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Abstract
We prove strong ellipticity of chiral bag boundary conditions on even
dimensional manifolds. From a knowledge of the heat kernel in an infinite
cylinder, some basic properties of the zeta function are analysed on cylindrical
product manifolds of arbitrary even dimension.

PACS number: 02.40.Vh
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1. Introduction

The influence that boundary conditions have on different spectral functions is an active field
of research. In quantum field theory, spectral functions of particular interest are the zeta
function and the heat kernel. Their dependence on the boundary condition is well understood
for a large variety of boundary conditions (for a recent review see [1]). However, for some
boundary conditions an understanding of elementary properties of spectral functions is still
lacking. This is the case for generalized (or chiral) local bag boundary conditions [2, 3].

These boundary conditions involve an angle θ , which is a substitute for introducing small
quark masses to drive the breaking of chiral symmetry [3–5]. The influence the parameter
θ has on various correlators was analysed in detail in [3] for the two-dimensional Euclidean
ball. In [6], the heat kernel and the eta function were analysed in the two-dimensional
cylinder. The situation of an arbitrary dimensional ball was considered in [7]. The results
found in the above articles suggest that general properties of spectral functions, such as the
pole structure of the associated zeta function and the form of the asymptotic expansion of the
heat kernel, are the properties resulting from strongly elliptic local boundary conditions. For
the generalized bag boundary conditions considered here, this property has not been proved.
In fact, strong ellipticity is not clear at all because, for θ 6= 0, the boundary conditions are
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of mixed oblique type [7] and, under certain circumstances, oblique boundary conditions are
not strongly elliptic [8, 9]. However, after introducing some basic notation and properties
of the boundary conditions, we will prove in sections 3 and 4 that generalized bag boundary
conditions are indeed strongly elliptic boundary conditions. Based on this observation, in
future investigations one might envisage a determination of heat kernel coefficients for these
boundary conditions. In recent years, a conglomerate of methods has been proved to be very
effective in the determination of this asymptotics [1]. Among the methods are special case
considerations, which form the basis of the second half of our paper. In particular, we will
determine the local heat kernel and the zeta function on cylindrical product manifolds. Results
are given in terms of boundary data, much in the way it is possible for spectral boundary
conditions [10]. The conclusions will summarize the main results and describe their possible
future applications. We refer to [11–20] for other important related work in the field.

2. Basic properties of chiral bag boundary conditions

In this section, we will establish some notations for the problem at hand, i.e. the Euclidean
Dirac operator acting on spinors satisfying local (chiral bag) boundary conditions [3].

Let m = 2m̄ be even and let P = iγj∇j be an operator of Dirac type on a compact oriented
Riemannian manifold of dimension m. Let V denote the spinor space; dim (V ) = 2m̄. An
explicit representation of the γ -matrices is provided in the appendix. They are self-adjoint and
satisfy the Clifford anti-commutation relation (A.1). Near the boundary, let em be the inward
unit normal and γm be the projection of the γ -matrix on the inward unit normal. In addition
let γ̃ be the generalization of ‘γ5’ to arbitrary even dimension, γ̃ = (−i)m̄γ1 . . . γm.

We set

χ = iγ̃ eθγ̃ γm

and use the relation γi γ̃ + γ̃ γi = 0 to compute

χ2 = −γ̃ eθγ̃ γmγ̃ eθγ̃ γm = γ̃ eθγ̃ γ̃ e−θγ̃ γmγm = 1.

We define

5± := 1
2 (1 ± χ)

and have

52
± = 5± and 5−5+ = 5+5− = 0.

Note that these two projectors are not self-adjoint (except for the particular case θ = 0).
Rather, calling their respective adjoints 5?

− and 5?
+, one has 5?

± := 1
2 (1 ± iγ̃ e−θγ̃ γm), and

the following equations hold:

5?
+5+ = cosh (θ γ̃ ) exp (−θγ̃ )5+ = 5?

+ cosh (θ γ̃ ) exp (−θγ̃ )

5?
−5+ = sinh (θ γ̃ ) exp (−θγ̃ )5+ = 5?

