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a b s t r a c t

An equivalence between the Schrödinger dynamics of a quantum
systemwith a finite number of basis states and a classical dynamics
is presented. The equivalence is an isomorphism that connects in
univocal way both dynamical systems. We treat the particular case
of neutral kaons and found a class of electric networks uniquely
related to the kaon system finding the complete map between
the matrix elements of the effective Hamiltonian of kaons and
those elements of the classical dynamics of the networks. As a
consequence, the relevant ϵ parameter that measures CP violation
in the kaon system is completely determined in terms of network
parameters.
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1. Introduction

Recently, Rosner [1] (see also [2]) has proposed an interesting analogy between the physics of
the weak decay of neutral K-mesons (kaons) and a classical system of oscillators either electrical or
mechanical. The proposal in [1] makes use of an electric network composed by two subnetworks of
L–C oscillators connected through a simple quadripole (two-port network).

The analogy in form pointed out in [1] is based upon the observation that the characteristic matrix
of the circuit has a similar aspect to that of the effective Hamiltonian of the neutral kaon system.
Afterward in [3], an extension to a general quadripole interaction between L–C subnetworks was
presented. The general idea of our work is to formalize the previous analysis and to extend the
character of that observation going beyond an analogy, and to present an equivalence, stricto sensu,
between the Schrödinger dynamics of a quantum system with a finite number of basis states [4] and
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a classical dynamics. The equivalence we present is an isomorphism that connects in univocal way
both dynamical systems.

We base our conclusions on the concept of ‘equivalent dynamics’ defined starting from general
mathematical concepts [5,6]. Since the Schrödinger dynamics is defined on a complex space, while the
classical dynamics of interest implies real evolution equations, we profit from the decomplexification
concept that allows one to work in a common space [5,6]. In this waywe are able to define the general
class of classical C and quantum Q systems where the equivalence is valid and simultaneously, we
build up the isomorphism ΦS , mapping C into Q that includes the general correspondence between
states of both systems. After this formal development, we treat the particular case of neutral kaons
system, denoted byKo (|Ko

⟩ and |K̄o
⟩), that belongs to the general case of quantumsystemsQ, particu-

larly interested in the aspects of Charge Conjugation-Parity, CP, invariance [7]. In the context of validity
of CPT symmetry [8–10], we then consider the equivalent analysis of Time Reversal, T, invariance.

Just to be self-contained we include a brief summary of the electric network formalism [11] we
need. Bymaking use of the concept of circuital duality [11,12], it was possible to obtain two equivalent
electrical representations of the same classical differential equation, a fact that facilitates enormously
the choice of the parameters that govern the equivalence of CP or T violation in the network. This class
of electric networksR is univocally related to the kaon systemKo because we find the completemap
between thematrix elements of the effective Hamiltonian of kaons and those elements of the classical
dynamics of the networks. Moreover, there exists a one to one relationship between the states |Ko

⟩

and |K̄o
⟩ and port voltages, or currents, of the electric network.

Following these lines we can give a formal classical test of the CP invariance that is a reflection
of the quantum test. From this test, together with the concept of dual network, one concludes that
any violation of the CP (or T) symmetry is directly related to the non-reciprocity of the network [1].
In fact, the observable associated to the violation of T invariance at the quantum level is associated
to the conductance of a non-reciprocal element needed to be included in the network, the gyrator.
The gyrator is a two-port, non-reciprocal, passive network without losses, and violates the classical
symmetry T [11–13]. In this way, we end up with a network completely equivalent to the kaon
system, that allows one to present the relevant parameters of the quantum system in terms of circuit
parameters. The interaction between both L–C subnetworks gives rise to a shift in the proper initial
free frequencies, in the sameway as themasses of kaons. Moreover, the presence of proper relaxation
times of the circuit are associated to the mean lives of K-short and K-long.

In Section 2 we analyze the equivalence between quantum and classical dynamics. Section 3 is
devoted to the neutral kaon system, while Section 4 contains a brief account of electric networks. The
correspondence between those systems is presented in Section 5. Finally in Section 6 we state our
conclusions.

2. On the equivalence between dynamics

It is well known that two systems of equations Ẋ(t) = AX(t), Ẏ(t) = BY(t) are linearly equivalent
iff the corresponding systemmatricesA and B are related through a similarity transformation, namely
B = S−1AS [6]. We note this equivalence relation as A ∼ B and is defined through a linear application
ΦS(A) = S−1AS = B. In summary, fixing a matrix S, the applicationΦS is an isomorphism.

Consequently, for our purposes of connecting classical and quantum systems, it is necessary for
both of them to be defined in spaces of finite dimensions. In general, a classical system C with m
degrees of freedom has its states defined on a real differential manifold [14,15] of dimension m
whereas a quantum system Q with n states belongs to a complex Hilbert space of dimension n. This
implies that the relationship between these systems could be not trivial. In fact, one has to profit from
the so called decomplexification procedure [6] that we briefly remember here.

To every matrix A ∈ Cn×n, the application ν : Cnxn
−→ R2n x 2n is called matrix decomplexification

ν(A) =


ℜ(A11) −ℑ(A11) · · · · · ·

ℑ(A11) ℜ(A11) · · · · · ·

...
... ℜ(Ann) −ℑ(Ann)

...
... ℑ(Ann) ℜ(Ann)

 .
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Clearly, for the case n = 1 (a complex number z) one has ν(z) =

ℜ(z) −ℑ(z)
ℑ(z) ℜ(z)


, here ℜ(z) and

ℑ(z) stand for real and imaginary part of complex number z respectively.
This application ν has several properties that are used below in our analysis. These properties can

be extended to the case of complex matrices ∀M,N,∈ Cn×n

ν(M + N) = ν(M)+ ν(N) (1)
ν(M.N) = ν(M)ν(N) (2)

giving rise to ν([M,N]) = [ν(M), ν(N)], then [M,N] = 0 ⇔ [ν(M), ν(N)] = 0. In particular these
properties are valid for complex numbers. The symbol [•, ⋆] is a binary operation named commutator,
defined under the set of square matrices.

A way to find the similarity transformation between both systems is to take both matrices A and
B to a diagonal form or in the general case to the Jordan form that always exists.

