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Abstract
We examine the local super trace asymptotics for the de Rham complex defined
by an arbitrary super connection on the exterior algebra. We show, in contrast to
the situation in which the connection in question is the Levi-Civita connection,
that these invariants are generically non-zero in positive degree and that the
critical term is not the Pfaffian.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications
of zeta functions and other spectral functions in mathematics and physics’.

PACS numbers: 02.30.Jr, 02.40.Ma, 02.40.Vh

1. Introduction

1.1. The Chern–Gauss–Bonnet theorem

Throughout this paper, we will let M := (M, g) be a compact smooth Riemannian manifold,
without boundary, of dimension m. Let χ(M) be the Euler characteristic of M. If m is odd,
then χ(M) is zero and if m is even, then χ(M) is given by integrating a suitable expression
in the curvature tensor which can be described as follows. Let {ei} be a local orthonormal
frame for the tangent bundle and let Ri jkl denote the components of the curvature tensor. We
adopt the Einstein convention and sum over repeated indices. With our sign convention, the
components of the Ricci tensor are given by setting ρi j = Rikk j, and the scalar curvature is
given by contracting the Ricci tensor and setting τ = ρii; τ is positive on the unit sphere in
Euclidean space. If m = 2m̄, then the Pfaffian (or Euler form) is given by setting

Em := 1

(−8π)m̄m̄!
g(ei1 ∧ · · · ∧ eim , e j1 ∧ · · · ∧ e jm )Ri1i2 j1 j2 . . . Rim−1im jm−1 jm . (1)

We have, for example,

E2 = τ

4π
and E4 = τ 2 − 4|ρ|2 + |R|2

32π2
.
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One sets Em = 0 if m is odd. Let dx denote the Riemannian unit of volume on M:

dx = gdx1, . . . , dxm, where g := p
det(gi j).

Chern [6] established the following result which generalizes the classical two-dimensional
Gauss–Bonnet formula.

Theorem 1. If (M, g) is a compact Riemannian manifold, then

χ(M) =
Z

M
Em dx.

1.2. Heat trace asymptotics

Let D be an operator of Laplace type on the space of smooth sections C∞(V ) to some vector
bundle V over M, i.e. locally D has the form

D = −{gi j Id∂xi∂x j + Ai∂xi + B}. (2)

Here, Ai and B are suitable locally defined endomorphisms of the vector bundleV . For example,
the scalar Laplacian 10

M is of this form since we may express

10
M = −g−1∂xi ggi j∂x j .

Let e−tD be the fundamental solution of the heat equation. If f is a smooth ‘smearing’ function,
which is used to localize matter, then there is a complete asymptotic expansion as t ↓ 0 of the
form

TrL2{ f e−tD} ∼
∞X

n=0

t (n−m)/2
Z

M
an(x, D) f (x) dx.

We set f = 1 to define the global heat trace asymptotics

an(D) :=
Z

M
an(x, D) dx

and expand

TrL2{e−tD} ∼
∞X

n=0

t (n−m)/2an(D). (3)

The local invariants an(x, D) vanish for n odd and for n even are given by a local formula
which is homogeneous of order n in the derivatives of the total symbol of D. The asymptotic
series given in equation (3) was first studied by Minakshisundaram and Pleijel [24] for the
scalar Laplacian, and the existence of the full asymptotic series in a very general setting was
due to Seeley [27, 28]. This asymptotic formula can be generalized to the case of manifolds
with a boundary if suitable boundary conditions are imposed; Kennedy, Critchley and Dowker
[22] is a seminal work in this regard—the invariants an for n odd appear for manifolds with a
boundary, so this is a convenient formalism.

