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Abstract

During the last few years, a number of works in computer simulation have focused on the
clustering and percolation properties of simple "uids based on an energetic connectivity criterion
proposed long ago by T.L. Hill (J. Chem. Phys. 23 (1955) 617). This connectivity criterion
appears to be the most appropriate in the study of gas–liquid phase transition. So far, integral
equation theories have relayed on a velocity-averaged version of this criterion. We show, by using
molecular dynamics simulations, that this average strongly overestimates percolation densities in
the Lennard–Jones "uid making unreliable any prediction based on it. Additionally, we use a
recently developed integral equation theory (Phys. Rev. E 61 (2000) R6067) to show how this
velocity-average can be overcome.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clustering and percolation in continuum systems are concepts of great interest in chem-
ical physics. Phenomena such as nucleation [1], hydrogen bonding [2], conductor–insulator
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transitions [3], sol–gel transitions [4] and bridging in granular materials [5] are fre-
quently studied in terms of clusters and percolation [6].
The Frst application of the statistical mechanics formalism to describe clustering in

equilibrium classical systems was done by Hill [7]. In Hill’s theory, the concept of
cluster is directly related to the idea of bonded-pairs. A bonded-pair is a set of two
particles that are linked by some direct mechanism. Then, a cluster is deFned as a set
of particles such that any pair of particles in the set is connected through a path of
bonded-pairs. We call this clusters “chemical clusters” to distinguish them from the
non-pair-bonded clusters we have introduced in a previous work [8]. A system is in a
percolated state if it contains a cluster that spans the system.
From Hill’s theory, we see that, in order to decide whether two particles are bonded

or not, a connectivity criterion is necessary. This connectivity criterion has to be de-
Fned according to the phenomenon under study. 1 In the search for clusters of atoms
in a mono-atomic gas that marks the onset of a phase transition, Hill proposed a
simple energetic criterion: two particles are bonded if their relative kinetic energy is
less than minus their relative potential energy [7]. However, this criterion is diJcult
to implement from a theoretical point of view and simpler ones were preferred. The
very Frst simpliFcation was set by Hill himself. Instead of using his general crite-
rion, for which the relative positions and velocities of the relevant pair of particles
come into account, he averaged out all the possible velocities of the particles. In that
way, a velocity-averaged (VA) criterion can be stated as follow: two particles are
bonded with probability P(r) if their relative potential energy is negative. P(r) is
calculated as an average probability over all possible relative velocities of a pair of
particles [7].
Coniglio et al. have obtained an Ornstein–Zernike-type relationship for the pair con-

nectedness function g†(r1; r2). This function is proportional to the joint probability
density of Fnding two particles belonging to the same cluster and at positions r1 and
r2, respectively [9]. Therefore, by integrating g†(r1; r2), the mean cluster size S and the
percolation density �p—i.e., the value of � for which S(�) diverges—can be obtained.
It is worth mentioning that most of the theoretical studies on connectivity and perco-

lation in continuum systems (see for example Refs. [10–12]) were focused in the rather
simple Stillinger’s connectivity criterion [13]. It states that two particles are bonded if
they are separated by a distance shorter than a given connectivity distance d. In this
case, d is an ad hoc parameter, which must be chosen on physical grounds. Although
this criterion might be sensible in the study of certain insulator–conductor transitions,
it is unrealistic regarding clustering in saturated vapours.
More recently, Hill’s criterion has been reconsidered in molecular dynamics stud-

ies of small clusters [14,15] and the critical percolation behaviour of Lennard–Jones
"uids [16]. It has been suggested that the percolation line—the line that separates the
temperature-density phase diagram into percolated and non-percolated states—might be
experimentally observable [16,17]. Moreover, cluster analysis based on Hill’s criterion