With this material we are ready to establish the equivalence between classical and quantum
systems, the base of our arguments.

2.1. Classical systems C

Given that the superposition principle applies to quantum systems, evolution equations are linear,
then the classical systems must be linear. We consider here a system of linear differential equations
of second order

A2q̈(t) + A1q̇(t) + A0q(t) = 0 (3)

with q : R −→ Rm×1, Aj ∈ Rm×m, that defines a class C.
We deal in general with systems where A2 has an inverse. Then defining A := A−12 A1 and

B := A−11 A0 one ends with the equation

q̈(t) + Aq̇(t) + Bq(t) = 0. (4)
Clearly, one can reduce the order of the equations by duplicating the number of them. This is

performed by defining a vector X ∈ R2m such that X := (q, q̇)ᵀ. Then X satisfies

Ẋ = {X (5)
with

{ =


0m 1m
−B −A


(6)

and 0m, 1m are the zero matrix and the unit matrix ofm×m, respectively.
In this way, the vector X contains all the information of the classical system expressed in the phase

space (q, q̇).

2.2. Quantum systems Q

Let us now consider a quantum system of n-base states, each one described by a vectorψ(t) on Cn

that can be written as ψ(t) = (ψ1(t), . . . , ψn(t))ᵀ in terms of the coordinates ψj(t) = ⟨j|ϕ(t)⟩. This
ψ(t) satisfies the Schrödinger equation [16,17]

ψ̇(t) = Kψ(t) (7)

where K ∈ Cnxn, with elements Kij = −ı⟨i|Ĥ|j⟩.
Now, in general, given the complex n-uple z one defines the vector decomplexification D : Cn

−→

R2n, such that
D(z) = (ℜ(z1),ℑ(z1), . . . ,ℜ(zn),ℑ(zn))ᵀ. (8)

Then making a separation between real and imaginary parts of (7) one gets dt [D(ψ(t))] =
ν(K)D(ψ(t)), taking by definition

Υ (t) := D(ψ(t)) (9)
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allows to write

Υ̇ (t) = ν(K)Υ (t) (10)

where clearly ν(K) is the decomplexification of the matrix K.

2.3. Construction of the isomorphismΦS

We now build the isomorphism ΦS between the dynamics C and Q by means of the associated
characteristic polynomials { and ν(K), respectively.

No doubt, a necessary condition for the equivalence we are looking for is that the number of
classical degrees of freedom has to be equal to the number of quantum states involved. As we already
stated, both systems are linearly equivalent iff ∃S nonsingular and real such that

{ = Sν(K)S−1. (11)

S being defined up to a scalar (real or complex), allows one to choose its determinant equal to one.
By using now the general properties of block matrices [18] one computes the polynomial p{

p{(z) = det(z1− {) = det

z1n −1n
B z1n + A


(12)

to obtain

p{(z) = det(z21n + Az + B). (13)

The matrix z21n + Az + B has polynomials of second order in z in the principal diagonal, namely
z2 + Aiiz + Bii. The rest of the elements are of first order in z, Aijz + Bij ∀i ≠ j.

If A and B are both diagonal, from Eq. (13) follows that

p{(z) =
n∏

j=1

(z2 + Ajz + Bj). (14)

In other words, p{(z) is factorized into second degree polynomials.
On the other hand, the polynomial pν(K), by means of the properties of ν can be written as

pν(K)(z) = pK(z).pKĎ(z) =
r∏

j=1

[z2 − 2αjz + |λj|2]dj =
r∏

j=1

[(z − λj)(z − λ∗j )]
dj (15)

with {λj, dj} roots and algebraic multiplicities of ν(K) and α = ℜ(λj) respectively.
The polynomial associated to the matrix ν(K) has the same roots as K plus the corresponding

complex conjugate.
If Q and P are the matrices that transform K and { to the Jordan form on C and R, respectively, the

construction of S is based precisely on the equality of the Jordan forms J{ = Jν(K) that we write

J{ = P−1{ P (16)

JK = Q−1KQ (17)

then applying ν to the last expression and using the property (2) one has ν(JK) = ν(Q)−1ν(K) ν(Q)
and finally Jν(K) = ν(JK) [19].

Being assumed that pν(K) = p{(z), one has J{ = Jν(K):

{ = Pν(Q)−1ν(K) [Pν(Q)−1]−1. (18)

From Eq. (11) the desired matrix S appears defined by

S := Pν(Q)−1. (19)

We would like to remark that when the equivalence between the dynamics driven by { and ν(K)
exists, i.e. : p{ = pν(K) and assuming that each eigenvalue of K is not degenerate (dj = 1, j = 1, . . . , r)
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and that A and B are diagonalized in the same basis, the identification of polynomials is immediate

Aj = −2ℜ(λj) (20)

Bj = |λj|
2 (21)

and consequently 4Bj > A2
j .

In summary, using the definition K := −ıH, the process driven the equivalence between systems
C −Q can be expressed as

ψ ∈ Cn, ψ̇(t) = Kψ(t) q̈+ Aq̇+ Bq = 0, q ∈ RnD

x = (q, q̇)ᵀ
Υ ∈ R2n, Υ̇ (t) = ν(K)Υ (t) ν(K) ∼ {

←−−−−−−−−−−→
Ẋ(t) = {X(t), X ∈ R2n

The transformation from ν(K) to { is done by means of 8S , with S nonsingular such that: 8S({) =
ν(K). Clearly, the application 8S is an isomorphism between the quantum systems Q and the classical
ones C8S : C ←→ Q, because both classes are characterized by ν(K) and { respectively.

3. Quantum dynamics of neutral kaons

We are particularly interested in the quantum system of neutral kaons, denoted by Ko, because,
under the hypothesis of Wigner–Weisskopf [20], it can be written as a two-state system. This allows
one to exemplify very easily the equivalence with a classical system. Moreover, we want to give a
formal context to the Rosner [1] and Cocolicchio [3] proposals to establish an analogy of the kaon
system with electric networks.