1.3. The heat equation and the Chern–Gauss–Bonnet formula

We restrict ourselves for the moment to the case in which D = 1
p
M is the Laplacian on the

space C∞(3p(M)) of smooth p-forms. McKean and Singer [23] observed that
mX

p=0

(−1)p TrL2

¡
e−t1p

M
¢ = χ(M). (4)

2



J. Phys. A: Math. Theor. 45 (2012) 374010 C G Beneventano et al

They wrote: ‘Because of the complete cancellation of the time-dependent part of the alternating
sum Z, it is natural to hope that some fantastic cancellation will also take place in the small,
i.e. in the alternating pole sum’. In other words, they conjectured that the following identity
involving the super trace holds:

an(x, d + δ) :=
mX

p=0

(−1)pan
¡
x,1p

M
¢ =

½
Em if n = m
0 if n < m

¾
. (5)

Here, d denotes exterior differentiation, δ denotes the dual, interior multiplication and

1
p
M := dp−1δp−1 + δpdp.

McKean and Singer established equation (5) in the special case that m = 2; subsequently,
Patodi [26] established this identity for arbitrary m and thereby gave a heat equation proof
of the Chern–Gauss–Bonnet theorem. By imposing absolute boundary conditions, manifolds
with boundary can be considered [14]. We refer to the previous related work [18–20].

1.4. The de Rham complex

Introduce a Z2 grading on the exterior algebra by setting

3e(M) = ⊕p3
2p(M) and 3o(M) = ⊕p3

2p+1(M).

We then have an elliptic complex of Dirac type

(d + δ)
e/o
M : C∞(3e/o) → C∞(3o/e),

where the associated operators of Laplace type are given by

1e
M = (d + δ)o

M(d + δ)e
M = ⊕p1

2p
M,

1o
M = (d + δ)e

M(d + δ)o
M = ⊕p1

2p+1
M .

We now review a bit of classical tensor calculus. Let ξ ∈ T ∗M be a cotangent vector. Let ext(ξ )

denote left exterior multiplication by ξ and let int(ξ ) be the dual, interior multiplication. We
then have

ext(ξ )ω := ξ ∧ ω and g(ext(ξ )ω, ω̃) = g(ω, int(ξ )ω̃).

If ∇g denotes the Levi-Civita connection, then the exterior differentiation d and the adjoint
interior differentiation δ are given by the formulas

dω = ext(dxi)∇g
∂xi

ω and δω = −int(dxi)∇g
∂xi

ω.

We define γ (ξ ) := ext(ξ ) − int(ξ ) to give the exterior algebra the structure of a Clifford
module

γ (ξ )γ (η) + γ (η)γ (ξ ) = −2g(ξ , η) Id.

Let ∇ be a connection on the exterior algebra bundle 3(M). We suppose that ∇ is a super
connection, i.e. that ∇ = ∇e ⊕∇o restricts to define connections on 3e and 3o separately, but
aside from that we impose no restrictions on ∇. In physics, these connections play a role in
the context of dark matter and supergravity; see, e.g., [2, 12, 25]. For such a connection, one
defines

(d + δ)
e/o
∇ := γ (dxi)∇e/o

∂xi
: C∞(3e/o) → C∞(3o/e),

1
e/o
∇ := (d + δ)

o/e
∇ (d + δ)

e/o
∇ and

an(x, (d + δ)∇ ) := an
¡
x,1e

∇
¢ − an

¡
x,1o

∇
¢
.

Equation (5) generalizes to this setting to become:
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Theorem 2. Adopt the notation established above. Then,

TrL2

¡
e−t1e

∇
¢ − TrL2

¡
e−t1o

∇
¢ = χ(M).

While this is perhaps not surprising, we shall give the proof in section 3, as the usual
proofs in the literature (see, for example, the discussion in [16]) assume that the operators in
question are self-adjoint and it is necessary to remove this restriction.

If D is an operator of Laplace type on a smooth vector bundle V , then

a0(x, D) = (4π)−m/2 dim(V ).

Thus, in particular

a0(x, (d + δ)∇ ) = (4π)−m/2 {dim(3e) − dim(3o)} = 0.

The local ‘fantastic cancellation’ does not hold in this setting for the higher order heat trace
asymptotics. We shall establish the following result in section 3.