1 For example, in the conductor–insulator transition of water in oil microemulsions, two micelles are
consider bonded if they can share charge carriers (see Ref. [3]). However, in the identiFcation of bridges
formed by grains within granular materials, two grains are bonded if they stabilize each other (see Ref. [5]).
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seems to be useful in locating gas–liquid coexistence curves [16]. Notice that molec-
ular dynamics simulations are mandatory if Hill’s criterion is used to identify clusters
since Monte Carlo algorithms do not provide the velocities of the particles to decide
whether the relative kinetic energy of a given pair outweighs its relative potential
energy.
Since Coniglio’s theory deals only with the positions of the particles, Hill’s criterion

cannot be achieved. Instead, the VA criterion was used by Coniglio et al. [18] to cal-
culate analytically, for a potential made up of a hard core plus an attractive interaction,
the percolation loci in a crude mean-Feld approximation. Although they obtained that
the percolation line ended just below the critical point, we will show that this is an
artefact of an additional approximation they introduced, which is not very suitable for
the low temperatures involved.
In this work we present the results of a molecular dynamics (MD) investigation of the

percolation loci of a Lennard–Jones system by using the two previous energetic criteria,
i.e., VA and Hill’s energetic criteria. We add a maximum connectivity distance d to the
criteria to avoid unrealistic bonding. Two particles separated by a distance greater than
this maximum distance are considered as non-bonded even if their relative velocity
is by chance zero [15]. We show that the velocity average introduces an important
overestimation on the predicted percolation density at all temperatures. Therefore, the
approximation introduced by this velocity average is not sensible. As a consequence, a
way to implement the full Hill’s connectivity criterion in an integral equation approach
becomes essential for the future of these theories. Here, we show how a recently
developed integral equation theory for continuum percolation [19] can be used to solve
this problem.
The rest of the paper is organised as follow. In Section 2 we describe the MD

simulations and show the unsuitability of the velocity average in the energetic bond-
ing criterion. In Section 3 we brie"y discuss Coniglio’s percolation theory and two
examples of its application to the VA criterion. In Section 4 a generalized integral
equation theory is used to illustrate how the full Hill’s energetic criterion can be Ftted
into this formalism. We conclude with some considerations about the possible future
developments of this approach.

2. Molecular dynamics

Molecular dynamics simulation of 500 particles in a cubic box with periodic bound-
ary conditions in the NVT ensemble was performed by using a leap-frog algorithm
with velocity correction [20]. Particles interact via the Lennard–Jones potential

v(r) = 4�
[(

r

)12
−
(
r

)6]
: (1)

The time step was chosen as Qt∗ =Qt−1
√

kBT=(�m) = 0:01. Quantities are averaged
over 103 conFgurations picked up each 50 Qt after stabilization. A cut oS distance
equal to 2:7 was used in the pair potential.
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We identify the clusters by using both, the Hill’s criterion for the bonded probability
deFned as [7]:

P(ri; j ; pi; j) =

{
1 p2i; j=4m¡− v(ri ; rj) and ri; j6d;

0 p2i; j=4m¿− v(ri ; rj) or ri; j ¿d
(2)

(ri; j and pi; j are the relative position and momentum of particles i and j), and the VA
criterion, which corresponds to [7,18]

Pav(ri; j) =

{
0 v(ri; j)¿ 0 or ri; j ¿d

�[3=2;−v(ri; j)=kBT ]=�[3=2] v(ri; j)6 0 and ri; j6d
(3)

(�[a] is the gamma function and �[a; x] is the incomplete gamma function).
In the last case, for each pair of particles that satisFes v(ri; j)6 0 and ri; j6d, we

generate a random number z, between 0 and 1. If z¡�[3=2;−v(ri; j)=kBT ]=�[3=2] we
consider that the particles form a bonded-pair, otherwise we do not. Note that this
criterion can also be used in Monte Carlo simulations because it does not require the
particle velocities. We also identify clusters according to Stillinger’s criterion for
the sake of comparison. To identify the clusters from the list of bonded-pairs we
use the Stoddard algorithm [20,21].
A system is said to be in a percolated state if a cluster that spans the replicas

is present 50 percent of the time [22]. Then, a percolation transition curve, which
separates the percolated from the non-percolated states of the system, can be drawn
above the coexistence curve in the T–� phase diagram.
In Fig. 1 percolation loci for Hill’s, VA, and Stillinger’s connectivity criteria are

presented for d= 2. The coexistence curve obtained by Panagiotopoulos [23] is also
included. Theoretical predictions from connectedness integral equation theory are shown
for VA and Stillinger’s criteria only (see Section 3). The two distinctive diSerences
between the energetic criteria and Stillinger’s criterion, are: (i) a strong dependence on
temperature of the percolation curves and (ii) a shift towards higher densities.
As it can be seen in Fig. 1, the VA criterion yields higher percolation densities than