General principles on the basis of the Quantum Field Theory guarantee the validity of the CPT
symmetry in Nature [21–24]. When CPT is a symmetry, the mass of a particle and its antiparticle has
to be equal [7]. This equality is experimentally verified in the case of neutral kaons in an impressive
way [8–10]:

|mK◦ −mK̄◦ |

mK◦ +mK̄◦
< 4× 10−19. (22)

Consequently, in this context, it is equivalent to speak about CP or T invariance, or non-invariance.
We consider here the weak decay of the neutral kaons K◦, K̄◦ in the standard formalism [25] that

includes the strangeness selection rule∆S = ±1.
All the elements of the Hilbert space H are eigenstates of Ĥo = Ĥs + Ĥγ where Ĥs and Ĥγ stand

for the strong and electromagnetic interactions respectively. To this one adds the small perturbation
of the weak interaction Ĥw , that gives rise to transitions among the states of Ĥo.

In order to formalize the quantum dynamics we split the Hilbert space into the direct sum H =
A⊕ B, where A corresponds to the states of K◦ and K̄◦ while B includes all the possible decay final
states. We call {|j⟩} and {|β⟩} orthogonal complete basis of A and B respectively.

Consequently, any state at time t is represented by

|Ψ (t)⟩ =
−

j

|j⟩⟨j|Ψ (t)⟩ + |β⟩⟨β|Ψ (t)⟩ (23)

where is a sum on B states.

Defining now aj(t) := ⟨j|Ψ (t)⟩, with j = 1, 2 corresponding to K◦ and K̄◦ respectively, and
cβ(t) := ⟨β|Ψ (t)⟩ one can describe the subdynamics on A by the coordinates aj(t) or, equivalently,
by considering the one to one correspondence |K◦⟩ ←→ (1, 0)ᵀ, |K̄◦⟩ ←→ (0, 1)ᵀ, the C2 vector

ψ(t) = (a1(t), a2(t))ᵀ (24)

also describes the same dynamics.
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Just to complete the description it is necessary to give the initial condition for the evolution that is
written as aj(0) ≠ 0, cβ(0) = 0, or in other words |Ψ (0)⟩ ∈ A.

The evolution equation of the dynamics under consideration described by ψ(t) is [7]:

ıdtψ(t) = (M− ı0)ψ(t) (25)

where M and 0 are hermitian matrices. Clearly, the matrix 0 takes into account the decay width.
All the information on the decay channels is contained in (25) as is clear from the matrix elements

ofM− ı0:

Mij = ⟨i|Ĥ|j⟩ +
⟨i|Ĥw|β⟩⟨β|Ĥw|j⟩

Ej − Eβ
, Γij = π ⟨i|Ĥw|β⟩⟨β|Ĥw|j⟩δ(Ej − Eβ) (26)

with Ej and Eβ being the eigenvalues of Ĥo associated to the basis states.
When the Hamiltonian Ĥ has a given symmetry, there exist relations among the matrix elements

H = M− ı0.
In [7] we see that if CPT is a symmetry, one has M11 = M22 and 011 = 022, while if T is also a

symmetry, then M12 = M21 and 012 = 021.
In other words, the symmetry, when projected in the subspace A, provides relationships among

the matrix elements of H and consequently provides a test of violation.
Before the crucial experiment [26] everything pointed to CP as a good symmetry. This implied that,

with the election of the phases of the states {|Ko
⟩, |K̄o
⟩} in such a way that ĈP̂|Ko

⟩ = |K̄o
⟩ [24], one can

write states with well defined CP, given naturally as the mixtures |K1⟩ =
|Ko⟩+|K̄o⟩
√
2

, |K2⟩ =
|Ko⟩−|K̄o⟩
√
2

,
obtained through the change of basis given by the unitary matrix

Q =
1
√
2


1 1
1 −1


(27)

that diagonalizes the Hamiltonian H = M− ı0.
CP being conserved, the only decays into pions allowed are |K1⟩ −→ |2π⟩, |K2⟩ −→ |3π⟩ because

the states |2π⟩ and |3π⟩ have well defined CP, namely ĈP̂|2π⟩ = |2π⟩ and ĈP̂|3π⟩ = −|3π⟩ [7,27].
These two decay modes have certainly very different decay times. In fact, the first one has τ of the
order of 10−10swhile the second is of the order of 5× 10−8s.

3.1. CP violation

CP violation was observed for the first time by Christenson et al. [26]. They experimentally found
that |K2⟩ is able to decay also into two pions. This unexpected fact shows that the weak interactions
violates CP symmetry. Consequently, thematrixM− ı0 now is diagonalized bymeans of a newmatrix
Q, that takes into account the mixture of CP states and that can be written as

Q(ϵ) =
1

2(1+ |ϵ|2)


1+ ϵ 1+ ϵ
1− ϵ −(1− ϵ)


:= (S, L). (28)

In this way, the eigenstates ofM− ı0 expressed in the ket basis {|Ko
⟩, |K̄o
⟩} are now

|Ko
S⟩ =

1
2(1+ |ϵ|2)

[(1+ ϵ)|Ko
⟩ + (1− ϵ)|K̄o

⟩],

|Ko
L⟩ =

1
2(1+ |ϵ|2)

[(1+ ϵ)|Ko
⟩ − (1− ϵ)|K̄o

⟩] (29)

where, as usual, the indices S, L are related to the decay times short, long respectively.
It can be shown [19] that when CPT is valid, the condition H12 = H21 is equivalent to Q being

unitary. Then, clearly, the complex parameter ϵ that makes the matrix Q nonunitary, is a measure of
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the amount of CP violation. Note thatQ(ϵ) is unitary if ϵ = 0. The parameter ϵ can bewritten in terms
of the matrix elements of H as

ϵ =

√
H12 −

√
H21

√
H12 +

√
H21

. (30)

Notice naming S and L the first and second column of Q, respectively, see (28), and denoting by
. the usual scalar product, or dot product, of vectors, the test of CP violation can be enunciated as: if
S.L ≠ 0 then, CP is not conserved.

It is precisely this new expression of the test of CP violation that can be easily translated to the
equivalent classical dynamical system via the isomorphism 8S .