− sinh (θ γ̃ ) exp (−θγ̃ )

5?
−5− = cosh (θ γ̃ ) exp (−θγ̃ )5− = 5?

− cosh (θ γ̃ ) exp (−θγ̃ )

5?
+5− = sinh (θ γ̃ ) exp (−θγ̃ )5− = 5?

+ sinh (θ γ̃ ) exp (−θγ̃ ).

We use 5− to define boundary conditions for P. Similarly, we shall let B := 5− ⊕ 5−P

define the associated boundary condition for P 2.
In the following two sections, we will show that (P,5−) and (P 2,B) define strongly

elliptic boundary conditions and, as a result, we can assume standard results on the
meromorphic structure of eta and zeta-invariants hold [21]. Otherwise stated, we will prove
statements (1) and (2) of the following theorem.
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Theorem 2.1.

(1) (P,5−) is strongly elliptic with respect to C − R+ − R−.
(2) (P 2,B) is strongly elliptic with respect to C − R+.
(3) (P,5−) is self-adjoint.
(4) (P 2,B) is self-adjoint.

Statements (3) and (4) are well known to hold [3] and so we concentrate on statements (1) and
(2).

3. Ellipticity of the first-order boundary value problem

Proof of (1). We use lemma 1.11.2 (a) of [21] to prove assertion (1). Note that the special
case θ = 0 defines standard mixed boundary conditions and the theorem is known to hold
for this case. Let x = (y1, . . . , ym−1, xm) be coordinates near the boundary where xm is the
geodesic distance to the boundary and where y = (y1, . . . , ym−1) are coordinates on ∂M . Let
ξa dya ∈ T ∗(∂M).

Following [21] we define

q̃(ξ, λ) = −iγm

ÃX
a<m

γaξa − λ

!
for (ξ, λ) 6= (E0, 0) and λ 6∈ R − {0}.

We then have q̃(ξ, λ)2 = (|ξ |2 − λ2)1. As (|ξ |2 − λ2) 6∈ iR, we may let V
q̃
± be the span of the

eigenvectors of q̃(ξ, λ) with positive/negative real parts. We let

W := Kernel(5−) = Range(5+).

Using lemma 1.11.2 (a) of [21], we prove assertion (1) by verifying that 5− is an isomorphism
from V

q̃
−(ξ, λ) to W = Range(5−). This is equivalent to showing

V
q̃
−(ξ, λ) ∩ W = {0}. (3.1)

We change variables slightly setting λ = −iµ where µ 6∈ iR − {0} and (ξ, µ) 6= (E0, 0). We
then have

q̃(ξ, µ) = −iγm

X
a<m

γaξa + µγm and q̃(ξ, µ)2 = (|ξ |2 + µ2)1.

The next step in the proof is to reduce the problem to a collection of effective two-dimensional
ones. We make use of the properties of the γ -matrices. First note that the elements

τ1 := iγ2γ3, . . . , τm̄−1 := iγm−2γm−1

mutually commute and, in addition, they commute with γ1 and γm. Thus, for j, k =
1, . . . , m̄ − 1, we have

τj τk = τkτj τ 2
j = 1

τjγ1 = γ1τj τjγm = γmτj .

So we can choose a set of simultaneous eigenvectors of τj with eigenvalues ρj = ±1. We
denote by Eρ = (ρ1, . . . , ρm̄−1) the collection of simultaneous eigenvalues of τj and we define
the associated simultaneous eigenspaces by

V Eρ = {v ∈ V : τiv = ρiv}.
The vector space V Eρ is preserved by γ1, γm and γ̃ . We use this fact to decompose V Eρ into its
chiral parts,

V Eρ = V +
Eρ ⊕ V −

Eρ where V ±
Eρ = {v ∈ V Eρ : γ̃ v = ±v}.
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Let V +
Eρ = span{v Eρ}. Then since γmγ̃ = −γ̃ γm we have

V Eρ = span{v Eρ, γmv Eρ}.
The vector spaces V Eρ provide the decomposition

V =
M

Eρ
V Eρ dimV Eρ = 2

and the problem completely decouples into two-dimensional spaces.
On V Eρ one easily computes, using the definition ²( Eρ) = ρ1 × · · · × ρm̄−1,

γ1 = ²( Eρ)

µ
0 i
−i 0

¶
γm =

µ
0 1
1 0

¶
γ̃ =

µ
1 0
0 −1

¶
thus reproducing the two-dimensional Pauli matrices up to the standard sign ambiguity.