Hill’s criterion. As it is expected, the approximation due to the average is less impor-
tant as temperature drops: for low temperatures, the kinetic energy is small compared
to the potential energy, and so an average over velocities is a good approximation.
Nevertheless, the overestimation of the percolation density is never small. Therefore, it
is expected that any theory based on the VA criterion will fail to describe the proper
percolation (and in general clustering) behaviour of simple "uids. Any success should
be attributed to cancellation of errors rather than accuracy of the theory. Indeed, we
shall see in the next section that a Percus–Yevick-like approximation for the connect-
edness Ornstein–Zernike integral equation yields, for the VA criterion, an apparently
good percolation line as compared with the full Hill’s criterion.
It is worth mentioning that the results for the Hill’s criterion are similar to the ones

obtained by Campi et al. [16] in a more extensive MD simulation. However, they
obtained a faster increase in the percolation density for increasing temperature. The
diSerences between our results and those from Campi et al. could be related to the
small size of our system and most importantly to the criterion for deciding whether
the system is percolated or not. In Ref. [16] the authors considered that the system is
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Fig. 1. Coexistence and percolation curves for the Lennard–Jones "uid: MD (symbols) and Percus–Yevick
connectedness theory (lines). Densities and temperatures are in units of −3 and �=kB, respectively. Solid
diamonds (with trend line) correspond to the coexistence curve. Percolation loci for Stillinger’s criterion
(open squares and dotted line), Hill’s criterion (open circles), and VA criterion (open triangles and solid
line) are presented.

on the percolation line if the second moment of the cluster size distribution n′(s) that
excludes the largest cluster reaches its maximum. Nevertheless, we are interested in
the suitability of the VA bonding criterion and we expect that any criterion to calculate
the percolation line might be aSected to a similar extent by this simpliFcation.

3. Continuum clustering theory for non-velocity-dependent bonding criteria

3.1. General Theory

In order to study clustering in a system composed of N classical particles interacting
via a pair potential v(r1; r2), Hill separated the Boltzmann factor e(r1; r2) = exp[ −
�v(r1; r2)], into bonded (†) and unbounded (∗) terms [7]: e(r1; r2)=e†(r1; r2)+e∗(r1; r2).
As usual � = 1=kBT , being kB the Boltzmann constant. Since e†(r1; r2) represents the
basic probability density of Fnding two particles bonded and at positions r1 and r2,
this separation yields a diagrammatic expansion for the partition function in terms of
“chemical” clusters. We express Hill’s separation as follow:

e†(r1; r2) = P(r1; r2) exp[− �v(r1; r2)] ; (4)

e∗(r1; r2) = [1− P(r1; r2)] exp[− �v(r1; r2)] ; (5)

where P(r1; r2) is given by Eq. (3) in the case of the VA energetic criterion.
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Fugacity and density expansions have been found, within Hill’s formalism, by
Coniglio and co-workers [9] for the pair connectedness function g†(r1; r2). This func-
tion is proportional to the joint probability density of Fnding two particles belonging to
the same cluster and at positions r1 and r2, respectively. Moreover, by collecting nodal
and non-nodal diagrams in these expansions an Ornstein–Zernike-type relationship is
obtained

g†(r1; r2) = c†(r1; r2) + �
∫

c†(r1; r3)g†(r3; r2) dr3 : (6)

The function c†(r1; r2) is the direct pair connectedness function. By posing a closure
relation between this function and g†(r1; r2), Eq. (6) can be solved. Then, the mean
cluster size can be obtained as

S(�) = 1 +
1

(N − 1)

∫
g†(r1; r2) dr1 dr2 ; (7)

where the integration is carried out over the whole system volume.
Percolation of an ensemble of particles is concerned with the existence of clusters

that become macroscopic in size. Therefore, the percolation transition occurs at a critical
percolation density �c which mathematically veriFes

lim
�→�c

S(�) =∞ : (8)

In the rest of this section we present results for two systems where the VA criterion
is applied.