Theorem 3. Let M = (Tm, g0) be the flat torus. Fix a point x ∈ T
m. There exists a super

connection ∇ on 3∗(M) so that (d + δ)∇ is self-adjoint and so that a2n(x, (d + δ)∇ ) 6= 0 for
n > 1 for some point x of T

m.

Remark 1. Let ∇ be the connection of theorem 3. We note that Em vanishes for the flat metric;
thus, in particular, if m is even, then am(x, (d + δ)∇ ) 6= Em.

If ∇ is a connection on T M, we can extend ∇ to act on the cotangent bundle by requiring
that the duality equation is satisfied:

XhY, ωi = h∇XY, ωi + hX,∇Xωi ∀X,Y ∈ C∞(T M), ω ∈ C∞(T ∗M),

where h·, ·i denotes the natural pairing between T M and T ∗M. Then there is a unique extension
of ∇ to a connection on the full exterior algebra which satisfies the Leibnitz rule:

∇X (ω1 ∧ ω2) = (∇Xω1) ∧ ω2 + ω1 ∧ (∇Xω2) ∀ X ∈ C∞(T M), ωi ∈ C∞(3M).

Since such an induced connection restricts to a connection on each 3pM separately, necessarily
any induced connection is a super connection. However, since an arbitrary super connection
need not obey the Leibnitz rule, not every super connection is induced from an underlying
connection on the tangent bundle; in particular, the connections used to establish theorem 3
will not satisfy the Leibnitz property.

In this setting, one has a weaker version of the McKean–Singer local vanishing theorem.

Theorem 4. Let ∇ be a connection on 3M which is induced from an underlying connection
on T M. Then, an(x, (d + δ)∇ ) = 0 for 3n < 2m.

1.5. General elliptic complexes

Instead of considering the de Rham complex one can consider more generally a first-order
partial differential operator

A : C∞(V1) → C∞(V2), (6)

where V1 and V2 are smooth vector bundles over M. We assume that V1 and V2 are equipped with
fiber metrics and form the formal adjoint A∗ : C∞(V2) → C∞(V1). We say that equation (6)
defines an elliptic complex of Dirac type if the associated second-order operators D1 := A∗A
and D2 := AA∗ are of Laplace type. We define

an(x, A) := an(x, D1) − an(x, D2).

4
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Note that in the case of the de Rham complex, the associated Laplacians are given by D1 = 1e
M

and D2 = 1o
M. Equation (5) generalizes to this setting to yieldZ

M
an(x, A) dx =

½
index(A) if n = m
0 if n 6= m

¾
. (7)

Atiyah, Patodi and Singer [3] showed that if A was the operator of the signature complex
with coefficients in an auxiliary bundle W , then an(x, A) = 0 for n < m while am(x, A) gave
the classical formula in terms of the Hirzebruch L polynomial and the Chern forms of the
coefficient bundle W ; a similar result held for the twisted spin complex. This result then led to
a heat equation proof of the Atiyah–Singer theorem in full generality; the Lefschetz formulas
and other results have also been established using these methods. We refer to [16] for more
details; the field is a vast one and it is not possible to give a full account in a short note such
as this.

If (M, g, J) is a Kähler manifold, the same approach led to a proof of the Riemann–Roch
formula. However, if the metric in question was not Kähler, the local invariants of the heat
equation did not give rise to the classical formula; there were divergence terms [13, 21].
Rather than vanishing for n < m, in fact one could construct examples where an(x, ∂ + δ00)
was non-zero for certain values of n < m. But it remained an open problem to construct index
problems where the local index formula did not vanish for a2; such examples are provided by
theorem 3.

The following result, which generalizes equation (7) to the situation not involving adjoints,
will be used in the proof of theorem 2:

Theorem 5. Let A± : C∞(V±) → C∞(V∓) be first-order partial differential operators over
a compact Riemannian manifold without boundary such that D± := A∓A± are operators of
Laplace type on C∞(V±). Set an(x, A+, A−) := an(x, D+) − an(x, D−). Then,Z

M
an(x, A+, A−)dx =

½
index(A+) if n = m
0 if n 6= m

¾
.

