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Abstract

We obtain a (1/4)-supersymmetric 6-brane solution of IIA supergravity by T-dualizing the supertube recently found. The
resulting C1 electric charge is related to the original D0-brane charge. The uplifted solution to eleven dimensions results to be
a purely geometrical configuration, which can be interpreted as a bound state of a Taub-NUT space and a pp-wave. Being the
non-trivial part of the metric pseudo-Riemannian, the resulting reduced holonomy group is non-compact and locally isomorphic
to a semidirect product of an Abelian four-dimensional group and SU(2).
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Tubular configurations of D2-branes preserving some supersymmetries became a subject of interest in recent
years [1–6]. The supertube configuration of circular cross section was introduced in [1] from the world-volume
point of view, and its corresponding supergravity solution was presented in [2]. In [3] the generalization to arbitrary
cross section was found.

The supertube has zero D2 charge, which agrees with its interpretation as the “blown-up” configuration
arising when D0 charge is dissolved in a bundle of F1-superstrings. Being (1/4)-supersymmetric, the blown-up
configuration is self supported against collapse.

The T-dual configuration along the longitudinal axis of the supertube has been presented in [5]; from the author’s
analysis of the boundary conditions arising on a superstring that ends on the supertube the picture of a “super-D-
helix” emerged. The ST-dual of the super-D-helix was studied in [6] and identified with the type IIA supercurve,
i.e., a string with an arbitrary transverse displacement traveling at the speed of light.

In the present Letter a D6-brane configuration is obtained by T-dualizing the supertube. Somewhat surprisingly,
it can be uplifted to a purely geometrical eleven-dimensional solution, that in view of the supersymmetries
preserved by the original supertube has a special holonomy group.
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2. The supertube solution

The supergravity solution sourced by N coincident supertubes with arbitrary cross section is given by [3]

ds2
10 = −V −1/2U−1(dt −A)2 + V 1/2(U−1dz2 + d �y · d �y + d �x · d �x)

,

B2 = −U−1(dt −A)∧ dz+ dt ∧ dz,

(1)C1 = V −1(dt −A)− dt, C3 = −U−1 dt ∧ dz∧A, eφ =U−1/2V 3/4,

where the coordinates of ten-dimensional spacetime are (t, z, �y, �x). The supertube we will consider has the
topology C × R where the R direction is identified with the z variable and C is an arbitrary curve embedded in
the �y = (y1, y2, y3) hyperplane; �x ∈ R5 are coordinates transverse to the supertube.

The harmonic functions U(�x, �y), V (�x, �y) and the 1-form A= �A(�x, �y) · d �y are given by:

(2)
U(�x, �y)− 1
V (�x, �y)− 1
�A(�x, �y)


 = 1

6Ω7

∫
C

dσ
1

R(�x, �y;σ)6




|π(σ)|
|B(σ)|
N �y ′(σ )

,

where we have defined R(�x, �y;σ) = √
(�y − �y(σ)) · (�y − �y(σ))+ �x · �x , and the cross section C of the supertube

is specified by the functions �y = �y(σ), the F1-string and D0-brane charge densities are denoted π(σ) and B(σ),
respectively. Here Ωq is the volume of a q-sphere of unit radius.

The gauge-invariant field-strengths derived form the Neveu–Schwarz B2 and Ramond–Ramond Cp forms are
given by

(3)H3 = dB2, G2 = dC1, G4 = dC3 +H3 ∧C1.

For the solution (1) they read

H3 =U−2dU ∧ (dt −A)∧ dz+U−1dA∧ dz,

G2 = −V −2dV ∧ (dt −A)− V −1 dA,

(4)G4 = −U−1V −1(dt −A)∧ dz∧ dA.

The Hodge duals of the above RR-curvatures are

G6 ≡ ∗10G4 ≡ dC5 +H3 ∧C3 = ∗8dA,

(5)G8 ≡ ∗10G2 ≡ −dC7 −H3 ∧C5 = (−U−1G6 ∧ (dt −A)− ∗8dV
) ∧ dz,

where ∗8 stands for the eight-dimensional Hodge dual with respect to the Euclidean (�y, �x) space and the dual
potentials, defined according to the equations of motion,3 are given by

C5 = ∗8T3,

(6)C7 = ∗8T2 ∧ dz+U−1C5 ∧ (dt −A)∧ dz,

where we have introduced the two new forms T2 and T3 that must satisfy the constraints

(7)d ∗8 T3 = ∗8dA, d ∗8 T2 = ∗8dV.