3.2. A simple example

A theoretical calculation of the percolation loci for the VA criterion [see Eq. (3)]
was done by Coniglio et al. [18] for a system in which the pair potential has the
following form:

v(r1; r2) = v(r1;2) =

{∞ r1;26 r0 ;

−u0( r0
r1; 2

)6 r1;2 ¿r0 :
(9)

However, they did not use a maximum connectivity distance d to avoid unphysical
connections. Moreover, they used an expansion for the incomplete gamma function up
to Frst order. We have numerically recalculated the percolation curve using d=2 and
the complete expansion of the gamma function. The corresponding expression for the
percolation density �p is [18]:

�p =
1

Uc†(k = 0)
; (10)

where Uc†(k) is the Fourier transform of the direct pair connectedness function. We
have used a closure relation for Eq. (6) proposed by Coniglio et al., i.e.,

c†(r1; r2) = f†(r1;2) (11)

where f†(ri; j)=e†(ri; j)=exp[−�v(ri; j)]Pav(ri; j) is the basic probability of Fnding two
particles separated by a distance ri; j and bonded. The function f†(ri; j) is called the
bound Mayer function.
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Fig. 2. Coexistence and percolation lines for a simple "uid. Full and dashed lines correspond, respectively,
to the percolation loci for Hill’s criterion [calculated from Eqs. (20) and (25)] and VA criterion [calculated
from Eqs. (6) and (11)]. Dotted line for the VA criterion is reproduced from Ref. [18] to be compared with
the “corrected” results (dashed line). The coexistence line is also reproduced from Ref. [18]. The particles
of the "uid interact through the pair potential given in Eq. (9). Densities and temperatures are reduced with
the corresponding critical values.

In Fig. 2 we reproduce the coexistence curve and the percolation line, for the VA
criterion, from Ref. [18]. The corrected results, using the complete expansion for
the incomplete gamma function and the maximum connectivity distance d, are also
included. Additionally, we show the percolation line for the full Hill’s criterion (see
Section 4). As we can see, using the full expansion of the incomplete gamma function
is important since results are very much aSected. The importance of the maximum
connectivity distance d is negligible. We calculated the percolation line for increasing
values of d—up to inFnity—without obtaining signiFcant changes.
Based on the earlier results, it was suggested [17] that this theory is rather satisfactory

considering its simplicity because the predicted percolation line ended close to the
critical point as MD simulations show [16] for the full Hill’s connectivity criterion.
However, this might be due to a cancellation of errors. On the one hand, the actual
percolation line for the VA criterion should be shifted to even higher densities as it can
be seen in Fig. 1 for the Lennard–Jones system. On the other hand, the approximation
for the incomplete gamma function seems to aSect the result considerably.

3.3. Numerical results for the Lennard–Jones system

In order to solve Eq. (6) for the Lennard–Jones potential we have implemented
Labik’s numerical algorithm [24]. We have already seen that the simple closure relation
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given by Eq. (11) is very crude. Hence, we use the more reliable closure available,
i.e., the Percus–Yevick-like relation

g†(r1;2) = [f∗(r1;2) + 1][g†(r1;2)− c†(r1;2)] + exp[�v(r1;2)]g(r1;2)f†(r1;2) : (12)

In Eq. (12), f∗(r1;2) = e∗(r1;2)− 1 = exp[− �v(ri; j)][1− Pav(ri; j)]− 1 is the unbound
Mayer function. We recall that Pav(ri; j) is given by Eq. (3) for the VA energetic
criterion.
By using Labik’s algorithm we solve the coupled system of Eqs. (6) and (12). Then,

the mean cluster size can be obtained for given T and �. For a given temperature,
percolation density is determined by Ftting the power law S−1 ˙ |�−�c|� for �. �c