We note that the kernel of 5− is determined by the eigenvectors of χ . Thus to establish
(3.1) we shall need explicit representations of χ and q̃(ξ, µ) acting on V Eρ . To calculate q̃(ξ, µ)

it is possible to choose coordinates such that ξ2 = · · · = ξm−1 = 0. It is then easy to see that

χ = i

µ
0 eθ

−e−θ 0

¶
q̃(ξ, µ) =

µ
²(ρ)ξ1 µ

µ −²(ρ)ξ1

¶
.

The eigenvectors of χ follow,

χ

µ
%

−ie−θ

¶
= %

µ
%

−ie−θ

¶
and we compute

q̃(ξ, µ)

µ
%

−ie−θ

¶
=

µ
²( Eρ)%ξ1 − iµ e−θ

µ% + i²( Eρ)ξ1 e−θ

¶
where % = ±1. Assertion (1) holds if these are not multiples of each other, that is if

det

µ
²( Eρ)%ξ1 − iµ e−θ %

µ% + i²( Eρ)ξ1 e−θ −ie−θ

¶
= −2i²( Eρ)%ξ1 e−θ − µ(1 + e−2θ ) 6= 0.

Since the first term is purely imaginary and µ 6∈ iR − {0} this proves assertion (1).
In fact, to prove what we announced (i.e. 5− is an isomorphism from V

q̃
−(ξ, λ) to

W = Range(5−)), it is enough to consider only % = +1. But since V
q̃
−(−ξ,−λ) = V

q̃
+ (ξ, λ),

considering ρ = ±1 gives the same condition.
Although assertion (2) follows from assertion (1) and lemma 1.11.2 (b) in [21], we prefer

to give a second proof showing that the boundary operator B involves tangential derivatives.
This makes apparent that the chiral boundary conditions are non-standard boundary conditions.

4. Ellipticity of the second-order boundary problem

When considering spectral properties of the square of the operator of Dirac type, P 2 =
(iγj∇j )

2, the boundary condition imposed through B is

5−ψ |∂M = 0 (4.1)
5−γj∇jψ |∂M = 0. (4.2)

The second boundary condition (4.2) can be rewritten as an oblique boundary condition
involving tangential derivatives. To this end note

γm5∓ = 5?
±γm

γa5∓ = 5?
∓γa
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with the tangential γ -matrices γa , where a = 1, . . . , m−1. This allows the boundary condition
(4.2) to be written as

0 = 5−(−iγj∇j )ψ |∂M = iγm5−(−iγj∇j )ψ |∂M

= γm5−(γm∇m + γa∇a)ψ |∂M = (5?
+∇m + γmγa5

?
−∇a)ψ |∂M

= (5?
+∇m + γmγa5

?
−∇a)(5− + 5+)ψ |∂M (4.3)

where ∇m is the interior normal derivative. The boundary condition contains tangential
derivatives and the conditions imposed through B could thus be termed of mixed oblique type.

Proof of (2). To study the ellipticity of the boundary value problem, we introduce the ‘partial’
leading symbol of P 2

σL(y, xm, ω,−i∂m, λ) = −∂2
m + ω2 − λ

and the graded symbol, σg , of B

σg =
µ

5− 0
−γaωa5

?
− iγm5?

+

¶
.

Strong ellipticity requires that the problem

σL(y, xm, ω,−i∂m, λ)9(y, xm, ω, λ) = 0 (4.4)

with

9 →r→∞ 0 (4.5)

and

σg

µ
9

∂m9

¶º
r=0

=
µ

5−α

iγm5?
+∂mα

¶º
r=0

(4.6)

has a unique solution.
Now, the solutions to (4.4) and (4.5) are

9(xm, ω, λ) = 90 exp(−3xm)

where 3 = +
√

ω2 − λ. Note that Re(3) > 0 for λ ∈ C − R+.
The condition (4.6), when applied to them, readsµ

5− 0
−γaωa5

?
− iγm5?