4. Electric networks (R)

An electric network [11,12] includes a set of elements together with a given way of connections
among them. These elements can be classified into five classes, namely: resistors {R}, capacitors {C},
inductances {L}, voltage generators {vg } and current generators {ig }. We are particularly interested
in localized circuits where voltage and current depend only upon time. The standard linear relations
among the classes are

vR(t) = R iR(t), iC(t) = CdtvC(t), vL(t) = Ldt iL(t). (31)

The way that the elements are connected is determined by a linear graph, defined by nodes
connected by edges. When the edges have a given sense, provided by the current flowing through
it, one says that the graph is oriented, and each edge of the graph is called arc. The oriented graph G is
noted by means of a cartesian product of the sets of nodes and arcs G = (N ,A). We are interested in
connected graphs, those where there is at least one path of G between any pair of nodes of G.

The corresponding dynamics of an electric network is defined by the appropriate use of the
relations (31) together with the Kirchhoff rules that take care of the topology of the network.

The network has ports: pairs of terminals that allow exchange of energy with the surrounding.
We restrict our analysis to passive networks, where the energy provided by an external source is non-
negative. In any case one has the possibility of choosing the voltage or the current as the representative
variable of the excitation or of the response of the network.

We call v(t) the vector corresponding to the port voltage and V(s) its Laplace transform. A similar
notation is used for currents, i(t) and I(s) respectively. The network, initially without external energy,
provides the relation

O(s) =M(s)J(s) (32)

between the Laplace transform of the output O and the input J [11]. Consequently, M is the network
matrix.

From Oα(s) =
∑n

β=1 Mαβ(s)Jβ(s) there results

Mαβ(s) =
Oα(s)
Jβ(s)

|Jk=0 ∀k ≠ β (33)

given rise to the definition of the elements of

Mαβ :=
L(rα)
L(eβ)

(34)

where rα and eβ stand for response and excitation, respectively. One then says that the network R
has a M-representation or that it belongs to the class M.

When the port voltages can be considered as input and the port currents as output, the
corresponding representation of the network is called of admittance or type Y, and the input–output
relationship is

I(s) = Y(s)V(s). (35)
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On the other hand, if the port currents are chosen as input and the port voltages as output, one is in
the case of the impedance representation or type Z. In this case one has

V(s) = Z(s)I(s). (36)

Any other representation is called hybrid.
A very important concept, relevant to our discussion is that of reciprocity. A network not connected

to external energy sources is reciprocal iff considering two different terminalsα ≠ β , the excitation in
α gives rise to a response in β that is invariant under the permutation α←→ β or eα(t) = eβ(t) =⇒
rα(t) = rβ(t).

Consequently, R is reciprocal iff Mαβ(s) =Mβα(s)with α ≠ β .
The diagonal elements {Mαα} are called of input ones, because they relate the quantities of port α,

while the elements not belonging to the diagonal {Mαβ}, with α ≠ β are called of transference ones,
and relate quantities of different ports.

4.1. Dual networks

When the graph G associated to the network R is planar, there exists its dual graph [11] denoted
by G∗ [30]. This dual graph corresponds naturally to a dual network noted R∗. Consequently, each arc
voltage vj of R∗ changes into a arc current ij of R and vice versa.

Clearly, the equations (31) have the dual version, namely

v(t) = R i(t)
i(t) = Cdt v(t)
v(t) = Ldt i(t)


←→

i(t) = G v(t)
v(t) = Ldt i(t)
i(t) = Cdt v(t).

Or in other words, the dual transformation implies the interchange

v←→ i, C←→ L, R←→ G. (37)

In summary, the connected networks allow for two representations, according to the selection of
voltage, or current, port to present the analysis. The corresponding networks are mutually dual.

5. Correspondence electric network—kaons: R −Ko

The main goal of our proposal is to build an electric circuit able to describe the system of neutral
kaons, satisfying the equivalence ∼ previously introduced. As a result, the matrix elements of the
effective Hamiltonian M − ı0 are related, by means of a similitude transformation to those of the
appropriate electric circuit as

{ = −Sν(0+ıM)S−1. (38)

In this way, the symmetries present in the kaon system and the corresponding tests of validity, have
an unique reflection in the electric circuit.

The method of analysis of the time evolution of electric circuits previously introduced, based on
nodes, arcs and loops [11] ends on a system of linear differential equations of second order with
constant coefficients, or alternatively on systems of linear integro-differential equations. In our case,
as the precise electric network is not known, one has to make a synthesis [11] of the set of all electric
networks in a given family or subset of this.

The general scheme of the procedure is to look for the network that is equivalent to a quantum
system of n-states. This network should have a first order equivalent equation of the form (3), where
the generalized coordinates {qj} are now voltages and currents and with the { matrix having n
eigenvalues in the third quadrant of the complex plane, together with their complex conjugates.

One ends with a general structure composed by n-subnetwork (dipoles) {Rj}j=1,...,n connected
among themselves bymeans of the so called interaction networkRI of n ports [11]. Each subnetwork
introduces a degree of freedom described by a port voltage, or port current. These time functions
provide the entire information of the state Rj at a given time. Clearly, on each dipole one gives the
initial condition. Fig. 1 shows the resulting general topological array.
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Fig. 1. General electric network R.

Fig. 2. A network R composed by two subnetworks (dipoles) R1 and R2 connected through RI .

Cj Lj

Lj

Cj

j j

Fig. 3. Reactive subnetworks Rj . Left with v(t) excitation. Right with i(t) excitation.

Notice that in our case, the network dynamics must be time translation invariant, as required by
(3), to be in agreement with the corresponding property of the quantum system.

In general, a network of n ports allows (2n)!/(n!)2 representations. However, only two of them are
useful for our purposes, namely thosewhere themix of state variables is not present: all port variables
are either voltages or currents. Consequently, the equivalent network families of interest are type Y
or type Z.

The electric network R of interest in connection with the neutral kaon system should have a
classical matrix { of 4× 4 with two different complex eigenvalues placed on the third quadrant. Then
the general topology reduces to the one composed by two subnetworks R1 and R2 connected by
means of a two-port network RI, Fig. 2.