1.6. Outline of the paper

In section 2, we shall summarize briefly the theory of compact operators on Hilbert space
that we shall need; we omit the proofs as they are standard and refer instead to [7] and [32]
for further details. In section 3, we will use these results to establish theorems 2 and 5. In
section 4, we recall some formulas for the heat trace asymptotics which we use in section 5 to
complete the proof of theorem 3. In section 6, we prove theorem 4.

2. Spectral theory of compact operators in a separable Hilbert space

Lemma 1. Let σ (K) denote the spectrum of a compact operator K on an infinite-dimensional
separable Hilbert space.

(i) Let 0 6= μ ∈ σ (K). Then

(a) μ is an eigenvalue of K;
(b) there exists an integer νK (μ) so that ker(K − μ)νK (μ) = ker(K − μ)νK (μ)+1.

(ii) The eigenvalues can only accumulate at 0.
(iii) 0 ∈ σ (K) and σ (K) is countable.

5
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Let 0 6= μ ∈ σ (K), where K is a compact operator on an infinite-dimensional separable
Hilbert space. By lemma 1, the eigenvalues only accumulate at 0. The Riesz projection is
defined by setting

πK (μ) := 1

2π
√−1

Z
γ

(2 − K)−1 d2,

where γ is any simple closed curve about μ in the complex plane which encloses no other
eigenvalues of K. Let EK (μ) := Range{πK (μ)}. We set πK (μ) = 0 and EK (μ) = {0}, if
μ /∈ σ (K).

Lemma 2. Adopt the notation established above. Then

(i) if 0 6= μ ∈ σ (K), then

(a) πK (μ)2 = πK (μ);
(b) EK (μ) is a finite-dimensional space;
(c) EK (μ) = ker(μ − K)νK (μ).

(ii) If 0 6= μi ∈ σ (K) with μ1 6= μ2, then πK (μ1)πK (μ2) = 0.
(iii) Let EK (0) := ∩06=μ∈σ (K) ker(πK (μ)). Then

(a) KEK (0) ⊂ EK (0);
(b) σ (K|EK (0)) = {0}.

3. Heat trace formulas for the index

3.1. Spectral theory of operators of Laplace type

Let D be an operator of Laplace type on the space of smooth sections to a vector bundle V
over a compact Riemannian manifold. Standard elliptic theory, see for example the discussion
in [16], shows that the spectrum of D (viewed as an unbounded operator in Hilbert space) is
contained in a cone about the positive real axis with arbitrarily small slope. Thus, in particular,
there exists κ À 0 so that the operator (D+κ) is invertible; K := (D+κ)−1 is then a compact
operator on L2(V ) (viewed as a Banach space). We have

Dφ = λφ ⇔ (D + κ)φ = (λ + κ)φ ⇔ (D + κ)−1φ = (λ + κ)−1φ.

Thus, the spectrum of D is a countable set which only accumulates at ∞. Set σ (D) = {λn},
set νD(λn) := νK ((λn + κ)−1) and set

ED(λn) := {φ : (D − λn)
νD(λn)φ = 0} = EK ((λn + κ)−1).

Elliptic regularity then shows ED(λn) ⊂ C∞(V ). Note that 0 ∈ σ (K) plays no role and the
analysis of section 2 shows that there is a direct sum decomposition (which is not an orthogonal
direct sum decomposition in general) of the form

L2(V ) = ⊕nED(λn).

It is then immediate that

TrL2 (e−tD) =
X

n

e−tλn dim(ED(λn)).

6
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3.2. Proof of theorem 5

Let A± : C∞(V±) → C∞(V∓) be first-order partial differential operators over a compact
Riemannian manifold without boundary such that D± := A∓A± are the operators of Laplace
type on C∞(V±). Since A±D± = D∓A±,

A± : ED± (λn) → ED∓ (λn).