+

¶ µ
90

−390

¶
=

µ
5−α

−iγm5?
+3α

¶
.

This gives a system of two equations. After multiplying the second one by iγm, and using
90 = 5−90 + 5+90, one obtains

5−90 = 5−α (4.7)

and

(−iγm(γaωa)5
?
−5+ + 35?

+5+)90 = 35?
+α − (−iγm(γaωa)5

?
−5− + 35?

+5−)90. (4.8)

We use (2.1) and substitute (4.7) into (4.8) to see

exp(−θγ̃ )[−iγm(γaωa) sinh (θ γ̃ ) + 3 cosh (θ γ̃ )]5+90

= 35?
+α − [−iγm(γaωa) cosh (θ γ̃ ) + 3 sinh (θ γ̃ )] exp (−θγ̃ )5−α.

So, the problem has a unique solution if the matrix

M = −iγm(γaωa) sinh (θ γ̃ ) + 3 cosh (θ γ̃ ) = A sinh (θ) + 3 cosh (θ γ̃ )

is non-singular, where we introduced A = −iγ̃ γmγaωa .
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But A? = A; so, it is diagonalizable. Moreover, A2 = ¡P
a ω2

a

¢
1. As a consequence, A

has eigenvalues ±pP
a ω2

a , except in two dimensions, where A is proportional to the identity.
Then, the determinant of M can be evaluated in the basis of eigenvectors of A, and in all cases,

det M can be seen to vanish if λ =
P

a ω2
a

cosh2 θ
. For λ = 0, the determinant can only vanish if

ωa = 0. Otherwise, it can only happen for λ ∈ R+, which proves strong ellipticity in C − R+,
and any even dimension. This completes the proof of theorem 2.1. ¤

5. Heat kernel in an infinite cylinder

In what follows, we present the heat kernel for (P 2,B) in an infinite cylinder M = R+ × N
of any even dimension. By cylinder we mean that the metric is of the type ds2 = dx2

m + ds2
N ,

where ds2
N is the metric of the closed boundary N .

In order to determine the heat kernel, it is useful to note that the chiral bag boundary
conditions in equations (4.1) and (4.2) are equivalent, for each eigenvalue of the tangential
part B of the operator P, to Dirichlet boundary conditions on part of the fibre, and Robin
(modified Neumann) on the rest.

In fact, let us first note that the operators P+ = 5+5?
+

cosh2 θ
and P− = 5?

−5−
cosh2 θ

are self-adjoint
projectors, and they satisfy P+ + P− = 1 splitting V into two complementary subspaces.

Let ξ = xm − x 0
m and η = xm + x 0

m and as before, let y = (y1, y2, . . . , ym−1) be the
coordinates on the boundary and x = (y, xm). If we call φω(y) the eigenspinors of the
operator B = γ̃ γmγa∂a (with a = 1, 2, . . . , m − 1) corresponding to the eigenvalue ω,
normalized such thatX

ω

φ?
ω(y)φω(y 0) = δm−1(y − y 0)

with δm−1 the Dirac delta function, andZ
∂M

dy φ?
ω(y)φω(y) = 1

we can expand ψ(y, xm) = P
ω fω(xm)φω(y). If ψ = P+ψ , then the condition (4.1) is

identically satisfied, and only (4.3) must be imposed at the boundary which, for each ω,
reduces to

cosh θ e−θγ̃ (∂m + ω tanh θ)fω = 0.

Since the factor to the left of the parenthesis is invertible, this is nothing but a Robin boundary
condition.

In the subspace ψ = P−ψ , the boundary condition (4.1) reduces to

cosh θ eθγ̃ fω = 0

while (4.3) requires

ωfω = 0.