In order to fix the structure of each Rj one starts by observing that the free states (when RI is
not connected) correspond to Y(s) = 0 or to Z(s) = 0 according to the equations (35) and (36),
respectively. Correspondingly, the free states of the quantum system of kaons are those that evolve
with Ĥ = Ĥo and have the form ψ◦j(t) = Aje−ımjt of frequency mj. This condition implies that each
Rj should be reactive, i.e., without resistive losses, contributing with one proper frequency each. This
condition forces one, and only one, connection of inductors and capacitors, depending on the use of
voltage or current as the input. In Fig. 3 the possible subnetworksRj, j = 1, 2 that should be connected
to the ports 1 and 2 of RI are shown. Both dipoles are certainly oscillators with the corresponding
frequencies dictated by the values of Lj and Cj.

It is worth noticing that if a network R having a dual representation R∗, presents an analogous
behavior (equivalent according to8S) to a quantum systemQ then,R∗ shares this analogous behavior
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Fig. 4. Complete scheme of the network R with v(t) excitation.

to Q, i.e.

∀R : ∃R∗/

R ∼ Q⇔ R∗ ∼ Q


that follows from the property R ∼ R∗ and the transitivity of the equivalence ∼.

Our analysis uses port voltages as excitation variables. Then the complete network can be
schematized as in Fig. 4.

We go then to the synthesis of the network RI that ends with a family C, equivalent to the kaon
system Ko. We consider connected networks because they have a dual representation.

From Fig. 4 one has

ij(t)+ iCj(t)+ iLj(t) = 0. (39)

Using now the standard relations between voltages and currents and performing a Laplace
transformation one ends with

−Ij(s) = Yj(s)Vj(s)− Fj(s). (40)

If t = 0 is the initial time, s = σ + ıω, Fj(s) = Cjvj(0)− 1
s iLj(0) includes the initial conditions. We call

Yj(s) the admittance function of the subnetwork Rj, given by

Yj(s) = Cjs+
1
Ljs
. (41)

Clearly, the frequency of each subnetwork, ωoj, is given by ωoj = 1/

LjCj.

On the other hand, the interaction network RI, initially without energy sources, is governed by
(35), with Y : C −→ C2x2, that we write

Y(s) =

y11(s) y12(s)
y21(s) y22(s)


(42)

with yij(s) = Ii(s)/Vj(s)

Vk=0

; j ≠ k, called the admittance parameters of the circuit.
Coming back to (40), it can be written as

sV(s)+

1
s

f2
+ DY(s)


V(s) = DF(s) (43)

with the matrices D := diag(C−11 , C
−1
2 ) and f := diag(ωo1, ωo2).

As was stated before, the states of the free network, Y(s) = 0, are related to the unperturbed states
of the quantum system, Ĥ = Ĥo. Consequently, the eigenfrequency of each subnetwork correspond
to the neutral kaon masses ωoj ←→ mj, with j = K◦, K̄◦. Then, CPT invariance implies ωoj = ωo for all
j that forces

f = ωo1 (44)

with 1 the identity 2× 2 matrix.
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Fig. 5. Left: Network with structure 5. Right: Network with structure T. Both structures are mutually dual.

In order to obtain a linear differential equation of second order in time, one needs the initial
conditions in F(s). We consider zero port currents, i(0) = 0. Notice that this initial condition is a
necessary condition once one considers that RI is initially without energy. Therefore can be used the
usual methods of networks synthesis.

Then, from (39) to each node and (31) one has

iL(0) = −D−1v̇(0) (45)

that allows the term DF(s) of (43) to be written as

DF(s) = v(0)+
1
s
v̇(0). (46)

Next we deal with the general form of the matrix Y (s).
We are considering first reciprocal networks that implies that yij(s) = yji(s),∀s. This is the case

of any network composed by R, L and C [11]. Moreover, a connected reciprocal network of two ports
reduces always to the so called structure 5 (or its dual T) as is shown in Fig. 5.

The topology 5, implies a relationship between {Ya, Yb, Yc} and the matrix Y [11]

y11 = Ya + Yc, y22 = Yb + Yc, y12 = y21 = −Yc .

We consider first the most simple case of a coupling between subnetworks defined by a matrix
Y(s) constant in s. This is the case of a matrix RI of only resistors. Then

Y =

Ga + Gc −Gc
−Gc Gb + Gc


(47)

where {Ga,Gb,Gc} are the conductances of RI.
The complete network results from the connection of a dipole to each port of RI whose dynamics

is given by

v̈(t) = −f2v(τ )− DYv̇(t).

Here one can identify the matrices A and B of Eq. (4), i.e. A = DY, B = f2. Both matrices can be
diagonalized under the same change of basis. The matrix DY is symmetric having two real positive
eigenvalues. For this reason, the real part of the eigenvalues of K, that measure the time life of the
decaying particles can be exactly fitted from Eq. (20).

Due to the fact that the quantumsystemof interest presents twodifferent eigenvalues, the network
we are looking for has to have a matrix B that besides being diagonalized by means of the same basis
that the one for A, has different positive eigenvalues. This is achieved, in the case of an interaction
circuit type5, varying their constitutive elements. Take for example a newmatrix Ỹ(s)with elements
defined in terms of a resistor connected in parallel with an inductance, namely

Ỹ(s) =
1
s


1
La

0

0
1
Lb

+ Y (48)

with Y given in (47). Here the dependence on s does the job
Now the following circuit equation results

v̈(t) = −(f2
+ DL−1)v(t)− DYv̇(t)
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Fig. 6. Interaction resistive network RI in topologyΠ together with two columns of inductors.

where one can identify B = f2
+ DL−1 whose eigenvalues are {ω2

o +
1

C1La
, ω2

o +
1

C2Lb
} while A = DY.

The network thus obtained is presented in Fig. 6.
Now we are prepared to present the general RI both connected and reciprocal that satisfies the

requirement of equivalence. The admittance matrix is given by DY(s) = α+ 1
s β(s), while the matrix

elements of Y(s) are yij = αij +
βij
s , with αjj, βjj positive and with the possibility that αij, βij with i ≠ j

can be negative.
We the take the inverse Laplace transform to (43) with initial condition v̇(0) = 0 to obtain the

evolution equation

v̈(t)+ αv̇(t)+ (f2
+ β)v(t) = 0 (49)

that completes the demonstration that one can get an evolution equation of the initial form (4). We
can recognize that the matrix { of (6) is defined in terms of the following:

A = α, B = f2
+ β.