[22]. Although critical exponents obtained by Ftting S as a function of � are diJcult
to obtain accurately in these cases, percolation densities are very reliable.
In Eq. (12) the “thermal” pair correlation function g(r1;2) is involved. We have

obtained g(r1;2) by solving numerically the “thermal” Ornstein–Zernike equation closed
with the “thermal” Percus–Yevick approximation [25].
In Fig. 1 we show the results for the VA criterion and Stillinger’s criterion for

d= 2. As we can see, the results from Percus–Yevick theory agree rather well with
MD simulations for Stillinger’s criterion. However, for the VA criterion, the theory
is unsatisfactory. Nevertheless, we see a good advance with respect to the very low
percolation densities predicted in the previous subsection, for a similar system, by
the closure relation (11). We believe that the main cause of the failure for the VA
criterion is related to the “input” function g(r1;2). The value of this function is less well
predicted by the “thermal” Percus–Yevick approximation at these “high” densities and
temperatures. Notice that these types of theory were developed to describe the liquid
state, particularly near the triple point. At low densities, as involved for the Stillinger’s
criterion, these theories are valid even for temperatures above the critical point.
Although the previous theory seems to be inappropriate to describe the percolation

transition for the VA criterion, it seems to agree better with the MD result for the
full Hill’s criterion. This is, of course, due to a cancellation of errors between the
velocity average and the Percus–Yevick approximation. Since Hill’s criterion produces
a percolation line at intermediate densities, we should be able to use the Percus–Yevick
approximation successfully to study this case. However, getting rid of the velocity
average is the main task to accomplish. In the following section we show how this
can be achieved.

4. Continuum clustering theory for velocity-dependent bonding criteria

4.1. General theory

In this section we summarize the main results of a theory we have presented else-
where [19] to describe the clustering and percolation for bonding criteria that involve
the velocity of the particles as well as their positions.
For a system of N classical particles interacting via a pair potential v(ri ; rj) we deFne

a density correlation function �(r1; r2; p1; p2) which is N (N − 1) times the probability
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density of Fnding two particles at phase space points (r1, p1) and (r2, p2), respectively:

�(r1; r2; p1; p2) =
N (N − 1)

h3NN !QN (V; T )

∫ N∏
i=1

exp
[
−�

p2i
2m

]

×
N∏
i=1

N∏
j¿i

exp[− �v(ri ; rj)] drN−2 dpN−2: (13)

Here h is the Planck constant and QN (V; T ) the canonical partition function of the
system. Then, like Hill and Coniglio et al. [7,9], we separate exp[ − �v(ri ; rj)] into
connecting and blocking parts

exp[− �v(ri ; rj)] = f†(ri ; rj; pi ; pj) + f∗(ri ; rj; pi ; pj) + 1 (14)

Here f†(ri ; rj; pi ; pj) represents the basic probability density of Fnding two particles at
conFguration (ri ; rj; pi ; pj) and bonded. The shorthand notation f�(ri ; rj; pi ; pj) ≡ f�

i; j
(�= †; ∗) will be sometimes used.
Substitution of Eq. (14) in Eq. (13) yields

�(r1; r2; p1; p2) =
N (N − 1)

h3NN !QN (V; T )
exp[− �v(r1; r2)]

×
∫ N∏

i=1

exp
[
−�

p2i
2m

]∑{∏
f†

i; jf
∗
k; l

}
drN−2 dpN−2 ; (15)

where the sum is carried out over all possible arrangements of products of functions
f†

i; j and f∗
k; l.

It should be noted that the functions f†
i; j and f∗

i; j can depend on momenta as well

as on the positions of the two particles, but the sum of f†
i; j and f∗

i; j must be momenta
independent in order that Eq. (14) be satisFed. Except by this last condition, the
functions f†

i; j and f∗
i; j are otherwise arbitrary for thermodynamic purposes. Obviously,

we choose them in such a way that the Hill’s deFnition of bonded particles is achieved:

f†
i; j = exp[− �v(ri; j)]P(ri; j ; pi; j) ; (16)

f∗
i; j = exp[− �v(ri; j)][1− P(ri; j ; pi; j)]− 1 ; (17)

where P(ri; j ; pi; j) is given in Eq. (2).
Each term in the integrand of Eq. (15) can be represented as a diagram consisting

of two white e1 and e2-points, N − 2 black ei-points and some f†
i; j and f∗

i; j connec-
tions except between the white points. Here we take ei ≡ exp[ − �(p2i =2m)]. White
points are not integrated over whereas black points are integrated over their positions
and momenta. All the machinery normally used to handle standard diagrams in clas-
sical liquid theory [25] can now be extended to treat these new kind of diagrams.
By following Coniglio’s recipe to separate connecting and blocking parts in cor-
relation functions, i.e., g(r1; r2) = g†(r1; r2; p1; p2) + g∗(r1; r2; p1; p2), we obtain an
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Ornstein–Zernike-type integral equation for g†(r1; r2; p1; p2)

g†(r1; r2; p1; p2) = c†(r1; r2; p1; p2)