Thus, in this subspace, both boundary conditions are nothing but homogeneous Dirichlet ones.
As a consequence, the complete heat kernel can be written as a Dirichlet heat kernel on

P−V and a Robin heat kernel on P+V . For the convenience of the reader we make the single
ingredients explicit [22] and write

K(t; x, x 0) = K(t; x, x 0)(P− + P+)

= 1√
4πt

X
ω

φ?
ω(y 0)φω(y) e−ω2t

¡
e

−ξ2

4t − e
−η2

4t

¢
P−
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+
1√
4πt

X
ω

φ?
ω(y 0)φω(y) e−ω2t

©¡
e

−ξ2

4t + e
−η2

4t

¢
+ 2

√
πtω tanh θ eω2t tanh2 θ−ωη tanh θ erf c[uω(η, t)]

ª
P+

= 1√
4πt

X
ω

φ?
ω(y 0)φω(y) e−ω2t

©¡
e

−ξ2

4t − e
−η2

4t

¢
1

+
25+5

?
+

cosh2(θ)

£
1 +

p
(πt)ω tanh θ euω(η,t)2

erf c[uω(η, t)]
¤

e
−η2

4t

ª
(5.1)

where uω(η, t) = η√
4t

− √
tω tanh(θ), and

erf c(x) = 2√
π

Z ∞

x

dξ e−ξ 2

is the complementary error function. Note that (5.1) is a direct generalization of the heat
kernel given in [6] for the two-dimensional case, which, in turn, coincides with the Fourier
transform of equation (101) in [4] for an anti-periodic boundary fibre.

6. Meromorphic properties of the zeta function

Let us now analyse the boundary contributions to the global zeta function related to (5.1). We
first note that global quantities are necessarily divergent due to the non-compact nature of our
manifold M = R+ × N . This is not a severe problem because the result (5.1) allows us to
easily identify the bulk term leading to a divergent contribution when integrated. In particular,
it is the first term in (5.1) that represents the heat kernel on the manifold R × N . In the
following, without changing the notation, we will first ignore this term and this will allow us
to determine the boundary contributions to the global zeta function. Alternatively, as we will
show afterwards, one can introduce a localizing function of compact support in (5.1) such that
the trace gives a finite result.

Let us consider the trace of (5.1) ignoring the first term. It is convenient to perform the
Dirac trace (tr) first. Since

tr

µ
25+5

?
+

cosh2(θ)

¶
= 2m̄

the trace of the ‘boundary’ heat kernel reduces to

TrK(t; x, x) = 2m̄

2

X
ω

ω tanh θ e−ω2t

Z ∞

0
dxm erf c[uω(2xm, t)] exp

µ−x2
m

t
+ u2

ω(2xm, t)

¶

where the second and third term in (5.1) have cancelled each other. Now, using that

−1

2

∂

∂xm

h
e−x2

m/t+u2
ω(2xm,t) erf c[uω(2xm, t)]

i

= e−x2
m/t

·
1√
πt

+ ω tanh θ eu2
ω(2xm,t) erf c [uω(2xm, t)]

¸
we get

TrK(t; x, x) = 2m̄

4

X
ω

e−ω2t [eu2
ω(0,t) erf c[uω(0, t)] − 1]

= 2m̄

4

X
ω

£
e

−ω2 t

cosh2 θ [1 + erf (ω
√

t tanh θ)] − e−ω2t
¤
.

Here we used erf (x) = −erf (−x) = 1 − erf c(x).
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Now, we can Mellin transform this trace, to obtain the ‘boundary’ zeta function of the
square of the Dirac operator in the infinite cylinder

ζ(s, P 2) = 2m̄

40(s)

X
ω

Z ∞

0
dt t s−1

£
e

−ω2 t

cosh2 θ − e−ω2t
¤

+
2m̄

40(s)

X
ω

Z ∞

0
dt t s−1 e

−ω2 t

cosh2 θ erf (ω
√

t tanh θ) = ζ1(s, P
2) + ζ2(s, P

2).

