and q > 7, the proof is as in

Step 2. If α 6= θ(α) and β 6= θ(β), then this is Step 4.

Step 6. If q 6∈ {2, 5, 8} and β = θ(α), then there exist ta ∈ T ∩ [GF ,GF ] for

a ∈ I4 satisfying (3.7).

This Step is proved as Step 3.

Hence the Proposition for a Steinberg group G different from (3)D4(q) and

PSU3(q) follows from Steps 1, 4, 5 and 6.

Step 7. Assume G =(3)D4(q) and q 6= 2, 3, 4, 7. Then O is of type F.

By the proof of Step 3 in Proposition 3.5 we can always assume that α =

α2 and β ∈ {α1, α1+α2+α3+α4}. Let ζ ∈ F×
q be a generator. Let ea = a−1,

with a ∈ I4. In the first case we take ta = β∨(ζ)θ(β)∨(ζ)θ2(β)∨(ζ)α∨(ζea).

Since ζq = ζ, we have ta ∈ TF . Further, since (α, θi(β)) = −1 and

(θi(β), θi(β)) = 2 we have α(ta)β(tb) = ζ−1+2ea−eb . As in Step 2, (3.7)

are satisfied if q 6= 2, 3, 4, 7. In the second case we take α = α2, β =

α1 + α2 + α3 + α4. Then, the proof follows as in Step 2. Indeed, define

ta = α∨(ζea) ∈ TF ∩ [GF ,GF ]. Then α(ta)β(tb) = ζ2ea−eb and a direct

verification gives the claim. Thus, O is of type F by Step 1. �
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3.5. Regular unipotent classes. A regular unipotent conjugacy class in
a reductive algebraic group is the unique unipotent class with maximal di-
mension. Then we say that O is regular if it is contained in the regular
unipotent class in G. We shall prove often that a class is of type D or F by
considering the intersection with a smaller group, containing a regular class
of the latter. Thus, we need to see when regular classes are of type D or F.

Proposition 3.7. Assume that q is odd. Let G be a finite simple group of

Lie type not of type A1. If O is regular, then it is of type D.

Proof. By [St2, 3.2, 3.3], every regular unipotent element u in U can be writ-

ten as u = U′xα1(a1) · · · xαn(an) where U′ is the product of root subgroups

of height at least 2 and each ai ∈ k×. If the rank of G is not 1, this ensures

that for every u ∈ O ∩UF , there are α, β simple adjacent roots in supp(u);

hence O has the αβ-property. Now Proposition 3.5 applies. �

Proposition 3.8. Assume G is either

(a) a Chevalley group with q > 7 and G 6= SL2(k), or

(b) PSU3(q), with q 6∈ {2, 5, 8}, or

(c) PSUn(q), with n ≥ 5, or (2)E6(q), and q 6∈ {2, 3, 5}, or

(d) (2)Dn(q) for n ≥ 4 or PSU4(q), and q > 7, or

(e) (3)D4(q) and q 6= 2, 3, 4, 7.

Then every regular unipotent class in G is of type F.

Proof. Arguing as in Proposition 3.7 there exists u ∈ O∩UF and α, β ∈ Φ+

such that O has the αβ-property, hence we may invoke Proposition 3.6. If

G = PSUn(q), with n ≥ 5, or G = (2)E6(q) we can always find adjacent

simple roots α and β such that {α, β} ∩ {θ(α), θ(β)} = ∅, so Step 4 applies.

If G = (2)Dn(q) for n ≥ 4 or PSU4(q), then we can always find adjacent

simple roots α and β with β 6= θ(α) and Step 5 applies. �

Remark 3.9. If p is good (see [SS, I.4.3] for the list of bad primes) then all

regular unipotent classes in GF are isomorphic as racks [TZ, Lemma 4.1].

But this is not always the case for p bad. Let, for instance, p = 2, GF

= Sp4(2)
∼= S6. The regular unipotent classes O and O′ correspond to the

partitions (12, 4) and (2, 4), and have isomorphic centralizers. We compute

the inner groups of them, see [AG, Definition 1.3], using [AG, Lemma 1.9]:

InnO = S6 and InnO′ = A6. Thus O and O′ are not isomorphic as racks.

We next deal with some specific groups. See §4 for the needed notation
of symplectic groups.
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Lemma 3.10. Let q > 2 be even. The regular unipotent classes in Sp2n(q)

are of type F.

Proof. There are exactly 2 regular unipotent classes in Sp2n(q) [LS, Theo-

rem 6.2.1]. Both are treated similarly, so fix one of them, say C. There is

an upper-triangular matrix u ∈ C. By Jordan theory u is regular in SL2n(q)

[SS, IV.2.15.9(ii)], so all its coefficients in the upper subdiagonal are 6= 0.

Assume first that n = 2. Then we may assume that u =

( 1 x 0 p
0 1 y xy
0 0 1 x
0 0 0 1

)
.

Indeed, if u =

( 1 x l p
0 1 y m
0 0 1 z
0 0 0 1

)
, then since u ∈ Sp4(q) and it is a regular element

we have that x = z, m = l + xy and xyz 6= 0. Conjugating by v =(
1 ly−1 0 0
0 1 0 0
0 0 1 ly−1

0 0 0 1

)
we obtain that (vuv−1)13 = 0 and (vuv−1)24 = xy 6= 0. Let ζ

be a generator of F×
q . Conjugation by the diagonal matrices (ζa, ζb, ζ−b, ζ−a),

a, b ∈ {0, 1}, provides 4 different representatives xa,b of O
Sp4(q)
x . We check

that the subracks Ra,b := UF ⊲xa,b are disjoint for (a, b) 6= (c, d) as in [ACG,

3.1]. A direct computation looking at (xa,bxc,d)13 and (xa,bxc,d)14 shows that

xa,b ⊲ xc,d 6= xc,d if (a, b) 6= (c, d) for all q > 2.

Assume now n > 2. Then Lemma 2.2 applies with P = PF such that P is

the standard parabolic subgroup containing L = TSp4(k) as a Levi factor

and L = LF , the Fq-points of L. Indeed since u is regular unipotent, it

is a p-element so its image u is contained in Sp4(q) ⊂ L and it is regular

therein. �

For further use, we treat here regular classes in other groups. Recall the
notation in §3.3.1.