3 We follow conventions of [7].
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3. T-duality

Let (xµ, y) be coordinates in which a y-translation is a symmetry of the whole background (metric GMN ,
antisymmetric tensor BMN , dilaton φ, RR fields Cp) and (xµ) coordinates in nine spacetime dimensions. Then to
perform a T-duality in y-direction we use the following form of the duality rules; on NS–NS fields

d̃s
2
10 = ds2

9 +G−1
yy (b+ dy)2 −Gyyg

2,

(8)B̃2 = B2|9 + g ∧ (b+ dy), eφ̃ =G
−1/2
yy eφ,

where g ≡G−1
yy Gµy dx

µ, b ≡ Bµy dx
µ and B2|9 = Bµν dx

µ ∧ dxν , and on RR fields

(9)C̃n = (∂y;Cn+1)+ (∂y;Cn−1)∧ (b + dy)∧ g + (∂y;Cn−1 ∧ dy)∧ b +Cn−1 ∧ dy,

where (u; tn+1)µ1...µn ≡ uµtµ1...µnµ.
We will use these rules to T-dualize the solution (1) in the directions (z, �x). After the first T-duality in the z

direction, the resulting non-zero fields are

ds2
10 = V −1/2((U − 1) dz+2 − dz+ (dz− − 2A)

) + V 1/2(d �y · d �y + d �x · d �x),
(10)C2 = 1

2
(
V −1(dz− − 2A)− dz−) ∧ dz+, C6 = C5 ∧ dz+ + ∗8T2, eφ = V 1/2,

where z± = t ± z, C5 and T2 are given in (6) and (7), respectively. This supergravity solution corresponds to the
super-D-helix first studied in [5], the ST-dual of which is the supercurve of [6]. Here we see that the B2 form
vanishes. This is due to the fact that the F-strings extending in the z direction are transformed into light-like
momentum modes in the z direction after the T-dualization.

In order to perform a T-duality in a given direction, the fields have to be independent of the corresponding
variable. This is achieved by delocalizing the solution, i.e., forming an array of supertubes in the direction to
be T-dualized and taking the limit in which the separating distance goes to zero and the charge densities remain
constant. For each one the �x directions, the net effect of these operations in (2) is to decrease the power of R(σ) in
one, eliminating the corresponding dependence. The (q − 1)Ωq denominator in the solutions goes to (q − 2)Ωq−1
on each step. After delocalizing the supertube in the five �x directions we obtain

(11)
U(�y)− 1
V (�y)− 1
�A(�y)


 = 1

4π

∫
C

dσ
1

|�y − y(σ)|




|π(σ)|
|B(σ)|
N �y ′(σ )

.

It will be convenient in what follows to rewrite the T2 and T3 forms in terms of their 3-dimensional Hodge duals
w.r.t. the �y variables, T1 = ∗3T2 = �T · d �y and T = ∗3T3, then the constraints (7) are written as

(12)�∇T = �∇ × �A, �∇ × �T = �∇V.

Next we will T-dualize (10) in the five �x directions, which are transverse to the supertube. We obtain

ds2
10 = V −1/2((U − 1) dz+2 − dz+ (dz− − 2A)+ d �x · d �x) + V 1/2 d �y · d �y,

C1 = T1 − T dz+, C7 = 1
2
(
V −1(dz− − 2A)− dz−) ∧ dz+ ∧ dx1 ∧ · · · ∧ dx5,

(13)eφ = V −3/4.