Moreover, in terms of the circuit elements, one has

α = D .

Ga + Gc −Gc
−Gc Gb + Gc


(50)

β = D .

L−1a + L−1c −L−1c
−L−1c L−1b + L−1c


. (51)

The conditions α11 = α22 and β11 = β22 ensures that [A, B] = 0 and in this case, the characteristic
polynomial is trivially factorized. Consequently, as we have shown previously, the eigenvalues of {,
from (20) and (21) are

λj = −
1
2
[Aj + ı(4Bj − A2

j )
1
2 ]

plus their complex conjugates and with Aj and Bj eigenvalues of A and B respectively. As one should
have 4Bj > A2

j , one can write a first order approximation for the eigenvalues as follows

λj = −
1
2
Aj − ı


Bj. (52)

By an appropriate choice of the circuit parameters that govern the eigenvalues {λj}, one can make
them equal to those of the kaon matrix K = −(0 + ıM) and build up the S matrix. In this way, the
isomorphism between the electric networks R and the kaon system K◦, is established.

The general interaction reciprocal network G–L equivalent, by 8S , to the kaon system is sketched
in Fig. 7.

As it was stated before, there exists the alternative possibility of using the currents ij instead of
voltages as generalized coordinates. The corresponding dual system (type R–C), presented in Fig. 8, is
entirely equivalent to the kaon system as is the previous one.
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Fig. 7. General G–L interaction network.

Fig. 8. General dual R–C interaction network.

5.1. Violation of CP symmetry in C systems, equivalent to the Ko system

The final step is to find amodified circuit in order to include the necessary information to take into
account the CP violation experimentally present in the kaon system.

We have previously obtained the eigenvalues of both matrices { and ν(K ). It is now necessary to
obtain the ϵ parameter, or alternatively the scalar product S.L, that measures the CP violation of the
kaon system. In the basis of Pauli matrices, the effective Hamiltonian can be written as

H =


µS + µL

2
µS − µL

2
e−ıα

µS − µL

2
eıα

µS + µL

2

 = 5(µS, µL, ϵ) (53)

withµS = mS − ıγS ,µL = mL− ıγL being the eigenvalues of H. Here the indices refer to |Ko
S⟩ and |K

o
L⟩,

respectively. The parameter α is defined in terms of the ϵ parameter as

eıα =
1− ϵ
1+ ϵ

. (54)

Experimentally [9], the CP parameter |ϵ| is of the order of 10−3. Consequently, one can take the
approximation

H =


µS + µL

2
µS − µL

2

µS − µL

2
µS + µL

2

+


0 −ıα
µS − µL

2

ıα
µS − µL

2
0

 = H(0) + H(1).

Note that in this decomposition H(0) is CP-invariant, while

H(1) = ϵ(∆m− ı∆Γ )


0 1
−1 0


(55)

violates CP.
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Remember now that the matrix { has, in principle, 8 free parameters. Nevertheless, the condition
[A, B] = 0 reduces this number to 6. There is a further reduction to only 5 parameters because
one has that |ℜ(ϵ)| = |ℑ(ϵ)| [8]. We conclude that one has a sufficient number of parameters to
construct an effectiveHamiltonian that violates CP symmetry through themapping betweenH and the
matrix {.

We analyze the test of CP based on the calculation of the scalar product ξ = S.L written as a
function of the classical circuit elements via the isomorphism 8S .

The information about the CP symmetry breaking is contained in the eigenvectors of H, i.e., in the
columns of Q = (S, L).

To start with, we look for a relationship between the eigenvector basis of { with that of ν(K).
The real matrix { has eigenvalues {λ1, λ∗1, λ2, λ

∗

2}, so its eigenvectors {w1,w∗1,w2,w∗2} form an
ordered basis. They can be organized into the matrix

W = (w1,w∗1,w2,w∗2).

On the other hand, the matrix Q contains the eigenvectors of K; then, the decomplexification
of Q = (S,L), called ν(S,L) defines the transformation that takes ν(K) to the real Jordan form. To
obtain the matrix whose columns are the eigenvectors of the matrix ν(K), we find the transformation
between the complex diagonal form and the real Jordan form. Note, first, that given z ∈ C and the
unitary matrix∆ = 1

√
2


ı 1
1 ı


one has

diag(z, z∗) = ∆−1ν(z)∆.

In this way, the matrix of eigenvectors of ν(K) is U = ν(Q).diag(∆,∆), that can be explicitly
written as

U = ν(Q).diag(∆,∆) =
1
√
2

ıQ11 Q∗11 ıQ12 Q∗12
Q11 ıQ∗11 Q12 ıQ∗12
ıQ21 Q∗21 ıQ22 Q∗22
Q21 ıQ∗21 Q22 ıQ∗22

 = 1
√
2
(u1,−ıu∗1,u2,−ıu∗2).

The columns of U are the normalized eigenvectors of ν(K ) ordered with the eigenvalues
{λ1, λ

∗

1, λ2, λ
∗

2}, that clearly verify

uj.uj = uĎ
j uj = |Q1j|

2
+ |Q2j|

2
=


S.S = 1, j = 1
L.L = 1, j = 2

and u1.u2 = Q∗11Q12 + Q∗21Q22 implying

u1.u2 = ξ . (56)

We now relate the product ξ = u1.u2 with the eigenvectors of {. As it was stated before, the
classical-quantumequivalence implies that { = Sν(K)S−1. Then, from { = W diag(λ1, λ∗1, λ2, λ

∗

2)W
−1

and the fact that diag(λ1, λ∗1, λ2, λ
∗

2) = U−1ν(K)U one has { = WU−1ν(K)UW−1. Consequently,

W = SU (57)

or in other words, the eigenvectors transform with the same matrix S that performs the equivalence
between systems. In particular

wj = Suj. (58)

From the rectangular matrices R(w) = (w1,w2) and R(u) = (u1,u2), one can define the matrix of
scalar products

RĎ
(w).R(w) =


w1.w1 w1.w2
w2.w2 w2.w2


= G(w)

which is the Gramian matrix [28]. In the same way one obtains G(u). Using (58) one gets

RĎ
(w)R(w) = RĎ

(u)S
ĎSR(u). (59)
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From det(S) = 1 and the fact that the eigenvectors are normalized, one obtains that det(G(w)) =
det(G(u)) and then |w1.w2| = |u1.u2|. Finally, from the last equation and (56) we obtain the classical
test

|ξ | = |w1.w2| (60)
that shows that for this analysis it is sufficient to know the eigenvectors {w1,w2} of {.