(6.1)

The first contribution can be readily seen to be

ζ1(s, P
2) = 1

4 (cosh2s θ − 1)ζ(s, B2) (6.2)

where B is the operator defined in section 5.
As for the second contribution to (6.1), it is given by

ζ2(s, P
2) = 2m̄

40(s)

X
ω

Z ∞

0
dt t s−1 e

−ω2 t

cosh2 θ

2√
π

Z (ω
√

t tanh θ)

0
dξ e−ξ 2

.

After changing variables according to y = ξ cosh θ√
tω

, and interchanging integrals, one finally
gets

ζ2(s, P
2) = 2m̄0

¡
s + 1

2

¢
40(s)

cosh2s θ
X

ω

sign(ω)(ω2)−s 2√
π

Z sinh θ

0
dy (1 + y2)−s− 1

2

= 0
¡
s + 1

2

¢
40(s)

cosh2s θη(2s, B)
2√
π

Z sinh θ

0
dy (1 + y2)−s− 1

2

= 1

2
√

π

0
¡
s + 1

2

¢
0(s)

sinh θ cosh2s θη(2s, B) 2F1

µ
1

2
,

1

2
+ s,

3

2
;− sinh2 θ

¶
. (6.3)

The structure of the zeta function is similar to the structure found for spectral boundary
conditions, see e.g., [10]. In particular, the analysis of the zeta function on M has been
reduced to the analysis of the zeta and eta function on N .

As already commented, from (6.2) and (6.3) one can determine the positions of the poles
and corresponding residues for the zeta function in any cylindrical product manifold, in terms
of the meromorphic structure of the zeta and eta functions of the boundary operator. For the
rightmost poles, explicit results can be given in terms of the geometry of the boundary N . For
example, for s = (m − 1)/2 we see that

Res ζ1

µ
m − 1

2
, P 2

¶
= 1

4
(coshm−1 θ − 1)Res ζ

µ
m − 1

2
, B2

¶

= 1

4
(coshm−1 θ − 1)

(4π)−(m−1)/2

0
¡

m−1
2

¢ 2m̄Vol(N ).

Because ζ2 does not contribute, given η(2s, B) is regular at s = (m − 1)/2 [21], this equals
Res ζ(s, P ) and is the result expected from the calculation on the ball [23]. For θ = 0 the
residue disappears as is known to happen for the standard local bag boundary conditions [21].
Further results can be obtained by using theorem 4.4.1 of [21]. Given we considered the case
without ‘potential’, it is immediate that

Res ζ

µ
m − 2

2
, P 2

¶
= 0.

Also, for the particular case of s = 0, the fact that ζ(s, B2) and η(2s, B) are regular at s = 0
shows that ζ(0, P 2) = ζ(0, P ) = 0.
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Given the local heat kernel (5.1), a local version of the results of this section is easily
obtained. To this end, we use a localizing function with compact support near the boundary,
such that its normal derivatives at the boundary vanish,

∂n

∂xn
m

f (y, xm)

¯̄̄
¯
xm=0

= 0 n ∈ N.

Furthermore, we let P̃ 2 denote the operator P 2 on the double R × N of R+ × N , and
we extend the localizing function as an even function to the double. We use the notation
f = f (y, xm), fN = f (y, xm = 0) and f̃ for f on the double. Introducing the local
versions ζ(f̃ , s, P̃ 2), ζ(f, s, P 2), ζ(fN , s, B2) and η(fN , 2s, B) of the zeta functions and the
eta function, (5.1) and previous calculations show that the following theorem holds:

Theorem 6.1.

0(s)ζ(f, s, P 2) = 0(s)

½
1

2
ζ(f̃ , s, P̃ 2) +

1

4
(cosh2s θ − 1)ζ(fN , s, B2)

+
1

2
√

π

0(s + 1/2)

0(s)
sinh θ cosh2s θ

× 2F1

µ
1

2
,

1

2
+ s,

3

2
,− sinh2 θ

¶
η(fN , 2s, B)

¾
+ h(s) (6.4)

where h(s) is an entire function.

This result parallels theorem 2.1 in [10] for spectral boundary conditions.