If λn 6= 0, then D± = A∓A± is invertible on ED± (λn); consequently, A± is an isomorphism.
The decomposition

L2(V±) = ED± (0) ⊕λn 6=0 ED± (λn)

shows that

ker(A±) = ED± (0) and range(A∓) = ⊕λn 6=0ED± (λn).

Consequently,

index(A+) = dim{ED+ (0)} − dim{ED− (0)}
and the usual cancellation argument shows that

TrL2 (e−tD+ ) − TrL2 (e−tD− ) =
X

n

e−tλn [dim{ED+ (λn)} − dim{ED− (λn)}]

= dim ED+ (0) − dim ED− (0) = index(A+).

3.3. The proof of theorem 2

The condition that A∓A± are of Laplace type is a condition only on the leading order symbols
of A±; it is unchanged by zeroth-order perturbations of these operators. Furthermore, since
am(x, A+, A−) is given by a local formula, index(A+) varies continuously if we perturb the
zeroth-order symbol; as the index is integer valued, it is therefore unchanged by zeroth-order
perturbations. Consequently, if we are dealing with the generalized de Rham complex, the
index must in fact be χ(M) and theorem 2 as follows.

4. Local formulas for the heat trace asymptotics

Let D be an operator of Laplace type on C∞(V ). We adopt the notation of equation (2). There
is a unique connection ∇ on V and a unique endomorphism E of V so that we may express D
using the Bochner formalism

Du = −{gi ju;i j + Eu},
where u;i j denotes the second covariant differentiation of u with respect to the connection ∇.
Let 0uv

w be the Christoffel symbols of the Levi-Civita connection and let ω be the connection
1-form of ∇. Using the notation established above, one then has [16] that

ωi = 1
2 gi j{Aj + glk0lk

j Id},
E = B − gi j

©
∂xiω j + ωiω j − ωk0i j

k
ª
.

(8)

Let Ä be the curvature of the connection ∇. The following is well known—see, for example,
the discussion in [17] and the references therein:

a0(x, D) = (4π)−m/2 Tr{ Id},
a2(x, D) = (4π)−m/2 1

6 Tr{6E + τ Id},
a4(x, D) = (4π)−m/2 1

360 Tr{60E;kk + 60τE + 180E2 + 12τ;kk Id

+ 5τ 2 Id − 2|ρ|2 Id + 2|R|2 Id + 30Äi jÄi j}. (9)

7
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Partial information is available for all the terms [5]:

a2n(x, D) = (−1)nn!

(2n + 1)!
{−n1n−1τ Tr(Id) − (4n + 2)1n−1 Tr(E )} + · · · . (10)

We refer to [15, 29] for a discussion of a6 and note that formulae for a8 and a10 are available
in this setting [1, 4, 30].

5. Super trace asymptotics for the de Rham complex on a flat torus

Let M = (Tm, g) be the flat m-dimensional torus with the usual periodic parameters
(x1, . . . , xm) so that g(∂xi , ∂x j ) = δi j; the analysis is simplified by taking a flat structure
but a similar analysis holds in the general setting. Let V = 3(M) be the exterior algebra and
let 4 := +Id on 3e and 4 := −Id on 3o be the chirality operator which defines the super
trace. Let γ i := ext(dxi) − int(dxi) and θ be the connection 1-form of a connection ∇ on
3(Tm); ∇ is a super connection if and only if θ4 = 4θ . Set

A∇ := γ i(∂xi + θi).

Set θ j/i := ∂xiθ j.

Lemma 3. If ∇ is a super connection on 3(Tm), then

(i) A∇ : C∞(3e/o) → C∞(3o/e) is an elliptic complex of Dirac type;
(ii) the operator A is self-adjoint if and only if θ∗

i γ i = −γ iθi;
(iii) Tr{E4} = −Tr{γ iγ jθ j/i4}.