Lemma 3.11. Let q = 22h+1, where h ∈ N0. The regular unipotent classes

in GUn(q) for 1 < n odd are of type D.

Proof. Assume q = 2, n = 3. By Subsection 3.3.1, there is a unique unipo-

tent regular conjugacy class O in GU3(2). Let ζ, η ∈ F
×
4 − 1. Then

r =
(

1 1 ζ
0 1 1
0 0 1

)
∈ O. By [Hu, 6.22], CSL3(k)(u) = Z(SL3(k))CSL3(k)(u)

◦. It

is not hard to verify that, for F the twisted Steinberg endomorphism on

SL3(k), the F -twisted action of Z(SL3(k)) ≃ Z/3 on itself is trivial, see

[MaT, Example 21.14]. Thus, there are exactly 3 regular unipotent con-

jugacy classes in SU3(2). Let x ∈ k be such that x3 = η−1. Then for

g =
(

x4

x
x4

)
we have g−1F (g) = η id3 so, grg−1 ∈ O \ O

SU3(2)
r . Clearly
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J3 ∈ SU3(2) < GU3(2), so also s = J3grg
−1
J3 ∈ O \ O

SU3(2)
r . By a direct

computation, (rs)2 6= (sr)2. Since 〈r, s〉 ⊂ SU3(2), O is of type D.

Assume q = 2, n = 2l + 1 > 3. Let P be the standard F -stable parabolic

subgroup associated to the simple roots αl, αl+1 and let L be the correspond-

ing standard F -stable Levi subgroup; L contains a subgroup isomorphic to

GL3(k). Then, L
F contains a subgroup isomorphic to GU3(q) and Lemma

2.2 applies with P = PF and L = LF , by the case n = 3. The claim for

general q follows since GUn(2) < GUn(2
2h+1). �

3.6. Further remarks. We shall often invoke the following result.

Lemma 3.12. [ACG, §3.5] Let O be a unipotent class in SLn(q), with

partition (λ1, . . . , λk). Table III summarizes when O is of type D or F. �

n q type (λ1, . . . , λk) Type
2 odd square > 9 (2) D

> 2 odd λ1 ≥ 3 D
(2, 2, . . . ) D
(2, 1 . . . ) D

> 2 even λ1 ≥ 5 F
λ1 = 4 D

(3, 3, . . . ) D
(3, 2, . . . ) F
(3, 1, . . . ) D
(2, 2, . . . ) D

(2, 1, 1, 1, . . . ) F

3 even ≥ 8 (3) F
4 (3) D

Table III

We end this subsection with another useful observation.

Remark 3.13. Let P be an F -stable parabolic subgroup of G, let L be an

F -stable Levi subgroup and let π : P → L be the projection associated with

the Levi decomposition P = LQ. Let G = GF , P = PF , Q = QF , L = LF .

(1) Let r, s ∈ P with s ∈ Q 6∋ r. Then O
〈r,s〉
r 6= O

〈r,s〉
s because Q ⊳ P .

(2) If moreover OG
r = OG

s and π(rs)2 6= π(sr)2, then OG
r is of type D.

4. Unipotent classes in finite symplectic groups

In this section, G is the symplectic group Sp2n(k), that is the subgroup

of GL2n(k) leaving invariant the bilinear form
(

0 Jn
−Jn 0

)
, for Jn =

(
1

. .
.

1

)
.

We assume n ≥ 2, since Sp2(k) = SL2(k). Let B be the Borel subgroup
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of G consisting of upper triangular matrices. Since G is simply connected,
GF = [GF ,GF ] = Sp2n(q) =: G and G = PSp2n(q) = GF/Z(GF ). By the
isogeny argument, Lemma 3.1, it suffices to consider unipotent classes in G.

4.1. Symplectic groups for q odd. To a unipotent class O in Sp2n(k) we
attach the partition of 2n determined by the Jordan form of O in GL2n(k).
If q is odd, then the partition uniquely determines O. The partitions cor-
responding to unipotent classes in G are of the form (1r1 , 2r2 , . . . , 2nr2n)
where ri is even for every odd i [SS, IV.2.15.9(ii)]. We call them symplectic
partitions.

Let u ∈ G unipotent. There is a reductive subgroup J of G containing
u as a regular unipotent element, such that CG(u) = CG(J)V where V is a
connected normal subgroup of CG(u) [LS, Lemmata 3.14, 3.17]. Namely, J
is given in [LS, (3.4), p. 48]: if Ou corresponds to (1r1 , 2r2 , . . . , 2nr2n), then

J ∼=
∏

i odd

Oi(k)×
∏

i even
Spi(k),(4.1)

where the product is taken over those i such that ri 6= 0. We can always
assume that J is F -stable and that F induces an Fq-split morphism on each
of its simple factors [LS, p. 113]. Recall that C(G,u) denotes the set of
G-conjugacy classes contained in OG

u , when u ∈ G.

Lemma 4.1. Let u be a nontrivial unipotent element in G associated with

the partition (1r1 , . . . , nrn). Assume that one of these conditions hold:

(1) there exists i > 3 for which ri 6= 0;

(2) 9 < q is a square and the partition is (1r1 , 2r2) with r2 > 0.

Then O is of type D for every O ∈ C(G,u).

Proof. Since u is unipotent, it lies in the following subgroup of J

M =
∏

i odd

SOi(k)×
∏

i even
Spi(k)

and each component of u in M is regular in its factor. We show that OMF

u

is of type D. Case (1) follows from Proposition 3.7. In Case (2), r2 > 0 and

MF is a group of type A1; hence [ACG, Lemma 3.6] applies. For the other

classes in C(G,u), we apply Lemma 3.2 (c); indeed CG(u) = CG(J)V and V is

connected, so representatives of A(u) can be found in CG(J) < CG(M). �

By Lemma 4.1 (1), it remains to consider the partitions (1r1 , 2r2 , 3r3). We
start by (1r1 , 3r3); the argument in Lemma 4.1 (2) also applies for it, but
there is an alternative without the restrictions in the parameters.