7. Conclusions

In this paper we have considered the influence of generalized bag boundary conditions on the
heat kernel and the zeta function. In order to guarantee certain structural properties we have
first shown the strong ellipticity of the boundary conditions. Work by Seeley [24, 25] then
shows that the standard heat kernel expansion holds and so the zeta function can have only
simple poles at s = m/2, (m − 1)/2, . . . , 1/2, and s = −(2l + 1)/2, l ∈ N. This is the main
result of this paper.

Based on the strong ellipticity one might envisage the determination of the leading
heat kernel coefficients for generalized bag boundary conditions as they are needed for
the calculation of effective actions in gauge theories in Euclidean bags [3]. Special case
calculations can serve to restrict the general form that coefficients can have, cylindrical
manifolds providing a valuable example. Here, for P = iγj∇j , we have expressed the heat
kernel and the zeta function of the associated second-order operator on M = R+ ×N in terms
of the boundary data on N . In fact, this result, under certain restrictions, can be
straightforwardly generalized to P = iγj∇j − φ. In order that a separation of variables
as presented succeeds we need ∂xm

φ = 0 and {γm, φ} = {γ̃ , φ} = 0. If this is satisfied,
equations (6.2) and (6.3) remain valid, once the operator B incorporates the potential,
B = γ̃ γm(γa∇a − iφ). We have thus a particular case involving a potential and Riemannian
curvature and various restrictions on heat kernel coefficients will follow.
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Appendix. γ-matrices

Let m = 2m̄ be the dimension of a Riemannian manifold. We denote by γ
(m)
j , j = 1, . . . , m,

the self-adjoint γ -matrices projected along some m-bein system. These are defined inductively
by

γ
(m)
j =

Ã
0 iγ (m−2)

j

−iγ (m−2)
j 0

!
j = 1, . . . , m − 1

γ (m)
m =

µ
0 1
1 0

¶
γ

(m)
m+1 =

µ
1 0
0 −1

¶
starting from the Pauli matrices

γ
(2)
1 =

µ
0 i
−i 0

¶
γ

(2)
2 =

µ
0 1
1 0

¶
γ

(2)
3 =

µ
1 0
0 −1

¶
.

The γ -matrices satisfy the Clifford anti-commutation formula

γ
(m)
j γ

(m)
k + γ

(m)
k γ

(m)
l = 2δkl . (A.1)

In the main body of the paper we will simplify the notation and we will not indicate the
dimension explicitly. In addition, we set

γ
(m)
m+1 = γ̃ = (−i)m̄γ1 . . . γm

which is the generalization of ‘γ5’ to arbitrary even dimension.
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[5] Dürr S 1999 Aspects of quasi-phasestructure of the Schwinger model on a cylinder with broken chiral symmetry

Ann. Phys., NY 273 1–36
[6] Beneventano C G, Santangelo E M and Wipf A 2002 Spectral asymmetry for bag boundary conditions J. Phys.

A: Math. Gen. 35 9343–54
[7] Esposito G and Kirsten K 2002 Chiral bag boundary conditions on the ball Phys. Rev. D 66 085014
[8] Dowker J S and Kirsten K 1999 The a (3/2) heat kernel coefficient for oblique boundary conditions Class.

Quantum Grav. 16 1917–36
[9] Avramidi I G and Esposito G 1999 Gauge theories on manifolds with boundary Commun. Math. Phys. 200

495–543
[10] Grubb G and Seeley R T 1996 Zeta and eta functions for Atiyah-Patodi-Singer operators J. Geom. Anal. 6 31–77
[11] Elizalde E and Vassilevich D V 1999 Heat kernel coefficients for Chern-Simons boundary conditions in QED

Class. Quantum Grav. 16 813–23
[12] Elizalde E, Lygren M and Vassilevich D V 1996 Antisymmetric tensor fields on spheres: functional determinants

and nonlocal counterterms J. Math. Phys. 37 3105–17
[13] Elizalde E, Lygren M and Vassilevich D V 1997 Zeta function for the Laplace operator acting on forms in a ball

with gauge boundary conditions Commun. Math. Phys. 183 645–60
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