Proof. The first two assertions are immediate from the definitions that we have given. Since
gi j = δi j, we can raise and lower indices freely and use equation (8) to compute

D = γ i(∂xi + θi)γ
j(∂x j + θ j)

= − ©
∂2

xi
− (γ iθiγ

j + γ jγ iθi)∂x j − (γ iθiγ
jθ j + γ iγ jθ j/i)

ª
ω j = − 1

2

¡
γ iθiγ

j + γ jγ iθi
¢

E = −(γ iθiγ
jθ j + γ iγ jθ j/i) + 1

2 (γ iθi/ jγ
j + γ jγ iθi/ j)

− 1
4 (γ iθiγ

j + γ jγ iθi)(γ
kθkγ

j + γ jγ kθk).

We now take the super trace and show that most of the terms vanish. We use the identities
4θ j = θ j4, γ i4 = −4γ i and Tr(AB) = Tr(BA) to compute

−Tr{γ iθiγ
jθ j4} = −Tr{−γ iθi4γ jθ j} = −Tr{−γ jθ jγ

iθi4} = 0,

1
2 Tr{γ iθi/ jγ

j4 + γ jγ iθi/ j4} = 1
2 Tr{γ iθi/ jγ

j4 + γ iθi/ j4γ j}
= 1

2 Tr{γ iθi/ jγ
j4 − γ iθi/ jγ

j4} = 0.

− 1
4 Tr{γ iθiγ

jγ kθkγ
j4 + γ iθiγ

jγ jγ kθk4 + γ jγ iθiγ
kθkγ

j4 + γ jγ iθiγ
jγ kθk4}

= − 1
4 Tr{γ iθiγ

jγ kθkγ
j4 + γ iθiγ

jγ jγ kθk4 − γ jγ jγ iθiγ
kθk4 − γ iθiγ

jγ kθkγ
j4}

= − 1
4 Tr{−γ iθiγ

kθk4 + γ iθiγ
kθk4} = 0.

8
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We take θ1 := f (x2)γ
1γ 24. Then θ14 = 4θ1 so θ defines a super connection.

Furthermore,

θ∗
1 = f (x2)4γ 2γ 1 = − f (x2)γ

1γ 24,

− θ∗
1 γ 1 = f (x2)γ

1γ 24γ 1 = γ 1 f (x2)γ
1γ 24 = γ 1θ1,

so A∇ is self-adjoint. We have

Tr{γ iγ jθ j/i4} = Tr{γ 2γ 1γ 1γ 244∂x2 f } = dim{3(Tm)}∂x2 f .

We choose f so all the derivatives of f are non-zero at some point x of T
m. We then have

{1n−1Tr(E )}(x) 6= 0 for n > 1. Theorem 3 now follows from equations (9) and (10). ¤

6. The proof of theorem 4

Let g be a Riemannian metric on M and ∇ be a connection on T M. We expand¡∇∂xi
− ∇g

∂xi

¢
∂x j = θi j

k∂xk .

We extend ∇ to a connection on all of 3M using the Leibnitz rule as discussed previously. Fix
a point x of M. We normalize the choice of the coordinate system so that g(x)i j = δi j and so
that the first derivatives of the metric gi j/k := ∂xk gi j vanish at x. We introduce formal variables
gi j/α and θi j

k
/α for the derivatives ∂α

x of the metric and of the normalized connection 1-form.
We let Im be the space of all polynomials which are invariant, i.e. which are independent of
the particular coordinate system chosen for evaluation.

There is a natural grading which is defined on Im. We set

deg(gi j/α ) = |α| and deg(θi j
k
/α ) := 1 + |α|.

Let Im,n ⊂ Im consist of those invariants which are homogeneous of order n. This grading
can also be expressed in a coordinate-free fashion by noting that an invariant is homogeneous
of order n if and only if P(c2g) = c−nP(g). In particular, there are no non-trivial invariants of
odd order. Thus, we may decompose

Im = ⊕nIm,n.

The proof of theorem 4 will rest upon the following result.

Lemma 4. Adopt the notation established above:

(i) an(x, (d + δ)∇ ) defines an element εm,n ∈ Im,n;
(ii) there is a natural restriction map r : Im,n → Im−1,n → 0;

(iii) r(εm,n) = 0;
(iv) r is injective from Im,n to Im−1,n if 3n < 2m.