Lemma 4.2. Let u ∈ G be a unipotent element corresponding to a partition

of the form (1r1 , 3r3), with r3 > 0. Then OG
u is of type D.
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Proof. By [LS, Theorem 3.1 (v)] we have CG(u) = CG(u)
◦ so C(G,u) consists

of a single class O. We set r3 = 2e. Let v =
(

1 1 0
0 1 1
0 0 1

)
. A representative of O is

(
v⊗ide 0 0

0 id2n−3r3 0

0 0 (J3 tv−1
J3)⊗ide

)
. Now we may assume that e = 1; in this case

the injective morphism ι : SL3(q) → G, X 7→ diag(X, id2n−6, J3
tX−1

J3)

induces a rack embedding O
SL3(q)
v →֒ OG

u and by the isogeny argument,

Proposition 3.7 applies. �

Lemma 4.3. Let O be a unipotent class in G with partition (1r1 , 2r2), with

r2 > 1. If q > 3 or n > 2, then the class is of type D.

Proof. In this case A(u) ≃ Z/2 [LS, Theorem 3.1 (v)], so C(G,u) con-

sists of 2 classes. One of them is represented by u =

(
idr2 0 Jr2
0 idr1 0
0 0 idr2

)
.

We find a representative for the other. Recall the notation (4.1); it can

be shown that CG(J) ≃ Or2(k) × Spr1(k) is the subgroup of matrices

gA,M =

(
A 0 0
0 M 0
0 0 Jr2AJr2

)
with AtA = idr2 and M ∈ Spr1

(k). The non-

trivial element in A(u) is represented by gL,idr1 for L = diag(−1, 1, . . . , 1).

Let ξ ∈ Fq2 \ Fq be such that ξq−1 = −1, so ζ = ξ2 ∈ Fq is not a square in

Fq. Let g = diag(ξ, 1, , . . . , 1, ξ−1) ∈ Sp2n(k). Then g−1F (g) = gL,idr1 , so

C(G,u) = {OG
u ,O

G
v } where

v = gug−1 =




1 ζ
idr2−1 Jr2−1

idr1
idr2−1

1


 .

Let M be the F -stable subgroup of Sp2n(k) of matrices
(

a 0 b
0 M 0
c 0 d

)
with

ad− bc = 1 and M ∈ Sp2n−2(k). Clearly, M ≃ SL2(k)× Sp2n−2(k). Then

OMF

u ≃ OMF

v ≃ O
SL2(q)
x1 ×O

Sp2n−2(q)
y1 with

x1 = ( 1 1
0 1 ) , y1 =

( idr2−1 0 Jr2−1

0 idr1 0
0 0 idr2−1

)
.

We show that this subrack is of type D by application of Lemma 2.3. First,

x2 =
(

1 0
−1 1

)
∈ O

SL2(q)
x1 satisfies (x1x2)

2 6= (x2x1)
2. So, we have to find

y2 ∈ O
Sp2n−2(q)
y1 commuting with y1.

Assume q > 3, and let η ∈ F×
q \ {1,−1}. Then we take

y2 =

(
η idr2−1

idr1
η−1 idr2−1

)
⊲ y1 =

(
idr2−1 0 η2Jr2−1

0 idr1 0
0 0 idr2−1

)
.
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Assume now that n > 2. If r2 > 2, then

y2 =

( 1 1
1
id2n−6

1 −1
1

)
⊲ y1 ∈ O

Sp2n−2(q)
y1

commutes with y1. If r2 = 2, then necessarily r1 > 1. In this case we take

y2 =

( 0 1
−1 0

id2n−6

0 −1
1 0

)
⊲ y1 =

( 1 0 0
1 1 0
id2n−6

1
1

)
. �

Lemma 4.4. Let u be a unipotent element in G with partition (1r1 , 2r2 , 3r3),

such that r2r3 > 0. Then OG
u is of type D.

Proof. Here r3 = 2a is even and CG(J) ≃ Spr1(k) × Or2(k) × Spr3(k), so

A(u) ≃ Z/2 [LS, Theorem 3.1(v)] and C(G,u) = {OG
u ,O

G
v } has 2 elements.

Let x =
(

1 1 0
0 1 1
0 0 1

)
and w in Sp2n−3r3(q) unipotent with partition (1r1 , 2r2).

Then we choose

u =
(

x⊗ida
w

J3
tx−1

J3⊗ida

)
.

Let M < G consisting of matrices of the form diag(id3a, Y, id3a), with Y in

Sp2n−3r3(k), and let Jw be the reductive group containing w as a regular

element, cf. [LS, 3.2.3]. Then CM(Jw) ≃ Spr1
(k)×Or2(k) < CG(J) < CG(u)

and a representative b for the nontrivial class in A(u) may be chosen in M.

By Lang-Steinberg’s Theorem, there exists g ∈ M such that g−1F (g) = b,

so we may pick v = gug−1. In other terms, v =

(
x⊗ida

z
J
t
3x

−1
J3⊗ida

)
with

C(Sp2n−3r3(k), w) =
{
O

Sp2n−3r3
(q)

w ,O
Sp2n−3r3

(q)
z

}
. Then OG

u and OG
v contain

a subrack isomorphic to O
SL3(q)
x , and by the isogeny argument, Proposition

3.7 applies. �

Lemma 4.5. There are two unipotent classes in GF = Sp4(3) of type (22);

one of them is of type D and the other is cthulhu.

Proof. As in the proof of Lemma 4.3, there are two classes of type (22),

represented by z =

(
1 1
1 1
1
1

)
and w =

(
1 −1
1 1
1

1

)
. It can be verified that

x = xα1(1) =

(
1 1
1
1 −1

1

)
∈ O

Sp4(3)
w . The discussion in [ACG, 3.1] shows

that OUF

x 6= OUF

w , and that xw 6= wx. In addition, xw and w(xw)w−1 = wx

lie in UF so they have odd order, hence (xw)2 6= (wx)2. The claim on the

other class was verified with GAP. �

4.2. Symplectic groups for q even. In this section q is even, so the
symplectic group G is the subgroup of GL2n(k) leaving invariant the bilinear
form J2n. Here symplectic partitions do not distinguish conjugacy classes.
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4.2.1. Unipotent conjugacy classes. We parametrize the unipotent conju-
gacy classes in G as in [LS, 6.1, cf. Lemma 6.2]. Let V be the natural
representation of G and let u ∈ G unipotent. Then V decomposes, as an
u-module by restriction, into an orthogonal direct sum of indecomposable
submodules (where k, r ∈ N0, the mi’s are distinct, ditto for the kj ’s)

V =

k⊕

i=1

W (mi)
ai ⊕

r⊕

j=1

V (2kj)
bj , 0 < ai, 0 < bj ≤ 2.(4.2)

We describe the summands in the right-hand side:
• dimW (mi) = 2mi and u|W (mi) is regular in a subgroup Hmi

, that is the
image of SLmi

(k) by the embedding of GLmi
(k) in Sp(W (mi)) given by

X 7→ diag(X, Jmi

tX−1
Jmi

)(4.3)

and thus u|W (mi) is of partition (mi,mi) in Sp(W (mi));

• dimV (2kj) = 2kj and u|V (2kj) is regular in a subgroup J2kj ≃ Sp2kj (k)

and thus u|V (2kj) is of partition (2kj).