+
∫

�(r3; p3)c†(r1; r3; p1; p3)g†(r3; r2; p3; p2) dr3 dp3 : (18)

Here �(r1; p1)�(r2; p2)g†(r1; r2; p1; p2) is N (N − 1) times the joint probability density
of Fnding two particles at positions r1 and r2 with momenta p1 and p2, respectively,
and belonging to the same cluster, where the bonding criterion is given by Eqs. (16)
and (17); being

�(r1; p1) =
1

N − 1

∫
�(r1; r2; p1; p2) dr2 dp2 : (19)

The function c†(r1; r2; p1; p2) denotes the sum of all the non-nodal diagrams in the
diagrammatic expansion of g†(r1; r2; p1; p2). We recall that a nodal diagram contains at
least a black point through which all paths between the two white points pass.
For homogeneous systems we have

g†(r1; r2; p1; p2) = c†(r1; r2; p1; p2) +
�

(2'mkBT )3=2

∫
exp

[
−�

p23
2m

]

×c†(r1; r3; p1; p3)g†(r3; r2; p3; p2) dr3 dp3: (20)

To get an integral equation from Eq. (18), it is necessary to introduce a closure
relation between g†(r1; r2; p1; p2) and c†(r1; r2; p1; p2). As an example, we can take the
Percus–Yevick approximation g(r1; r2) exp[�v(r1; r2)]=1+N (r1; r2); where the function
N (r1; r2) is the sum of the nodal diagrams in the expansion of g(r1; r2). Separation
into connecting and blocking parts i.e., g(r1; r2)=g†(r1; r2; p1; p2)+g∗(r1; r2; p1; p2) and
N (r1; r2) = N †(r1; r2; p1; p2) + N ∗(r1; r2; p1; p2), yields

g†(r1; r2; p1; p2) = [f∗(r1; r2; p1; p2) + 1][g†(r1; r2; p1; p2)− c†(r1; r2; p1; p2)]

+ exp[�v(r1; r2)]g(r1; r2)f†(r1; r2; p1; p2) : (21)

Eq. (18) closed by Eq. (21) gives an integral equation for g†(r1; r2; p1; p2).
From the function g†(r1; r2; p1; p2) we deFne the pair connectedness function

g†(r1; r2) =
∫

�(r1; p1)�(r2; p2)g†(r1; r2; p1; p2) dp1 dp2 : (22)

This function is the joint probability density of Fnding two particles belonging to the
same cluster, within Hill’s criterion, and at positions r1 and r2, respectively.
Then, the mean cluster size S is given by

S = 1 +
1

(N − 1)

∫
g†(r1; r2) dr1 dr2 : (23)

4.2. A simple example

By using the previous extension of Coniglio’s work, we have calculated the perco-
lation loci for the full Hill’s criterion. We have used the pair potential of Eq. (9). In
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this case we solve Eq. (20) with a closure relation equivalent to Eq. (11), i.e.,

c†(r1; r2; p1; p2) = f†(r1; r2; p1; p2) : (24)

where f†(r1; r2; p1; p2) is given by Eq. (16). Then

c†(r1; r2; p1; p2) =




0 r1;26 r0 or (p1;2)2=4m

¿− v(r1;2) ;

exp[�u0( r0
r1; 2

)6] r1;2 ¿r0 and (p1;2)2=4m

¡− v(r1;2) :

(25)