Proof. Assertion (i) follows from the Seeley calculus; an is given by a local formula which is
homogeneous of degree n in the derivatives of the total symbol of the operator. Weyl’s theory
of invariants of the orthogonal group [31] permits us to express the spaces Im,n tensorially in
terms of contractions of indices in polynomials of the covariant derivatives of the curvature
tensor and of θ where the sum ranges over indices 1 6 iμ 6 m. If P ∈ Im,n, then r(P) is
defined by letting the corresponding sum range over indices 1 6 iμ 6 m − 1; it now follows
that r is surjective.

It is worth illustrating this argument with an example. The scalar curvature

τm :=
mX

i, j=1

Ri j ji

9
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defines an element of Im,2 for any m. The sequence {τm} satisfies r(τm) = τm−1 and for this
reason one usually does not subscript to explicitly demonstrate the dimension m.

There is an alternative description of the restriction map which is useful. Let (N, gN ) be
a Riemannian manifold of dimension m − 1 which is equipped with a connection ∇N on the
tangent bundle giving rise to a structure θN = {θi}m−1

i=1 . Let s be the usual periodic parameter
on the circle. We let M := N × S1, gM = gN + ds2 and θM = {θi}m−1

i=1 define ∇M , with the
connection ∇M on T (N × S1) being flat in the S1 direction. Since the structures are flat in S1,
we have

r(P)(N, gN, θN )(x) = P(M, gM, θM )(x, s), for any s ∈ S1.

Clifford multiplication γ (ds) := ext(ds) − int(ds) defines an isomorphism from 3e(M)

to 3o(M) which intertwines the associated Laplacians since the structures are induced from an
underlying structure on N. Thus, the super trace of the heat asymptotics cancels and assertion
(iii) follows.

Let P ∈ Im,n. If A is a monomial of order n, let c(P, A) be the coefficient of A in P; we
say A is a monomial of P if c(P, A) 6= 0. Express A in the form

A = gi1 j1/α1 · · · gi` j`/α`
θk1l1

n1
/β1 · · · θkt lt

nt
/βt .

By hypothesis,

|αi| > 2 for 1 6 i 6 `, (11)

since we have normalized the coordinate system so the first derivatives of the metric vanish.
Furthermore, the order is given by

n = |α1| + · · · + |α`| + (|β1| + 1) + · · · + (|βt | + 1). (12)

Let dega(A) be the number of times that an index a appears in A;

dega(A) = δi1,a + δ j1,a + α1(a) + · · · + δi`,a + δ j`,a + α`(a)

+ δk1,a + δl1,a + δn1,a + β1(a) + · · · + δkt ,a + δlt ,a + δnt ,a + βt (a).

If A is a monomial of P, we replace xa by −xa to see that

dega(A) ≡ 0 mod 2. (13)

If r(P) = 0, then degm(A) > 0 since the restriction map is defined by setting to zero those
monomials which involve the final index. Permuting the coordinate indices and applying
equation (13) then yields

dega(A) > 2 for 1 6 a 6 m . (14)

Suppose r(P) = 0. Let A be a monomial of P. We use equation (11), equation (12) and
equation (14) to estimate

2m 6
mX

a=1

dega(A) = 2` + 3t + |α1| + · · · + |α`| + |β1| + · · · + |βt |
(15)

= 2` + 2t + n 6 |α1| + · · · + |α`| + 2t + n 6 2n + t 6 3n.

This shows that r is injective if 3n < 2m which establishes assertion (iv). ¤

7. Dedication

Stuart Dowker has made deep contributions to many areas of mathematics and physics and
remains active presently (see, for example, [8, 9]). The second and third authors have been
honored to have collaborated with Stuart on several papers (see, for example, [10, 11]) and
the remaining authors have used his results extensively. We hope this paper serves as a fitting
tribute to our colleague and friend and all the authors join in dedicating this paper to him.
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