Set H =
∏k

i=1 H
ai
mi

, J =
∏r

j=1 J
bj
2kj

. Then u is regular in M := H× J. Let

W =
⊕k

i=1 W (mi)
ai and V =

⊕r
j=1 V (2kj)

bj . Then

M <

k∏

i=1

Sp(W (mi)
ai)×

r∏

j=1

Sp(V (2kj)
bj ) < Sp(W)× Sp(V) < G.(4.4)

By the description in [LS, p. 91], there is u ∈ G = GF such that all
subgroups Hmi

, J2kj , H, J, M, Sp(W), Sp(V) are F -stable and F acts on
each of them by a split Frobenius automorphism. In particular,

H
F ≃

k∏

i=1

SLmi
(q)ai , J

F ≃
r∏

j=1

Sp2kj (q)
bj .

We fix this u in the rest of this Subsection.

4.2.2. Representatives of classes in C(G,u). We now address the problem
of finding suitable subracks for O ∈ C(G,u), that we recall again is the set
of G-conjugacy classes contained in OG

u . First we need some information on
A(u), cf. (3.3).

Lemma 4.6. There is a set of representatives Ξ of A(u) in CG(u) such that

for every x ∈ Ξ there is g ∈ G with x = g−1F (g) satisfying:

(a) F (gMg−1) = gMg−1 and F (gJ2kj g
−1) = gJ2kjg

−1 for every j.

(b) (gMg−1)F ≃
∏k

i=1(SLmi
(q)ai−1 ×Gi)× JF , where Gi is SLmi

(q) or

SUmi
(q); SUmi

(q) may occur only if mi > 1 is odd.
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Proof. By the proof of [LS, Theorem 6.21], there is a maximal torus T0 of

CG(u) such that

CG(u) = CG(u)
◦NH(4.5)

where N = NG(T0) ∩ CSp(W)(u), H = CSp(V)(u), NH ≃ H ×N . Also,

(NH) ∩ CG(u)
◦ = (N ∩ CG(u)

◦)(H ∩ CG(u)
◦), H/H ∩ CG(u)

◦ = H/H◦.

Hence, we may construct a set of representatives Ξ for A(u) as a product

ΣΣ′ ∈ NH where Σ, resp. Σ′, is a set of representatives of N/N ∩ CG(u)
◦,

respectively of H/H◦. We claim that there are Σ,Σ′ ⊂ NG(M) ∩ NG(J2kj )

for every j. First H/H◦ is generated by images of the components uj of u

in some factors J2kj [LS, Lemmata 6.13, 6.14], so any Σ′ ⊂ J will do. For Σ

we need additional information from the proof of [LS, Theorem 6.21]:

• T0 is a product of subtori Ti of dimension ai acting on a single

summand W (mi)
ai without fixed points;

• N =
∏k

i=1 Ni where Ni = NG(Ti) ∩ CSp(W (mi)ai )(u).

Then
∏k

i=1 Ni/(Ni ∩ CG(u)
◦) maps onto N/(N ∩ CG(u)

◦) and Ni ⊂

NG(Sp(W (mj)
aj ) ∩ NG(J2kj ) for every i, j. In order to describe the ac-

tion of an x ∈ Ni on Sp(W (mi)
ai) we analyze the component of u lying in

this subgroup. We may assume it is
(

v⊗idai
Jmi

tv−1
Jmi

⊗idai

)
where v is a

regular unipotent matrix in SLmi
(k), and so Ti is the subgroup of diagonal

matrices

(λ1 idmi
, . . . , λai idmi

, λ−1
ai

idmi
, . . . , λ−1

1 idmi
).

Then NSp2miai
(k)(Ti) normalizes [CSp2miai

(k)(Ti), CSp2miai
(k)(Ti)] = Hai

mi
,

and the claim follows. The claim implies (a) by Remark 2.5 (b).

Let x = sh ∈ Ξ, s ∈ Σ, h ∈ Σ′. By construction and Lang-Steinberg’s

theorem applied to s ∈
∏

i Sp(W (mi)
ai) and h ∈ J, we may choose g such

that g−1F (g) = x as

g = yz, where y ∈
∏

i

Sp(W (mi)
ai), y−1F (y) = s; z ∈ J, z−1F (z) = h.

(4.6)

Since Σ′ ⊂ CG(H) ∩ J, Σ ⊂ CG(J),

(yzJz−1y−1)F = (yJy−1)F = J
F .

Also, Ni/Ni ∩ CG(u)
◦ is either trivial or ≃ Z/2 [LS, Theorem 6.21]. A

representative of the non-trivial element is xi = x′ix
′′
i , where
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x′i =




id(ai−1)mi

0mi
idmi

idmi
0mi

id(ai−1)mi


 , x′′i =

( idmi(ai−1)

X
X̃

idmi(ai−1)

)
;

here X ∈ GLmi
(k) satisfies XvX−1 = Jmi

tv−1
Jmi

, and X̃ = Jmi
tX−1

Jmi
.

Then xi normalizes each factor in SLmi
(k)ai , centralizes the first ai − 1

factors and induces a non-trivial graph automorphism on the last one. Thus,

(zyHai
mi

y−1z−1)F = (zHai
mi

z−1)F
Rem. 2.5 (c)

= z(Hai
mi

)Ad(x)F z−1

= z((Hai−1
mi

)F ×H
Ad(x)F
mi

)z−1

and the first part of (b) follows from Remark 2.5 (c). Finally, Ni = Ni ∩

CG(u)
◦ when mi is even or mi = 1, hence the last restriction in (b). �

Corollary 4.7. Let u ∈ G with decomposition (4.2). If JF 6= 1 then every

O ∈ C(G,u) contains a subrack that is a regular unipotent class in JF .