In order to obtain the mean cluster size we solve system (20) and (25) as follows. First,
taken into account the homogeneity of the system, we perform a Fourier transform on
Eq. (20) with respect to r1;2

g†(k1;2; p1; p2) = c†(k1;2; p1; p2) +
�

(2'mkBT )3=2

×
∫

exp
[
−�

p23
2m

]
c†(k1;2; p1; p3)g†(k1;2; p3; p2) dp3 (26)

where

g†(k1;2; p1; p2) =
∫

g†(r1;2; p1; p2) exp[− ir1;2k1;2] dr1;2 (27)

and an analogous expression for c†(k1;2; p1; p2).
By evaluating the previous equation in k1;2 = 0, multiplying by exp[ − �(p22=2m)]

and integrating with respect to p2 we obtain

g†0(p1) = c†0(p1) +
�

(2'mkBT )3=2

∫
exp

[
−�

p23
2m

]
c†0(p1; p3)g

†
0(p3) dp3 (28)

with

g†0(p1; p2) ≡ g†(k1;2 = 0; p1; p2) ; (29)

g†0(p1) =
∫

exp
[
−�

p22
2m

]
g†0(p1; p2) dp2 ; (30)

and analogous expressions for c†(k1;2; p1; p2).
Since c†1;2 in Eq. (25) depends just on the modulus of r1 − r2 and p1 − p2, we can

perform a Fourier transform with respect to p1 yielding

g†0(!) =
(
2'm
�

)3=2

exp
[
−3m!2

2�

]
c†0(!) +

�
(2'mkBT )3=2

c†0(!)ĝ
†
0(!) ; (31)

where we have deFned

g†0(!) =
∫

g†0(p1) exp[− i!p1] dp1 (32)
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ĝ†0(!) =
∫

g†0(p3) exp
[
−�

p23
2m

]
exp[− i!p3] dp3 (33)

c†0(!) =
∫

c†0(|p1 − p3|) exp[− i!p1;3] dp1;3 : (34)

From Eq. (23), the mean cluster size can be expressed as

S = 1 +
1

(N − 1)

∫
�(r1; p1)�(r2; p2)g†(r1; r2; p1; p2) dp1 dp2 dr1 dr2 ; (35)

or, in terms of ĝ†0(!),

S = 1 +
�

(2'mkBT )3
ĝ†0(!= 0) : (36)

Taking g†0(!) = (2'm=�)3=2 exp[ − (3m!2=2�)]c†0(!) as a Frst order approximation
and iterating Eq. (31) up to convergence we can calculate the mean cluster size for
given � and T .
As in the previous section, percolation density is determined by Ftting the power

law S−1 ˙ |�− �c|� for �. �c.
In Fig. 2, we present the percolation line obtained for Hill’s criterion. As for the VA

criterion, the simple closure relation implemented yields unrealistic percolation densi-
ties. However, it can be seen that the percolation line is shifted to the left, as com-
pared with the one corresponding to the VA criterion. This line is also less temperature
dependent—it presents a sharper slope in the T–� plane. These trends are consistent
with the MD simulation results for the Lennard–Jones "uid (see Fig. 1). The discrep-
ancy between both criteria is negligible only at low temperature as expected.
Although a satisfactory theory for the continuum percolation of a simple "uid within

the Hill’s energetic connectivity criterion is still due, we believe that the main step
forward has been presented here. The next attempt to improve the theory should be
the implementation of the Percus–Yevick connectedness closure relation (21). This
can be done by solving numerically the coupled system (20) and (21). This is a
non-straightforward task: tensors of rank nine must be used to storage correlation func-
tions and a double convolution has to be solved. Recently, F. Lado [26] has developed
a method to calculate the pair correlation function for a polarizable Lennard–Jones
system which is based on an expansion, of the relevant functions, in orthogonal poly-
nomials. The integral equation he has solved is similar to Eq. (18) but with p1 and
p2 representing the induced dipolar moments of the particles 1 and 2, respectively. A
modiFcation of this method might be used for the clustering problem of Lennard–Jones
particles by using the Percus–Yevick-like closure (21).

5. Concluding remarks

In this work, we have shown that the common introduction of an average over
velocities in the connectivity energetic criterion for simple "uids strongly overestimates
the percolation density. Moreover, we have shown how this average can be avoided by
using a more general continuum percolation theory. Although this theory was initially
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developed to implement time-dependent connectivity criteria, it is specially suited to
Hill’s energetic criterion.
Even though we have applied the new formalism to avoid the velocity-average, we

used a very simple approximation to close the generalized Ornstein–Zernike connect-
edness equation. Nevertheless, the results are promising in that the trends obtained
by MD simulation are reproduced. A more sophisticated closure relation should be
implemented in order to obtain a more satisfactory theory.
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