Let us remark here that the NS 2-form B2 and the RR 3-form C3 vanish, which implies that this solution can be
uplifted to a purely geometrical eleven-dimensional configuration, as we will see in the next section.
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4. Eleven-dimensional metric and reduced holonomy

4.1. Uplifting to eleven dimensions

Let us carry out the uplifting to D = 11 of the D6-brane like solution of D = 10 SUGRA IIA just found,
according to the standard recipe

(14)ds2
11 = e− 2

3φ ds2
10 + e

4
3φ(dψ +C1)

2, A3 = C3 +B2 ∧ dψ,

where ψ is the eleventh dimension. Being C3 = B2 = 0 we get A3 = 0, i.e., the solution is a pure geometric one. It
reads

ds2
11 = ds2

1,5 + d �x · d �x,
(15)ds2

1,5 = (
U − 1 + V −1T 2)dz+2 − dz+(dz− +A)+ V d �y · d �y + V −1(dψ + T1)

2,

where A= −2A+ 2V −1T (dψ + T1) is the so-called Sagnac connection [8].
It will be convenient in what follows to work in a local basis, so let us introduce the following elfbein {ωA}

together with the dual basis {eA} in T (M), (eA;ωB)= δBA ,

(16)

ω0 =U−1/2(dt −A), e0 =U1/2(∂t − (1 −U−1)∂z +U−1T ∂ψ
)
,

ωi = V 1/2 dyi, ei = V −1/2(∂i +Ai(∂t − ∂z)− Ti∂ψ
)
,

ω4 = V−1/2(dx10 +C1), e4 = V 1/2∂ψ,
ω5 =U−1/2(U dz+ (U − 1) dt +A

)
, e5 =U−1/2(∂z + T ∂ψ),

ωa = dxa−5, ea = ∂xa−5,

where i = 1,2,3 and a = 6, . . . ,10 and C1 is given in (13). The metric (15) is simply

(17)ds2
11 = ηABω

AωB, η = diag(−1,1, . . . ,1).

The (pseudo-) Riemannian connection is a one-form valued (in general) in the spin(1,10) algebra

(18)Ω ≡ 1
2
ωABXAB, [XAB;XCD] = ηADXBC + ηBCXAD − (A↔B),

and its components are fixed by the conditions of metricity and no-torsion

(19)ωAB = −ωBA, dωA +ωAB ∧ωB = 0.

For the metric (17) we get the following non-zero components

ω0i = 1
2
V−1U−1/2(V 1/2U−1/2∂iU

(
ω0 +ω5) + εijkBkω

j −Biω
4) = −ωi5,

ω04 = −1
2
V −1U−1/2Biω

i = −ω45,

ω05 = 1
2
V−1/2U−1∂iUωi = d lnU1/2,

(20)ωi4 = 1
2
V−3/2(V 1/2U−1/2Bi

(
ω0 +ω5) + εijk ∂jV ωk + ∂iV ω4) = −1

2
εijkωjk,

where Bi = εijk∂jAk and indices are raised and lowered with (ηAB).
The curvature tensor is a two-form valued (in general) in spin(1,10)

R ≡ dΩ +Ω ∧Ω = 1
2
RABXAB,

(21)RAB ≡ dωAB +ωAC ∧ ωC
B = 1

2
RABCDω

C ∧ωD.
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It is straightforwardly computed from (16), (20); we get4

R0i = 1
4
U−1V−2

((
4BiBj + δij

( �∇U · �∇V − �B2) + 2V ∂i∂jU

− ∂iU∂jV − ∂jU∂iV
)
ωj − εijk∂jU∂kV ω4

)
∧ (

ω0 +ω5)
+ 1

2
U−1/2V−5/2( �B · �∇V δil − 2Bi∂lV −Bl∂iV + V ∂iBl

)
ω4 ∧ωl

+ 1
2
εljk

(
R0i4l + 1

2
U−1/2V −3/2εlim∇2Am

)
ωj ∧ωk,

R04 = 1
4
U−1V −2

(
−( �B2 + �∇U · �∇V

)
ω4 − εijk∂jU∂kV ωi

)
∧ (

ω0 +ω5)
− 1

2
εijk

(
Rk404 − 1

2
U−1/2V−3/2∇2Ak

)
ωi ∧ ωj ,

R05 = 0,

(25)

Ri4 =
((

−R0ji4 + 1
2
U−1/2V −3/2εijk∇2Ak

)
ωj − 1

2
U−1/2V−5/2εijkBj∂kV ω4

)
∧ (

ω0 +ω5)
+ 1

2
V−3( �∇V · �∇V δij − 3∂iV ∂jV + V ∂j∂iV )ωj ∧ω4 − 1

2
εljk

(
Rl4i4 − 1

2
V−2∇2V δli

)
ωj ∧ωk,

while the other components are obtained from the relations

(26)Ri5 = −R0i , R45 = −R04, Rij = −εijkRk4.