Proof. We choose the representatives of elements in A(u) in NH by (4.5).

For x ∈ NH, there is g ∈ Sp(W)×J such that g−1F (g) = x, see (4.6). Then

the component gug−1
|V of gug−1 on V is regular in gJg−1 = J and OJF

gug−1
|V

is

a subrack of OGF

gug−1 . �

4.2.3. Preliminary results. Before starting the analysis of the various classes,
we state two results needed for the application of Lemma 2.3.

Lemma 4.8. Let O be a regular unipotent class in either SLn(q), SUn(q)

or Sp2n(q). Then there are x1, x2 ∈ O such that (x1x2)
2 6= (x2x1)

2.

Proof. Let J = Jn.

Case 1. SLn(q) for n ≥ 2. By Remark 2.4 we may assume that O ∋ x1 =(
1 1

. . .
. . .
1 1

1

)
; then take x2 = Jx1J

−1.

Case 2. SUn(q), n even. By Remark 2.4 we assume that O ∋ x1 = ( u v

0 u
−1 ),

with u =




1 1 ... ... 1
. . .

. . . 1

. . . 1
1


 and v =

(
1 0 ... 0
...
...

...
...

1 0 ... 0

)
. Let x2 :=

t(Frq(x1)) =
tx1; we

claim that x2 ∈ O. Indeed, by definition of SUn(q), x2 = Jx−1
1 J ∈ O−1 =

O, the last equality by [TZ, 1.4(ii)]. Since x1 is regular, CSLn(k)(x1) is con-

tained in the Borel subgroup of upper triangular matrices; as (x2x1x2)21 = 1,

x2x1x2 6∈ CSLn(k)(x1).
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Case 3. SUn(q), n odd. Let ξ ∈ Fq2 satisfy ξq + ξ + 1 = 0. By Remark 2.4

we assume that O ∋ x1 =

(
u d ξv
0 1 b
0 0 u

−1

)
, with u, v as in Case 2, d =

(
1
...
1

)
, and

b = ( 1 0 ... 0 ). Now take x2 := tFrq(x1) ∈ O and repeat the argument for

Case 2.

Case 4. Sp2n(q), n ≥ 2. There are 2 regular classes, O and O′. Each

of them is represented by a triangular matrix whose terms in the upper

subdiagonal are 6= 0. If x1 is a representative like this, then x2 = σ ⊲ x1,

where σ =

(
J2 0 0
0 id2n−4 0
0 0 J2

)
, does the job. �

Lemma 4.9. Let n > 2 or q > 2 and O a regular unipotent class in SLn(q),

SUn(q), or Spn(q). Then there are y1, y2 ∈ O with y1 6= y2, y1y2 = y2y1.

Proof. By [TZ, 1.4(ii)] for SLn(q) or SUn(q), and [Go] for Spn(q), O = O−1.

If n > 2 no regular element is an involution, so y1 = y−1
2 will do. If n = 2

and q > 2, then take y1 = ( 1 1
0 1 ) and y2 =

(
1 ξ
0 1

)
for 1 6= ξ ∈ F×

q . �

4.2.4. Analysis of the different classes. We now assume that u ∈ G is unipo-
tent with decomposition (4.2). Let O be an arbitrary class in C(G,u).

Lemma 4.10. If (4.2) contains W (4), then O is of type D.

Proof. By Lemma 4.6, O contains a subrack isomorphic to the regular class

in SL4(q). Then Lemma 3.12 applies. �

Lemma 4.11. If (4.2) contains any of these terms, then O is of type F.

(a) V (2kj) with kj > 1 and q > 2.

(b) W (mi) either with mi > 4, q > 4; or else with mi = 3, q > 8; or

else with mi > 4 even.

Proof. (a): By Corollary 4.7, O contains a subrack isomorphic to a regular

class in Sp2kj (q); then Lemma 3.10 applies. (b): By Lemma 4.6, O contains

a subrack isomorphic to a regular class in SLmi
(q), or SUmi

(q) (the last

occurs only whenmi > 1 is odd); then either Lemma 3.12, or else Proposition

3.8 (b), (c), or (d), apply. �

In the next Lemma, we use that u|W (3) is regular in the image of GL3(k)
via (4.3), hence O may contain a subrack isomorphic to a regular class in
a subgroup ≃ GU3(8) when appropriate. We do so because the regular
unipotent class in SU3(8) is not known to be of type D or F.

Lemma 4.12. If (4.2) contains any of these terms, then O is either of type

D or else of type F.
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(a) W (mi) with mi > 1 odd and q = 4.

(b) W (3) and q = 8.

Proof. We apply Lemma 4.6. (a): O contains a subrack isomorphic to the

regular class in SLmi
(4) or in SUmi

(4). Then Lemma 3.12 or Proposition

3.8 (b) or (c) apply. (b): O contains a subrack isomorphic to the regular

class in SL3(8) or in GU3(8). Then Lemma 3.12 or Lemma 3.11 apply. �

Lemma 4.13. If (4.2) contains any of these terms, then O is of type D.

(a) V (2ki)⊕ V (2kj) with kikj > 1 or q > 2.

(b) W (mi)⊕V (2kj) with mi > 2; or mi = 2 and either q > 2 or kj > 1.

(c) W (mi) ⊕ W (mj) with either q > 2 and mi > 1, mj > 1; or else

q = 2 and mi > 1 and mj > 2; or else q = 2, mi > 2 and mj > 1.

Proof. By Lemma 4.6, O contains a subrack OLi
ui

× O
Lj
uj with each factor

regular, where Li × Lj in each case is

(a): Sp2kj(q)× Sp2ki(q), (b): SLmi
(q)× Sp2kj (q), or SUmi

(q)× Sp2kj(q),

(c): SLmi
(q)× SLmj

(q), or SLmi
(q)× SUmj

(q), or SUmi
(q)× SUmj

(q).

The claim follows by Lemmata 2.3, 4.8 and 4.9. �

Lemma 4.14. If q = 2 and (4.2) contains a term of the form W (mi),

mi > 1 odd, then O is of type D.