In the context of CPT invariance, the test reduces to say that
w1.w2 ≠ 0 then, CP is not conserved.

The eigenvectors ofW = (w1,w∗1,w2,w∗2), can be written in a compact form as

wj =
1
Nj
(a∗j ρ, a

∗

j , ρ, 1)
ᵀ

with aj =
λj
Bj
, Bj is a jth eigenvalue of B, ρ =


C1
C2

and Nj =

(ρ2 + 1)(1+ 1

Bj
) chosen to ensure that

wj.wj = 1. Then, the classical test reduces to the computation of

w1.w2 =
1− ρ2

N1N2


1+

λ1λ
∗

2

B1B2


.

Wehavepreviously stated that two families of connected and reciprocal networks equivalent to the
kaon system exist. On the other hand, the existence of a dual network is guarantee by the numerical
relationship

Cj = Lj, with j = 1, 2 (61)
condition that together to the requirement of CPT that ωoj = ωo, or equivalently that C1L1 = C2L2,
allows one to obtain

C1 = C2 = C←→ ρ = 1.

Consequently, one hasw1.w2 =
1−ρ2

N1N2


1+ λ1λ

∗
2

B1B2


= 0, or

|ξ | = |w1.w2| = 0, (62)
a result that ends in the conclusion:

Every electrical network with the topology given in Fig. 2 (linear, connected, reciprocal), and equivalent
to the kaon system, represents the case in which there is invariance under CP, according to the isomorphism
8S .

A brief review of our previous analysis shows that the only way of breaking the CP symmetry is by
breaking the symmetry of the matrices α and β. In other words, the interaction network in this case
must be non-reciprocal.

5.2. Non-reciprocal networks—gyrators

Remember that a network RI is not reciprocal iff yij(s) ≠ yji(s) for i ≠ j.
Due to the fact that any combination of {R}, {L}, {C} provides a reciprocal network [11], the

introduction of some new kind of component is unavoidable. The new element called gyrator [13]
does the job. This gyrator is a passive element of two ports whose block diagram is presented in Fig. 9.

As a consequence of the introduction of a gyrator in a circuit, the admittance (or impedance)matrix
Y(s) is no longer symmetric. In any case, for each s, thismatrixY(s) can be split as a sumof a symmetric
plus an antisymmetric matrix [28]. In terms of electric networks we write Y(s) = Y(s) + Y∼(s),
i.e., the sum of a reciprocal matrix plus a non-reciprocal one. Here Y(s) = C[α + β(s)], with α and β
symmetric [29].

Taking into account that the CP violation is measured by a parameter of the order of |ϵ| < 10−3,
one should guarantee that the matrix Y∼(s) is small. Consequently, Y∼(s) acts as a small perturbation.
Moreover, Y∼ is real due to (43) and then has the form

Y∼ := Cαg =


0 g
−g 0


. (63)
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Fig. 9. Gyrator circuital symbol.

This is precisely the admittance representation of the gyrator [13], where g (> 0) is its conductance
that we call Y∼ = Yg , and αg is the corresponding antisymmetric term of new matrix α+ αg

From this, one can write the new classical non-reciprocal matrix C

C =


0 1
−f2
− β −α− αg


=


0 1

−f2
− β −α


+


0 0
0 −αg


then is defined

C = {+ {g (64)

where β and α are defined in (50).
Notice that the non-reciprocal matrix αg is proportional to the particular term of the effective

Hamiltonian (55) of the quantum system that violates CP

αg ∝ H(1).
From (64) one can say that the gyratorworks as a perturbation of the original CP-invariant network,

similarly to the termH(1) in the quantum system. For the new classicalmatrixC (64), the characteristic
polynomial takes the form

pC(z) = p{(z)+
g
C

2
z2 (65)

that shows that the perturbative first order is quadratic in g . Clearly, one has to expect that this
parameter g should be of the order of ϵ. In the perturbation theory scheme, we consider the expansion
of the roots {η} of p{∼r(z), in terms of those roots {λ} of p{(z)

η(g) = λ+
−
k∈N

λkgk. (66)

To compute the relevant parameter ξ we consider the eigenvectors corresponding to the two
eigenvalues {λ1, λ2} of the third quadrant. Again one writes for the eigenvectors {ϖ} of the matrix
C as an expansion in terms of those {w} of {

ϖ(g) = w+
−
k∈N

w(k)
∼

gk (67)

that verify

Cϖ(g) = η(g)ϖ(g). (68)

To first order in g one has

ϖ(g) = w+ gw∼ (69)

that ends in

g(λ1− {)w∼ = {gw. (70)

Computing |ξ | = |ϖ1(g).ϖ2(g)| = |w1 � w2 + g(w1∼ � w2 + w1.w2∼) + g2w1∼ � w2∼| and
considering thatw1 � w2 = 0, the results is

|ξ | = g|w1∼ � w2 +w1 .w2∼| (71)

showing that, as announced, the breaking of CP symmetry is measured by the gyrator conductance g .
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Fig. 10. Interaction network family type Y, equivalent to the kaon system including CP violation.

Fig. 11. Interaction dual network family type Z, equivalent to the kaon system including CP violation.

The important point to remark is that there exists a topological structure that physically realizes
this circuit. The family of networks of interaction that violates CP, being equivalent to the kaon system
and invariant under CPT is

RI = Rr ‖ G

where Rr is Fig. 7; G represents a gyrator and both are connected in parallel. The network doing the
job is shown in Fig. 10.