The non-zero components of the Ricci tensor RAB ≡RC
ACB =RBA and Ricci scalar result

R00 = −1
2
V−1U−1∇2U = R55, Rij = −R44δij ,

(27)R44 = 1
2
V −2∇2V, R≡RA

A = −V −2∇2V.

4 It is worth to note a subtlety that arises when “magnetic” sources coupled to gravity are present. While the properties of the curvature tensor
RABCD = −RABDC = −RBACD follow from the two-form condition and metricity, respectively, more or less by definition, the torsionless
condition in (19) leads to the anomaly relation

(22)RABCD −RCDAB = − 1
2
(dABCD − dCDAB + dDABC − dBCDA),

where we have defined

(23)d2ωA ≡ 1
3!d

A
BCDωB ∧ ωC ∧ωC, dABCD ≡ eMB eNC ePD

([∂M ; ∂N ]ωAP + [∂P ; ∂M ]ωAN + [∂N ; ∂P ]ωAM
)
.

In “normal” conditions (when the vielbein is smooth enough such that derivatives commute on them) the coefficients {dABCD} are identically
null and the textbook property RABCD = RCDAB holds; however, when “Dirac string” like singularities are present its generalization (22)
must be considered. In the case at hand (16), (17) it can be shown by using (12) that the non-trivial anomaly terms are

Ri4jk −Rjki4 = 1
2
d4ijk = 1

2
εijkV

−2∇2V,

(24)R04ij −Rij04 = 1
2
d40ij = 1

2
εijkU

−1/2V−3/2∇2Ak = R54ij −Rij54 = 1
2
d45ij =R4i0j −R0j4i =R4i5j −R5j4i .

Explicit computation shows them up in (25).
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This shows that the metric is a solution of D = 11 SUGRA coupled to an object living on the curve C , being Ricci
flat outside it.5

4.2. Holonomy group and Killing spinors

It is clear that, being reducible, the holonomy group of (15) will be

Hol
(
ds2

11
) = Hol(ds2

1,5)× Hol(d �x · d �x) = Hol
(
ds2

1,5
) ⊂ Spin(1,5),

but being the solution (1/4)-supersymmetric (see below for more) the holonomy will be further reduced. To see
this let us introduce the light-cone generators X±a ≡ X0a ± X5a , a = 1,2,3,4, X+− = −2X05 and in terms of
them the following (redundant) ones

T
(±)
i = 1

4
εijkXjk ± 1

2
Xi4, i = 1,2,3,

(29)t1± =X+3 ∓ iX+4, t̄1± =X+3 ± iX+4, t2± =X+1 + iX+2, t̄2± =X+1 − iX+2,

leaving aside {X−a, a = 1,2,3,4,+} which will not play any role in the discussion. It is easy to check the following
commutation relations[

T
(±)
i ;T (±)

j

] = −εijkT
(±)
k ,

[
T
(+)
i ;T (−)

j

] = 0,[
T
(±)
i ; tα±

] = − i

2
σi

α
βt

β
±,

[
T
(±)
i ; t̄α±

] = i

2
σ ∗α
i β t̄

β
±,

(30)
[
tα±; tβ±

] = [
tα±; t̄β±

] = [
tα+; tβ−

] = [
tα+; t̄β−

] = 0.

The first line is just the spin(4)∼ su(2)+×su(2)− subalgebra of spin(1,5), while the second line indicates that (tα±)
and (t̄α±) transform in the spin 1/2 representation of su(2)± and its conjugate (equivalent anyway), respectively.
Finally the third line implies that {tα±, t̄α±} expand an Abelian subalgebra.

Now from the curvature tensor we can read the Lie algebra hol(ds2
11) of Hol(ds2

11); from (25), (26) it takes the
form

(31)R = R0iT
(−)
i + 1

2
(
(R03 − iR04)t

1− + (R01 − iR02)t
2− + h.c.