Proof. Step 1: If (4.2) is of the formW (m) withm > 1 odd, thenO is of type

D. Indeed, there are two classes of this type [LS, Theorem 6.21]. One class

contains a subrack isomorphic to the regular unipotent class inGUm(2), and

we invoke Lemma 3.11. We consider next the second class. Assume first that

m = 3. Then this class is represented by v =




1 1 1
1 1
1
1 1 0
1 1
1


 = xα1(1)xα2(1).

Let s2 :=




1
0 1
1 0

0 1
1 0

1


 , r = s2 ⊲ v =




1 1 1
1 0
1 1

1 0 1
1 1 0

1


 = xα1+α2(1)x−α2(1),

s3 =

(
id2

0 1
1 0

id2

)
, s = s3 ⊲ v =




1 1 0 1
1 0 1
1 0 1
1 0 0
1 1
1


 = xα1(1)xα2+α3(1).

Then (rs)2 6= (sr)2 by (3.2). In addition, r, s ∈ PF where P is the standard

parabolic subgroup of G associated with the simple root α2 so Remark 3.13
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(1) applies. Assume m > 3. Then the class is represented by

v =




1 1 ··· 1
1 ··· 1

1 1
1
1 1 0 ··· 0
1 1 0 ···
1 1 0

1 1
1


 = xα1(1)xα2(1) · · · xαn−1(1).

We apply Lemma 2.2 to PF , where P is the standard parabolic associated

with the simple roots αn, αn−1, αn−2, using the case m = n = 3.

Step 2: We now prove the Lemma. Let ui be the component of u in

Mi := Sp(W (mi)). Choosing each representative x of A(u) in Ξ and the

corresponding element g as in Lemma 4.6, we have gMig
−1 = Mi, and

(gMig
−1)F = gM

Ad(x)◦F
i g−1. So, OG

gug−1 will contain a subrack isomorphic

to O
M

Ad(x)◦F
i

ui . The component in Mi of each term in Ξ is either trivial or,

possibly, x′ix
′′
i , with notation as in Lemma 4.6. Then, the two possible

subracks are isomorphic to those in Case 1, whence the statement. �

Remark 4.15. By the previous Lemmata, it remains to consider the following

forms of (4.2), see Table IV for details:

q > 2: V = W (1)a ⊕W (2), 0 ≤ a

V = W (1)a ⊕ V (2), 0 ≤ a

q = 2: V = W (1)a ⊕W (2)b ⊕ V (2)c, 0 ≤ a, b; 0 ≤ c ≤ 2

V = W (1)a ⊕ V (2k) 0 ≤ a; 1 < k

(4.7)

(4.2) ⊇ kj mi q Criterium

V (2kj) > 1 – > 2 F, 4.11 (a)
W (mi) – > 4 > 4 F, 4.11 (b)

> 4 even all F, 4.11 (b)
> 4 odd 4 F or D, 4.12

4 all D, 4.10
3 > 8 F, 4.11 (b)

8, 4 F or D, 4.12

> 1 odd 2 D, 4.14
V (2ki)⊕ V (2kj) > 2 D, 4.13 (a)

kikj > 1 2
W (mi)⊕ V (2kj) > 2 all

2 > 2 D, 4.13 (b)
> 1 2 2

W (mi)⊕W (mj) mi,mj > 1 > 2
mi > 1, mj > 2 2 D, 4.13 (c)
mi > 2, mj > 1 2

Table IV

Recall the conventions in (4.2) on ai, bj .
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Lemma 4.16. If (4.2) is of either of the following forms, then C(G,u)

consists of only one class which is of type D:

(a) W (1)a1 ⊕W (2)a2 or W (2)a2 , a2 > 1.

(b) W (1)a ⊕W (2)a2 ⊕ V (2)b1 , 0 ≤ a.

Proof. In all cases C(G,u) has only one class O by [LS, Theorem 6.21].

(a): Let x = ( 1 1
0 1 ). Let v be the block diagonal matrix

(x⊗ ida2 , id2a1 , J2
tx−1

J2 ⊗ ida2);

then v ∈ O because its decomposition (4.2) is W (1)a1 ⊕W (2)a2 . Now v lies

in the subgroup H ≃ SLn(q) of matrices
(

y 0
0 Jn ty−1

Jn

)
, with y ∈ SLn(q). If

a2 > 1, then O contains a subrack isomorphic to a unipotent class of type

(2, ..., 2) (a2 times) in SL2a2(q), and Lemma 3.12 applies.

(b): It is enough to consider W (2) ⊕ V (2). Let v =




1 0 0 0 0 1
1 1 0 0 0
1 0 0 0
1 1 0
1 0
1


 =

xα2(1)x2α1+2α2+α3(1) ∈ O. We set

σ =




0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0


 , z =




1 0 0 0 0 0
1 0 1 1 0
1 0 1 0
1 0 0
1 0
1


 , y =




1 0 0 0 0 0
1 0 0 0 0
1 1 0 0
1 0 0
1 0
1


 .

and

r = (zσ) ⊲ v =




1 1 0 1 1 0
0 1 0 0 0 1
0 0 1 1 0 1
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1


 , s = y ⊲ v =




1 0 0 0 0 1
0 1 1 1 0 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1




The discussion in [ACG, 3.1] implies thatOUF

r 6= OUF

s . A direct computation

shows that (rs)2 6= (sr)2. �

Lemma 4.17. If (4.2) is equal to W (1)a1 ⊕ W (2), a1 > 1 then C(G,u)

consists of only one class which is of type F.

Proof. In all cases C(G,u) has only one class O by [LS, Theorem 6.21]. It is

enough to prove the statement for a1 = 2. Let x and v be as in Lemma 4.16

(a). Then v ∈ O because it has decomposition (4.2) equal to W (2)⊕W (1)2.

We consider the following elements of G

σ =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , τ =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 , ω =

(
id2

0 id2
id2 0

id2

)
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and the following elements of O:

r1 = v, r2 = σ ⊲ r1 = (1, x, id2, x, 1)

r = τ ⊲ r2 = (id2, x⊗ id2, id2), r3 = (r2τ) ⊲ r2 =




1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1




r4 = (r1rω) ⊲ r2 =




1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 0 1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Then, H := 〈r1, r2, r3, r4〉 ⊂ UF and OUF

ri
6= OUF

rj
, for i 6= j, hence

OH
ri

6= OH
rj
. A direct computation shows that ri ⊲ rj 6= rj for i 6= j. �

Lemma 4.18. Assume q > 2. If (4.2) is equal to W (1) ⊕ W (2), then

C(G,u) consists of only one class which is of type F.