Clearly, if one consider the port currents instead of the voltages as generalized coordinates, the
corresponding family of interaction networks includes the dual circuits, namely

R∗I = R∗r ⊕ G∗

where R∗r verifies CP symmetry (Fig. 8), G∗ is the dual of a gyrator (also a gyrator [11]) and they are
connected in series. This is sketched in Fig. 11.

To complete the mapping of H into the matrix elements of {, we should specify explicitly its
eigenvalues and the value of ϵ. Notice that we have imposed that α11 = α22 and β11 = β22, in (50)
and (51). This implies that Ga = Gb and La = Lb. Moreover, the existence of dual networks implies
that α and β have to be symmetrical. Then

α =


τ−1a + τ

−1
c −τ−1c

−τ−1c τ−1a + τ
−1
c


, β =


ω2

a + ω
2
c −ω2

c
−ω2

c ω2
a + ω

2
c


(72)

where τa = C
Ga

, τc = C
Ga

, ω2
a =

1
CLa

and ω2
c =

1
CLc

. The eigenvalues of A and B have the form A11 ± A12

and B11 ± B12 respectively. Finally, the eigenvalues of K,−γj − ımj, are equal to the two eigenvalues
of { belonging to the third quadrant. The connection with the circuit elements coming from (52) is

γL = τ
−1
a , γS = τ

−1
a + 2τ−1c (73)

mL =


ω2

o + ω
2
a + 2ω2

c , mS =


ω2

o + ω
2
a . (74)
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One can also write the difference of masses and widths

∆m = mL −mS ≃
√
2ωc (75)

∆Γ = ΓS − ΓL = 2τ−1c . (76)

As∆m ∼ ∆Γ and∆Γ ≃ γS ≫ γL [8] it must be that

ωcτc =
√
2. (77)

Under the hypothesis that the small perturbation on the initial reciprocal circuit does not strongly
alter the proper frequencies of the free system, one can get easily the ϵ parameter. By comparing with
the corresponding Laplace-transformed differential equations of both dynamical systems (7) and (43),
considering the initial condition iL(0) = 0 in (45) for the classical equivalent system. Then, from (7)
and (43) we obtain

sΨ (s)− ψ(0) = −ıHΨ (s) (78)

sV(s)− v(0) =M(s)V(s) (79)

by definition Ψ (s) := L{ψ(t)} and M(s) := −


1
s f2
+ DY(s)


. The above hypothesis of the small

perturbation implies M(s) ≃M(−ıωo), we obtain the equivalence

H ∼ ıM(−ıωo) = f− ıDY(−ıωo).

From 1
CY(s) = α+ 1

s β with A = α and B = f2
+ β obtain

H∼
1
ωo

B− ıA =

ωo − ı
y11(−ıωo)

C
−ı

y12(−ıωo)

C
−ı

y21(−ıωo)

C
ωo − ı

y22(−ıωo)

C

 .

On the other hand in the case of neutral kaons system, from (30) we obtain [7]

ϵ ≃
H12 − H21
√
H12H21

. (80)

Therefore the equivalent network epsilon parameter is given for

ϵ ≃
y21(−ıωo)− y12(−ıωo)
√
y12(−ıωo)y21(−ıωo)

(81)

that certainly vanishes when RI is reciprocal.
Taking into account the non-reciprocal case Y(s) = Yr(s) + Y∼r(s) whose elements are yij(s) =

y(r)ij (s)+ (−)
jgδij and that y(r)12 (−ıωo) = −Gc −

ı
ωoLc

one obtains

ϵ ≃ −
2g

(Gc +
ı

ωoLc
)2 − g2

that to order g reduces to

ϵ ≃ −
2g

Gc +
ı

ωoLc

(82)

showing again clearly that the gyrator conductance g governs the CP violation in the classical
‘equivalent dynamics’.
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6. Conclusions

We have been able to extend the character of the nice observation by Rosner [1] about the
characteristic matrix of a given circuit having a similar aspect to the effective Hamiltonian of the
kaon system. We have gone beyond an analogy, to obtain an equivalence, stricto sensu, between the
Schrödinger dynamics of a quantum system with a finite number of basis states and the classical
dynamics of electric networks. The equivalence we present is an isomorphism that connects in
univocal way both dynamical systems.

Our conclusions are based upon the concept of ‘equivalent dynamics’ defined starting from
general mathematical considerations. Since the Schrödinger dynamics is defined on a complex
space, while the classical dynamics of interest implies real evolution equations, we have used the
decomplexification procedure that allows us to work in a common space. In this way we define
the general classes of classical C and quantum Q systems where the equivalence is valid and
simultaneously, we build up the isomorphism ΦS , that takes C into Q and includes the general
correspondence between states of both systems.

We have presented here the particular case of neutral kaons, as the quantum systems, particularly
interested in the aspects of CP invariance in the context of validity of CPT symmetry.

The concept of circuital duality allows us to obtain two equivalent electrical representations of the
same classical differential equation. This makes easy the choice of the parameters that govern the CP
or T violation in the network.

The class of electric networks R is univocally related to the kaon system Ko since we have found
the complete map between the matrix elements of the effective Hamiltonian of kaons and those
elements of the classical dynamics of the networks. In fact, there exists a one to one relationship
between the states |Ko

⟩ and |K̄o
⟩ and port voltages, or currents, of the electric network.

We have presented a formal classical test of the CP invariance that is a reflection of the quantum
test. From this test, together with the concept of dual network, one concludes that any violation of
the CP (or T) symmetry is directly related to the presence of non-reciprocity in the network. The
observable associated to the violation of T invariance at quantum level is related, in our realization,
to the conductance of a gyrator. The gyrator is a two-port, non-reciprocal, passive network without
losses, and violates the classical symmetry T. We then end up with a network completely equivalent
to the kaon system, that allows one to represent the relevant parameters of the quantum system in
terms of circuit components. The interaction between both L–C subnetworks gives rise to a shift in
the proper initial free frequencies, in the same way as the masses of kaons. Moreover, the presence of
proper relaxation times of the circuit are associated to the mean lives of K-short and K-long.

It is possible to generalize these ideas to other quantum systems immediately, tomap the quantum
Hamiltonian and rewrite it in term of the elements of equivalent classical system, alongwith the study
of the underlying symmetries.
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