)
,

which shows that hol(ds2
11) is the seven-dimensional subalgebra whose elements can be written as

(32)X = εiT
i− + εαt

α− + ε̄α t̄
α−, εi ∈ R, ε̄α = ε∗

α.

It is given by[
T
(−)
i ;T (−)

j

] = −εijkT
(−)
k ,

[
T
(−)
i ; tα−

] = − i

2
σi

α
βt

β
−,

[
T
(−)
i ; t̄α−

] = i

2
σ ∗α
i β t̄

β
−,

(33)
[
tα−; tβ−

] = [
tα−; t̄β−

] = [
t̄α−; t̄β−

] = 0.

On the other hand, in view of the pure geometric character of the solution we have that the variation of the
gravitino field χΛ

A under a SUGRA transformation is just

(34)δεχ
Λ
A =DAε

Λ = eA
(
εΛ

) + S(Ω)ΛΛ′εΛ
′
,

5 Let us remind the reader that from (11) it follows that

(28)−∇2



U(�y)
V (�y)= ∫

C dσ δ3(�y − �y(σ))
�A(�y)




|π(σ)|
|B(σ)|
�y′(σ )

.
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where the parameter εΛ is a thirty two component Majorana spinor and S(Ω) is the connection (18) valued in
the spinorial representation. The solution will preserve the SUSY’s that annihilate the gravitino variation, so the
Killing spinors will be the covariantly constant ones. Specifically in a Weyl basis where for definiteness we take

(35)Γm =
(

016 γm
γm 016

)
, Γ9 = i

(
016 116

−116 016

)
, Γ10 =

(
116 016
016 −116

)
,

where {γm,m= 0,1, . . . ,8} are gamma-matrices of spin(1,8), the condition δεχ
Λ
A =DAε

Λ = 0 results equivalent
to

(36)ε =U−1/4ε0, with
{
Γ05ε0 = ε0
Γ1234ε0 = −ε0

,

with ε0 a constant spinor. Eq. (36) signals the preservation of 8 = 1
4 · 32 of the supersymmetries as it happened for

the supertube. It is worth to note that the Killing spinors can be made constant through a Lorentz boost that eliminate
the part of the connection that does not lie in the holonomy algebra, given ω05S(X

05)= d lnU1/2(Γ 05/2).

5. Discussion

First let us note that the supersymmetry of the supergravity supertube solution does not depend on any relation
between the D0 and F1 charge densities, what enables us to assign arbitrary values to them.

While the original supertube had zero D2 charge, the final ten-dimensional configuration (13) is a genuine
D6-brane, its charge being traced to the initial D0-brane density,

(37)qD6 ≡
∫
S2

∗10F8 =
∫
S2

F2 =
∫
S2

∗3 dV =
∫

B3,∂B3=S2

d ∗3 dV = −
∫
C

dσ |B(σ)|.

Of course, for U = 1, �A = �0 (which means |π(σ)| = 0 on a flat D2-brane) we recover the standard flat 1/2-
supersymmetric D6-brane solution.

When uplifted to eleven dimensions, the resulting configuration (15) can be interpreted as a bound state of a
Taub-NUT like space and pp-wave. The presence of the first can be verified by direct inspection of the metric, while
that of the second follows from the existence of the covariantly constant null vector ∂−. This assertion is consistent
with the analysis of the Killing spinors since the constraints (36) are those corresponding to a Taub-NUT and a
pp-wave supersymmetry preserving conditions [9].

For U = 1, �A = �0 we have the product of Minkowski space in 1 + 6 dimensions and a Taub-NUT space,
i.e., M-theory compactified on this last one which is known to preserve 1/2 of the supersymmetries and to have
SU(2) ⊂ G2 holonomy. Since in our general (1/4)-supersymmetric case the irreducible part of the metric is six-
dimensional one could expect to find a Hol(ds2

1,5) ⊂ SU(3) reduced holonomy group, but the pseudo-Riemannian
character of ds2

1,5 invalidates Berger’s classification theorem [10] and the resulting manifold is not a Calabi–Yau
one.6 In fact, from (33) the holonomy group is non-semisimple and locally isomorphic to the semidirect product
of SU(2) and an the real section defined in (32) of the Abelian four-dimensional algebra generated by {tα−, t̄α−}
transforming in the 1

2 ⊕ 1̄
2 .
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