Proof. There is only one class O with (4.2) equal to W (2)⊕W (1), which is

represented by r1 = id6+(e2,3 + e4,5), [LS, Theorem 6.21].

Let ζ ∈ F×
q \ 1 and let us consider the following elements of G:

s1 :=




0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0


 s2 :=




1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1


 s3 :=

( id2
0 1
1 0

id2

)

We construct the following elements in O:

r2 = (r1s2s1) ⊲ r1 = id6+(e1,2 + e5,6) + (e1,3 + e4,6)

r3 = ((id6+(e2,1 + e6,5))s3s1) ⊲ r1 = id6 +(e1,4 + e3,6) + (e2,4 + e3,5)

r4 =
(
diag(1, ζ, 1, 1, ζ−1, 1)(id6+e3,4)(id6 +e1,2 + e5,6)

)
⊲ r1 =




1 0 1 1 0 0
1 ζ ζ 0 0
1 0 ζ 1
1 ζ 1
1 0
1




A direct computation shows that ri ⊲ rj 6= rj for i 6= j. Moreover, as H :=

〈r1, r2, r3, r4〉 ⊂ UF ⊂ SL6(q), the usual argument shows that OH
ri

6= OH
rj

for

i 6= j. �

Lemma 4.19. If q = 2 and (4.2) is of the form W (1)a ⊕ V (4), 0 ≤ a, then

O is of type D.

Proof. There are 2 classes like this [LS, Theorems 6.6, 6.12]; both contain

a subrack isomorphic to one of the regular classes in Sp4(2) ≃ S6, which

corresponds either to the partition (4, 2) or else to (4, 12). These are of type

D by [AFGV1, 4.1]. �
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Lemma 4.20. If q = 2 and (4.2) contains the term V (2k), k ≥ 3, then O

is of type D.

Proof. By Corollary 4.7, O contains a subrack isomorphic to one of the

two regular unipotent classes in Sp2k(2). So, we may assume k = n for

notational purposes. For both classes, there is a representative v lying in

xα1(1) · · · xαn(1)U
′, U′ as in Proposition 3.7. Let P be the standard parabolic

subgroup of G corresponding to the simple roots αn−1 and αn, and let L be

its standard Levi subgroup, whose derived subgroup is isomorphic to Sp4(k).

Recall the notation in Remark 3.13. Then v ∈ UF < PF and if v = vLvP is

its decomposition according to PF = LF ⋉QF , then uL is regular unipotent

in LF . The result follows from Lemmata 2.2 and 4.19. �

Lemma 4.21. If q = 2 and (4.2) is of the form W (1)a1 ⊕ V (2)2, then O is

of type D.

Proof. There is only one class in C(G,u) by [LS, Theorem 6.21]. We may

assume a1 = 1, n = 3 as in the proof of Lemma 4.16 (a). Then O is repre-

sented by xy = x2(α1+α2)+α3
(1)x2α2+α3(1). It contains the subrack X × Y

for X = OH
x , Y = OK

y with H ≃ SL2(2) being the subgroup corresponding

to the root 2(α1 +α2)+α3 and K ≃ Sp4(2) ≃ S6 the subgroup correspond-

ing to the roots α2 and α3. Since all conjugacy classes of involutions in S6

contain distinct commuting elements, we apply Lemmata 2.3 and 4.8. �

4.3. Proof of Theorem 1.1. We first study classes that do not collapse.

Lemma 4.22. Let u ∈ G unipotent with partition (12n−2, 2).

(1) If q is odd and either not a square or 9, then C(G,u) consists of two

cthulhu classes.

(2) If q is even, then C(G,u) consists of a unique cthulhu class.

Proof. If q is even, the decomposition (4.2) of any element with Jordan form

(12n−2, 2), is necessarily W (1)2n−2⊕V (2). Thus we have only one conjugacy

class in G with this form.

For any q, we fix u =
(

1 0 1
0 id2n−2 0
0 0 1

)
= xβ(1), where β ∈ Φ+ is the highest

root. If q is even, C(G,u) has a unique class by [LS, Theorems 6.6, 6.12].

If q is odd, then, by [LS, Theorem 3.1(v)] and arguing as in Lemma 4.3,

C(G,u) consists of two classes represented by u and

(
1 0 ζ
0 id2n−2 0
0 0 1

)
= xβ(ζ),

for ζ ∈ F×
q not a square. We show (for any q) that every subrack of OG

u

generated by two elements is either abelian or indecomposable, implying
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that OG
u is cthulhu. The same argument applies to the other class, when q

is odd.

Assume there is g ∈ G such that v = gug−1 ∈ OG
u and uv 6= vu. We claim

that the rack generated by u and v is indecomposable. Consider the Bruhat

decomposition g = ytnwz, with y, z ∈ UF , t ∈ TF and nw ∈ NG(T) with

class w ∈ W . By (3.2), u ∈ Z(UF ), so that v = huh−1 with h = ytnw. Now

the subrack generated by u and v is isomorphic to the the subrack generated

by u = y−1uy and y−1vy = kuk−1 with k = tnw, so we may assume that

v = kuk−1. Now a direct computation gives v = xwβ(η) for some η ∈ F×
q

[MaT, Theorems 24.10; 8.17(e)]. The assumption uv 6= vu forces wβ ∈ −Φ+

and wβ + β ∈ Φ ∪ {0}. As the root system is of type Cn, this is possible

only if wβ = −β. An element in NG(T) mapping u = xβ(1) to v = x−β(η)

is of the form(
0 0 ξ
0 X 0

−ξ−1 0 0

)
=

(
ξ 0 0
0 id2n−2 0

0 0 ξ−1

)( 0 0 1
0 id2n−2 0
−1 0 0

)(
1 0 0
0 X 0
0 0 1

)
= β∨(ξ)nβY,

for X ∈ Sp2n−2(q) and ξ ∈ F×
q . Hence η = −ξ−2 and Y commutes with u.

Let H =
{ (

a b
id2n−2

c d

)
∈ G : ad− bc = 1

}
≃ SL2(q). Then u, v, β∨(ξ),

nβ ∈ H and v ∈ OH
u . By [ACG, Lemma 3.5], OH

u is sober, hence the rack

generated by u and v is indecomposable. �

Remark 4.23. Let q be odd, u = xβ(1), Spn = OG
u and let u′ = xβ(ζ), for ζ ∈

F×
q not a square. Then Spn ≃ OG

u′ as racks because the outer automorphism

of G = Sp2n(q) given by conjugation by the matrix diag(idn, ζ
−1 idn) maps

u to u′. Thus for q even or q = 9, or q odd and not a square, we have a

family of cthulhu racks (Spn)n∈N, with Sp1 the sober rack O
SL2(q)
x with x

nontrivial unipotent. Note that Spn ⊂ Spn+1 and

|Spn| =





(q2n−1)
2 , if q is odd,

(q2n − 1), if q is even.
(4.8)

Lemma 4.24. If q = 2 and (4.2) is of the form V (2)2, then O is cthulhu.

Proof. There is only one class in C(G,u) by [LS, Theorem 6.21]. Here GF =

Sp4(2) ≃ S6 and O corresponds to the partition (12, 22). By [AFGV1,

Remark 4.2 (e)], O is not of type D. We will show that it cannot be of type

F either. For i ∈ I4, let ri ∈ O with [ri, rj ] 6= 1 and O
〈ri,rj〉
ri 6= O

〈ri,rj〉
rj

for i 6= j. Then for every i 6= j, the permutations ri and rj may not

have a 2-cycle in common, and 〈ri, rj〉 cannot be contained in a standard
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subgroup isomorphic to S4,S5, or S3×S3. If r4 = (12)(34), then for i ∈ I3 we

necessarily have ri either in A = {(13)(56), (14)(56), (23)(56), (24)(56)} or in

B = {(15)(26), (16)(25), (35)(46), (45)(36)}. However, if r2 ∈ A, respectively

B, then r3, r4 must lie in B, respectively A, leading to a contradiction. �

Lemma 4.25. Assume q is even. If (4.2) is equal to W (1)a1 ⊕W (2), then

C(G,u) consists of only one class O which is not of type D. If a1 = 1 and

q = 2, then O is cthulhu.

Proof. C(G,u) = {O} by [LS, Theorem 6.21]. We shall prove that for any

two elements r, s ∈ O such that (rs)2 6= (sr)2, it holds O
〈r,s〉
r = O

〈r,s〉
s . Let

γ = ε1 + ε2 be the highest short root in the root system of G. The class

O is represented by r = xγ(1) = id2n +e1,2n−1 + e2,2n, which is central in

UF by (3.2) and Table II. Let s = g ⊲ r ∈ O satisfy (sr)2 6= (rs)2 and

let g = uẇv ∈ UFNG(T)U
F be the Bruhat decomposition of g. Then s =

(uẇ)⊲r = u⊲xw(γ)(η) for some η ∈ F×
q . Conjugating by u−1 we may assume

s = xw(γ)(η). Now, as sr 6= rs, we necessarily have w(γ) ∈ {−γ,−ε1 ±

εk,−ε2 ± εk, k 6= 1, 2}. We claim that w(γ) = −γ. Assume indeed that

w(γ) ∈ {−ε1 ± εk,−ε2 ± εk, k 6= 1, 2}. By (3.2), we have rsrs ∈ Uγ+w(γ), so

it is an involution, leading to a contradiction. Thus,

H := 〈r, s〉 ≃ 〈( 1 1
0 1 ) ,

(
1 0
η 1

)
≤ SL2(q).

Since the non-trivial unipotent rack in SL2(q) is sober, we have the first

statement. The second one follows from a computation with GAP. �

Lemma 4.26. Let G = Sp4(q) for q even and let OG
u be a class correspond-

ing to W (2). Then C(G,u) contains a unique class which is cthulhu.

Proof. The root system of G = Sp4(k) is of type C2, so there exists a non-

standard graph automorphism θ interchanging long and short roots [C, 12.1],

commuting with F . Thus, θ induces an automorphism on GF mapping the

class of type W (1)2 ⊕ V (2), represented by xα1(1), onto the class of type

W (2), represented by xα2(1). The claim follows from Lemma 4.22 (2). �

We next show that the classes not listed in Table I collapse. Let O be a
unipotent class in G. We summarize in Table V the results in §4.1 proving
the claim for q odd.
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q, n type (1r1 , 2r2 , . . . , nrn) Criterium

∃ i > 3 : ri 6= 0 type D, 4.1
> 9 square (1r1 , 2r2), r2 > 0 type D, 4.1

q > 3, or n > 2 (1r1 , 2r2), r2 > 1 type D, 4.3
(1r1 , 3r3), r3 > 0 type D, 4.2

(1r1 , 2r2 , 3r3), r2r3 > 0 type D, 4.4
3 (22) one of type D, 4.5

Table V

Assume that q is even. We show how the results in §4.2 imply the claim.
By Remark 4.15 we may assume that (4.2) has the form (4.7). For all q
even, we have

⋄ V = W (2): cthulhu, Lemma 4.26.
⋄ V = W (1)a ⊕ V (2), 0 ≤ a: cthulhu, Lemma 4.22 (2).

Case 2 < q even. The remaining cases are disposed as follows.

⋄ V = W (1)a ⊕W (2), 1 ≤ a: type F, Lemmata 4.17 and 4.18.

Case q = 2. Here we invoke the following statements.

⋄ V = W (1)a ⊕W (2)b ⊕ V (2)c, 0 < bc: type D, Lemma 4.16 (b).
⋄ V = W (1)a ⊕ W (2)b, 1 < ab; or W (2)b, 1 < b: type D or F, Lemmata
4.16 (a), 4.17.

⋄ V = W (1)a ⊕ V (2)2, 0 < a: type D, Lemma 4.21.
⋄ V = V (2)2: cthulhu, Lemma 4.24.
⋄ V = W (1)a ⊕ V (2k), 0 ≤ a, k ≥ 2: type D, Lemmata 4.19, 4.20.
⋄ V = W (2)⊕W (1), cthulhu, Lemma 4.25.
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